1
|
Issotina Zibrila A, Zhou J, Wang X, Zeng M, Ali MA, Liu X, Alkuhali AA, Zeng Z, Meng Y, Wang Z, Li X, Liu J. Placental ischemia-upregulated angiotensin II type 1 receptor in hypothalamic paraventricular nucleus contributes to hypertension in rat. Pflugers Arch 2024; 476:1677-1691. [PMID: 39215834 DOI: 10.1007/s00424-024-03010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/30/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Preeclampsia (PE) is associated with increased angiotensin II sensitivity and poor neurological outcomes marked by temporal loss of neural control of blood pressure. Yet the role of centrally expressed angiotensin II type 1 receptor (AT1R) within the paraventricular nucleus of the hypothalamus (PVN) in the PE model is not understood. In a PE rat model with reduced placental perfusion pressure (RUPP) induced on gestational day 14 (GD14), the PVN expression and cellular localization of AT1R were assessed using immunofluorescence and western blotting. The sensitivity of RUPP to acute angiotensin II infusion was assessed. AT1R was antagonized by losartan (100 µg/kg/day) for 5 days intracerebroventricularly (ICV). Hemodynamic data and samples were collected on GD19 for further analysis. RUPP upregulated (p < 0.05) mRNA and protein of AT1R within the PVN and lowered (p < 0.05) circulating angiotensin II in rats. RUPP increased neural and microglial activation. Cellular localization assessment revealed that AT1R was primarily expressed in neurons and slightly in microglia and astrocytes. Infusion of 100 ng/kg as bolus increased the mean arterial pressure (MAP in mmHg) in both RUPP and Sham. ICV losartan infusion attenuated RUPP-increased MAP (113.6 ± 6.22 in RUPP vs. 92.16 ± 5.30 in RUPP + Los, p = 0.021) and the expression of nuclear transcription factor NF-κB, tyrosine hydroxylase (TH), NADPH oxidase 4 (NOX4) and reactive oxygen species (ROS) in the PVN. Our data suggest that centrally expressed AT1R, within the PVN, contributes to placental ischemia-induced hypertension in RUPP rats highlighting its therapeutic potential in PE.
Collapse
Affiliation(s)
- Abdoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Jun Zhou
- Department of Pharmacology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, 710061, Shaanxi, P. R. China
| | - Xiaomin Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Ming Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Md Ahasan Ali
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Xiaoxu Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Asma A Alkuhali
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Zhaoshu Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Yuan Meng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Zheng Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xuelan Li
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China.
| | - Jinjun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China.
| |
Collapse
|
2
|
Hao WY, Wang JX, Xu XY, Chen JL, Chen Q, Li YH, Zhu GQ, Chen AD. Chemerin in caudal division of nucleus tractus solitarius increases sympathetic activity and blood pressure. Eur J Neurosci 2024; 60:4830-4842. [PMID: 39044301 DOI: 10.1111/ejn.16475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Chemerin is an adipokine that contributes to metabolism regulation. Nucleus tractus solitarius (NTS) is the first relay station in the brain for accepting various visceral afferent activities for regulating cardiovascular activity. However, the roles of chemerin in the NTS in regulating sympathetic activity and blood pressure are almost unknown. This study aimed to determine the role and potential mechanism of chemerin in the NTS in modulating sympathetic outflow and blood pressure. Bilateral NTS microinjections were performed in anaesthetized adult male Sprague-Dawley rats. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were continuously recorded. Chemerin and its receptor chemokine-like receptor 1 (CMKLR1) were highly expressed in caudal NTS (cNTS). Microinjection of chemerin-9 to the cNTS increased RSNA, MAP and HR, which were prevented by CMKLR1 antagonist α-NETA, superoxide scavenger tempol or N-acetyl cysteine, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors diphenyleneiodonium or apocynin. Chemerin-9 increased superoxide production and NADPH oxidase activity in the cNTS. The increased superoxide production induced by chemerin-9 was inhibited by α-NETA. The effects of cNTS microinjection of chemerin-9 on the RSNA, MAP and HR were attenuated by the pretreatment with paraventricular nucleus (PVN) microinjection of NMDA receptor antagonist MK-801 rather than AMPA/kainate receptor antagonist CNQX. These results indicate that chemerin-9 in the NTS increases sympathetic outflow, blood pressure and HR via CMKLR1-mediated NADPH oxidase activation and subsequent superoxide production in anaesthetized normotensive rats. Glutamatergic inputs in the PVN are needed for the chemerin-9-induced responses.
Collapse
Affiliation(s)
- Wen-Yuan Hao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Yu Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun-Liu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Huber K, Szerenos E, Lewandowski D, Toczylowski K, Sulik A. The Role of Adipokines in the Pathologies of the Central Nervous System. Int J Mol Sci 2023; 24:14684. [PMID: 37834128 PMCID: PMC10572192 DOI: 10.3390/ijms241914684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Adipokines are protein hormones secreted by adipose tissue in response to disruptions in physiological homeostasis within the body's systems. The regulatory functions of adipokines within the central nervous system (CNS) are multifaceted and intricate, and they have been identified in a number of pathologies. Therefore, specific adipokines have the potential to be used as biomarkers for screening purposes in neurological dysfunctions. The systematic review presented herein focuses on the analysis of the functions of various adipokines in the pathogenesis of CNS diseases. Thirteen proteins were selected for analysis through scientific databases. It was found that these proteins can be identified within the cerebrospinal fluid either by their ability to modify their molecular complex and cross the blood-brain barrier or by being endogenously produced within the CNS itself. As a result, this can correlate with their measurability during pathological processes, including Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis, depression, or brain tumors.
Collapse
Affiliation(s)
| | | | | | - Kacper Toczylowski
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland
| | | |
Collapse
|
4
|
Arjunan A, Song J. Pharmacological and physiological roles of adipokines and myokines in metabolic-related dementia. Biomed Pharmacother 2023; 163:114847. [PMID: 37150030 DOI: 10.1016/j.biopha.2023.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023] Open
Abstract
Dementia is a detrimental neuropathologic condition with considerable physical, mental, social, and financial impact on patients and society. Patients with metabolic syndrome (MetS), a group of diseases that occur in tandem and increase the risk of neurologic diseases, have a higher risk of dementia. The ratio between muscle and adipose tissue is crucial in MetS, as these contain many hormones, including myokines and adipokines, which are involved in crosstalk and local paracrine/autocrine interactions. Evidence suggests that abnormal adipokine and myokine synthesis and release may be implicated in various MetS, such as atherosclerosis, diabetic mellitus (DM), and dyslipidemia, but their precise role is unclear. Here we review the literature on adipokine and myokine involvement in MetS-induced dementia via glucose and insulin homeostasis regulation, neuroinflammation, vascular dysfunction, emotional changes, and cognitive function.
Collapse
Affiliation(s)
- Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| |
Collapse
|
5
|
Chemerin-9 in paraventricular nucleus increases sympathetic outflow and blood pressure via glutamate receptor-mediated ROS generation. Eur J Pharmacol 2022; 936:175343. [DOI: 10.1016/j.ejphar.2022.175343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/20/2022]
|
6
|
Yamamoto A, Kodama T, Otani K, Okada M, Yamawaki H. Chemerin fragments show different effects on systemic blood pressure dependent on carboxyl-terminal cleavage site. J Vet Med Sci 2022; 84:1352-1357. [PMID: 35934798 PMCID: PMC9586022 DOI: 10.1292/jvms.22-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chemerin is an adipocytokine whose concentration in blood correlates positively with
blood pressure (BP). We have recently revealed that acute intracerebroventricular (i.c.v.)
injection of chemerin-9, an active fragment of human chemerin, increased systemic BP in
normal Wistar rats, suggesting that chemerin is involved in the central nervous control of
peripheral BP. After secreted as an inactive form as prochemerin, a mature form of active
chemerin is produced through the cleavage of its carboxyl (C)-terminus by proteases.
Although the activity of cleaved products of chemerin has been examined in
vitro, in vivo effects remained to be elusive. In order to
explore them, we performed acute i.c.v. injection of mouse chemerin-9 (mChemerin-9;
148F-156S), mouse chemerin-8 (mChemerin-8; 148F-155F), and mouse chemerin-7 (mChemerin-7;
148F-154A) into Wistar rats, and examined the effects on systemic BP. After chemerin
fragment (1–30 nmol/head, i.c.v.) was cumulatively administered, systemic BP was measured
by a cannulation method under an isoflurane anesthesia. mChemerin-9 but not mChemerin-8
and -7 induced a pressor response, which was concentration-dependent. In conclusion, we
for the first time demonstrated that mChemerin-9 that corresponds to the C-terminal nine
amino acids of active mouse chemerin156S increased systemic BP in rats, and also that
chemerin fragments showed different effects on systemic BP dependent on how their
C-terminus was cleaved.
Collapse
Affiliation(s)
- Atsunori Yamamoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Tomoko Kodama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Kosuke Otani
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| |
Collapse
|
7
|
Yamamoto A, Sagara A, Otani K, Okada M, Yamawaki H. Chemerin-9 stimulates migration in rat cardiac fibroblasts in vitro. Eur J Pharmacol 2021; 912:174566. [PMID: 34653380 DOI: 10.1016/j.ejphar.2021.174566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 11/19/2022]
Abstract
Since chemerin is an adipocytokine whose concentration in blood increases in the subjects with various cardiac diseases, chemerin may be involved in pathogenesis of cardiac diseases. In the present study, we examined the effects of chemerin-9, an active fragment of chemerin, on functions of cardiac fibroblasts, which are involved in pathophysiology of cardiac diseases. Primary cardiac fibroblasts were enzymatically isolated from adult male Wistar rats. Migration of cardiac fibroblasts was measured by a Boyden chamber assay and a scratch assay. Phosphorylation of Akt and extracellular signal-regulated kinase (ERK) was measured by Western blotting. Reactive oxygen species (ROS) production was measured by 2',7'-dichlorodihydrofluoresein staining. Chemerin-9 significantly stimulated migration in cardiac fibroblasts. Chemerin-9 significantly stimulated phosphorylation of Akt and ERK as well as ROS production. An Akt pathway inhibitor, LY294002, an ERK pathway inhibitor, PD98059, an antagonist of chemokine-like receptor 1 (CMKLR1), 2-(α-Napththoyl) ethyltrimethylammonium iodide, or an antioxidant, N-acetyl-L-cysteine prevented the migration induced by chemerin-9. In summary, we for the first time revealed that chemerin-9 stimulates migration perhaps through the ROS-dependent activation of Akt and ERK via CMKLR1 in cardiac fibroblasts. It is proposed that chemerin plays a role in the pathogenesis of cardiac diseases.
Collapse
Affiliation(s)
- Atsunori Yamamoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Ayumi Sagara
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Kosuke Otani
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan.
| |
Collapse
|
8
|
Yamamoto A, Otani K, Okada M, Yamawaki H. Chemokine-like Receptor 1 in Brain of Spontaneously Hypertensive Rats Mediates Systemic Hypertension. Int J Mol Sci 2021; 22:11812. [PMID: 34769243 PMCID: PMC8584015 DOI: 10.3390/ijms222111812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
Adipocytokine chemerin is a biologically active molecule secreted from adipose tissue. Chemerin elicits a variety of functions via chemokine-like receptor 1 (CMKLR1). The cardiovascular center in brain that regulates blood pressure (BP) is involved in pathophysiology of systemic hypertension. Thus, we explored the roles of brain chemerin/CMKLR1 on regulation of BP in spontaneously hypertensive rats (SHR). For this aim, we examined effects of intracerebroventricular (i.c.v.) injection of CMKLR1 small interfering (si)RNA on both systemic BP as measured by tail cuff system and protein expression in paraventricular nucleus (PVN) of SHR as determined by Western blotting. We also examined both central and peripheral protein expression of chemerin by Western blotting. Systolic BP of SHR but not normotensive Wistar Kyoto rats (WKY) was decreased by CMKLR1 siRNA. The decrease of BP by CMKLR1 siRNA persisted for 3 days. Protein expression of CMKLR1 in PVN of SHR tended to be increased compared with WKY, which was suppressed by CMKLR1 siRNA. Protein expression of chemerin in brain, peripheral plasma, and adipose tissue was not different between WKY and SHR. In summary, we for the first time revealed that the increased protein expression of CMKLR1 in PVN is at least partly responsible for systemic hypertension in SHR.
Collapse
Affiliation(s)
| | | | | | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori 034-8628, Japan; (A.Y.); (K.O.); (M.O.)
| |
Collapse
|
9
|
Chemerin-9 Attenuates Experimental Abdominal Aortic Aneurysm Formation in ApoE -/- Mice. JOURNAL OF ONCOLOGY 2021; 2021:6629204. [PMID: 33953746 PMCID: PMC8068550 DOI: 10.1155/2021/6629204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/20/2021] [Accepted: 03/25/2021] [Indexed: 11/18/2022]
Abstract
Chronic inflammation plays an essential role in the pathogenesis of abdominal aortic aneurysm (AAA), a progressive segmental abdominal aortic dilation. Chemerin, a multifunctional adipocytokine, is mainly generated in the liver and adipose tissue. The combination of chemerin and chemokine-like receptor 1 (CMKLR1) has been demonstrated to promote the progression of atherosclerosis, arthritis diseases, and Crohn's disease. However, chemerin-9 acts as an analog of chemerin to exert an anti-inflammatory effect by binding to CMKLR1. Here, we first demonstrated that AAA exhibited higher levels of chemerin and CMKLR1 expression compared with the normal aortic tissues. Hence, we hypothesized that the chemerin/CMKLR1 axis might be involved in AAA progression. Moreover, we found that chemerin-9 treatment markedly suppressed inflammatory cell infiltration, neovascularization, and matrix metalloproteinase (MMP) expression, while increasing the elastic fibers and smooth muscle cells (SMCs) in Ang II-induced AAA in ApoE-/- mice. This demonstrated that chemerin-9 could inhibit AAA formation. Collectively, our findings indicate a potential mechanism underlying AAA progression and suggest that chemerin-9 can be used therapeutically.
Collapse
|