1
|
Wahis J, Akkaya C, Kirunda AM, Mak A, Zeise K, Verhaert J, Gasparyan H, Hovhannisyan S, Holt MG. The astrocyte α1A-adrenoreceptor is a key component of the neuromodulatory system in mouse visual cortex. Glia 2024; 72:1955-1973. [PMID: 39001577 DOI: 10.1002/glia.24591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 11/15/2024]
Abstract
Noradrenaline (norepinephrine) is known to modulate many physiological functions and behaviors. In this study, we tested to what extent astrocytes, a type of glial cell, participate in noradrenergic signaling in mouse primary visual cortex (V1). Astrocytes are essential partners of neurons in the central nervous system. They are central to brain homeostasis, but also dynamically regulate neuronal activity, notably by relaying and regulating neuromodulator signaling. Indeed, astrocytes express receptors for multiple neuromodulators, including noradrenaline, but the extent to which astrocytes are involved in noradrenergic signaling remains unclear. To test whether astrocytes are involved in noradrenergic neuromodulation in mice, we employed both short hairpin RNA mediated knockdown as well as pharmacological manipulation of the major noradrenaline receptor in astrocytes, the α1A-adrenoreceptor. Using acute brain slices, we found that the astrocytic α1A-adrenoreceptor subtype contributes to the generation of large intracellular Ca2+ signals in visual cortex astrocytes, which are generally thought to underlie astrocyte function. To test if reduced α1A-adrenoreceptor signaling in astrocytes affected the function of neuronal circuits in V1, we used both patch-clamp and field potential recordings. These revealed that noradrenergic signaling through the astrocyte α1A-adrenoreceptor is important to not only modulate synaptic activity but also to regulate plasticity in V1, through the potentiation of synaptic responses in circuits involved in visual information processing.
Collapse
Affiliation(s)
- Jérôme Wahis
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Cansu Akkaya
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Andre M Kirunda
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Aline Mak
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Karen Zeise
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jens Verhaert
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Hayk Gasparyan
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
- Armenian Bioinformatics institute, Yerevan, Armenia
| | - Sargis Hovhannisyan
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
- Armenian Bioinformatics institute, Yerevan, Armenia
| | - Matthew G Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Villalobos N. Disinhibition Is an Essential Network Motif Coordinated by GABA Levels and GABA B Receptors. Int J Mol Sci 2024; 25:1340. [PMID: 38279339 PMCID: PMC10816949 DOI: 10.3390/ijms25021340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Network dynamics are crucial for action and sensation. Changes in synaptic physiology lead to the reorganization of local microcircuits. Consequently, the functional state of the network impacts the output signal depending on the firing patterns of its units. Networks exhibit steady states in which neurons show various activities, producing many networks with diverse properties. Transitions between network states determine the output signal generated and its functional results. The temporal dynamics of excitation/inhibition allow a shift between states in an operational network. Therefore, a process capable of modulating the dynamics of excitation/inhibition may be functionally important. This process is known as disinhibition. In this review, we describe the effect of GABA levels and GABAB receptors on tonic inhibition, which causes changes (due to disinhibition) in network dynamics, leading to synchronous functional oscillations.
Collapse
Affiliation(s)
- Nelson Villalobos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México 11340, Mexico;
- Sección de Estudios Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
3
|
Chang SH, Chang YM, Chen HY, Shaw FZ, Shyu BC. Time-course analysis of frontal gene expression profiles in the rat model of posttraumatic stress disorder and a comparison with the conditioned fear model. Neurobiol Stress 2023; 27:100569. [PMID: 37771408 PMCID: PMC10522909 DOI: 10.1016/j.ynstr.2023.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex disorder that involves physiological, emotional, and cognitive dysregulation that may occur after exposure to a life-threatening event. In contrast with the condition of learned fear with resilience to extinction, abnormal fear with impaired fear extinction and exaggeration are considered crucial factors for the pathological development of PTSD. The prefrontal cortex (mPFC) is considered a critical region of top-down control in fear regulation, which involves the modulation of fear expression and extinction. The pathological course of PTSD is usually chronic and persistent; a number of studies have indicated temporal progression in gene expression and phenotypes may be involved in PTSD pathology. In the current study, we use a well-established modified single-prolonged stress (SPS&FS) rat model to feature PTSD-like phenotypes and compared it with a footshock fear conditioning model (FS model); we collected the frontal tissue after extreme stress exposure or fear conditioning and extracted RNA for transcriptome-level gene sequencing. We compared the genetic profiling of the mPFC at early (<2 h after solely FS or SPS&FS exposure) and late (7 days after solely FS or SPS&FS exposure) stages in these two models. First, we identified temporal differences in the expressional patterns between these two models and found pathways such as protein synthesis factor eukaryotic initiation factor 2 (EIF2), transcription factor NF-E2-related factor 2 (NRF2)-mediated oxidative stress response, and acute phase responding signaling enriched in the early stage in both models with significant p-values. Furthermore, in the late stage, the sirtuin signaling pathway was enriched in both models; other pathways such as STAT3, cAMP, lipid metabolism, Gα signaling, and increased fear were especially enriched in the late stage of the SPS&FS model. However, pathways such as VDR/RXR, GP6, and PPAR signaling were activated significantly in the FS model's late stage. Last, the network analysis revealed the temporal dynamics of psychological disorder, the endocrine system, and also genes related to increased fear in the two models. This study could help elucidate the genetic temporal alteration and stage-specific pathways in these two models, as well as a better understanding of the transcriptome-level differences between them.
Collapse
Affiliation(s)
- Shao-Han Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Inflammation Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Huan-Yuan Chen
- Inflammation Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Zen Shaw
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
Ueberbach T, Simacek CA, Tegeder I, Kirischuk S, Mittmann T. Tonic activation of GABA B receptors via GAT-3 mediated GABA release reduces network activity in the developing somatosensory cortex in GAD67-GFP mice. Front Synaptic Neurosci 2023; 15:1198159. [PMID: 37325697 PMCID: PMC10267986 DOI: 10.3389/fnsyn.2023.1198159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
The efficiency of neocortical information processing critically depends on the balance between the glutamatergic (excitatory, E) and GABAergic (inhibitory, I) synaptic transmission. A transient imbalance of the E/I-ratio during early development might lead to neuropsychiatric disorders later in life. The transgenic glutamic acid decarboxylase 67-green fluorescent protein (GAD67-GFP) mouse line (KI) was developed to selectively visualize GABAergic interneurons in the CNS. However, haplodeficiency of the GAD67 enzyme, the main GABA synthetizing enzyme in the brain, temporarily leads to a low GABA level in the developing brain of these animals. However, KI mice did not demonstrate any epileptic activity and only few and mild behavioral deficits. In the present study we investigated how the developing somatosensory cortex of KI-mice compensates the reduced GABA level to prevent brain hyperexcitability. Whole-cell patch clamp recordings from layer 2/3 pyramidal neurons at P14 and at P21 revealed a reduced frequency of miniature inhibitory postsynaptic currents (mIPSCs) in KI mice without any change in amplitude or kinetics. Interestingly, mEPSC frequencies were also decreased, while the E/I-ratio was nevertheless shifted toward excitation. Surprisingly, multi-electrode-recordings (MEA) from acute slices revealed a decreased spontaneous neuronal network activity in KI mice compared to wild-type (WT) littermates, pointing to a compensatory mechanism that prevents hyperexcitability. Blockade of GABAB receptors (GABABRs) with CGP55845 strongly increased the frequency of mEPSCs in KI, but failed to affect mIPSCs in any genotype or age. It also induced a membrane depolarization in P14 KI, but not in P21 KI or WT mice. MEA recordings in presence of CGP55845 revealed comparable levels of network activity in both genotypes, indicating that tonically activated GABABRs balance neuronal activity in P14 KI cortex despite the reduced GABA levels. Blockade of GABA transporter 3 (GAT-3) reproduced the CGP55845 effects suggesting that tonic activation of GABABRs is mediated by ambient GABA released via GAT-3 operating in reverse mode. We conclude that GAT-3-mediated GABA release leads to tonic activation of both pre- and postsynaptic GABABRs and restricts neuronal excitability in the developing cortex to compensate for reduced neuronal GABA synthesis. Since GAT-3 is predominantly located in astrocytes, GAD67 haplodeficiency may potentially stimulate astrocytic GABA synthesis through GAD67-independent pathways.
Collapse
Affiliation(s)
- Timo Ueberbach
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Clara A. Simacek
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Sergei Kirischuk
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Mittmann
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
5
|
Bai T, Duan H, Zhang B, Hao P, Zhao W, Gao Y, Yang Z, Li X. Neuronal differentiation and functional maturation of neurons from neural stem cells induced by bFGF-chitosan controlled release system. Drug Deliv Transl Res 2023:10.1007/s13346-023-01322-x. [PMID: 36943630 DOI: 10.1007/s13346-023-01322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Available methods for differentiating stem cells into neurons require a large number of cytokines and neurotrophic factors, with complex steps and slow processes, and are inefficient to produce functional neurons and form synaptic contacts, which is expensive and impractical in clinical application. Here, we demonstrated a bioactive material, basic fibroblast growth factor (bFGF)-chitosan controlled release system, for facilitating neuronal differentiation from NSCs and the functional maturation of the induced neurons with high efficiency. We illustrated by immunostaining that the neurons derived from NSCs expressed mature immunomarkers of interneurons and excitatory neurons. And we found by patch-clamp that the induced neurons exhibited diverse electrophysiological properties as well as formed functional synapses. In vivo, we implanted bFGF-chitosan into lesion area in traumatic brain injury (TBI) mice and similarly observed abundance of neuroblasts in SVZ and the presence of newborn functional neurons in injury area, which integrated into synaptic networks. Taken together, our efficient and rapid tissue engineering approach may be a potential method for the generation of functional neuronal lineage cells from stem cells and a therapy of brain injury and disease.
Collapse
Affiliation(s)
- Tianyu Bai
- School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Hongmei Duan
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China
| | - Boya Zhang
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China
| | - Peng Hao
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China
| | - Wen Zhao
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China
| | - Yudan Gao
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China
| | - Zhaoyang Yang
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China.
| | - Xiaoguang Li
- School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China.
| |
Collapse
|
6
|
Zhang Y, Sun X, Dou C, Li X, Zhang L, Qin C. Distinct neuronal excitability alterations of medial prefrontal cortex in early-life neglect model of rats. Animal Model Exp Med 2022; 5:274-280. [PMID: 35748035 PMCID: PMC9240726 DOI: 10.1002/ame2.12252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECT Early-life neglect has irreversible emotional effects on the central nervous system. In this work, we aimed to elucidate distinct functional neural changes in medial prefrontal cortex (mPFC) of model rats. METHODS Maternal separation with early weaning was used as a rat model of early-life neglect. The excitation of glutamatergic and GABAergic neurons in rat mPFC was recorded and analyzed by whole-cell patch clamp. RESULTS Glutamatergic and GABAergic neurons of mPFC were distinguished by typical electrophysiological properties. The excitation of mPFC glutamatergic neurons was significantly increased in male groups, while the excitation of mPFC GABAergic neurons was significant in both female and male groups, but mainly in terms of rest membrane potential and amplitude, respectively. CONCLUSIONS Glutamatergic and GABAergic neurons in medial prefrontal cortex showed different excitability changes in a rat model of early-life neglect, which can contribute to distinct mechanisms for emotional and cognitive manifestations.
Collapse
Affiliation(s)
- Yu Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Xiuping Sun
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Changsong Dou
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Xianglei Li
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| |
Collapse
|
7
|
Keeping Excitation-Inhibition Ratio in Balance. Int J Mol Sci 2022; 23:ijms23105746. [PMID: 35628556 PMCID: PMC9145842 DOI: 10.3390/ijms23105746] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Unrelated genetic mutations can lead to convergent manifestations of neurological disorders with similar behavioral phenotypes. Experimental data frequently show a lack of dramatic changes in neuroanatomy, indicating that the key cause of symptoms might arise from impairment in the communication between neurons. A transient imbalance between excitatory (glutamatergic) and inhibitory (GABAergic) synaptic transmission (the E/I balance) during early development is generally considered to underlie the development of several neurological disorders in adults. However, the E/I ratio is a multidimensional variable. Synaptic contacts are highly dynamic and the actual strength of synaptic projections is determined from the balance between synaptogenesis and synaptic elimination. During development, relatively slow postsynaptic receptors are replaced by fast ones that allow for fast stimulus-locked excitation/inhibition. Using the binomial model of synaptic transmission allows for the reassessing of experimental data from different mouse models, showing that a transient E/I shift is frequently counterbalanced by additional pre- and/or postsynaptic changes. Such changes—for instance, the slowing down of postsynaptic currents by means of immature postsynaptic receptors—stabilize the average synaptic strength, but impair the timing of information flow. Compensatory processes and/or astrocytic signaling may represent possible targets for medical treatments of different disorders directed to rescue the proper information processing.
Collapse
|
8
|
Qi C, Chen A, Mao H, Hu E, Ge J, Ma G, Ren K, Xue Q, Wang W, Wu S. Excitatory and Inhibitory Synaptic Imbalance Caused by Brain-Derived Neurotrophic Factor Deficits During Development in a Valproic Acid Mouse Model of Autism. Front Mol Neurosci 2022; 15:860275. [PMID: 35465089 PMCID: PMC9019547 DOI: 10.3389/fnmol.2022.860275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental factors, such as medication during pregnancy, are one of the major causes of autism spectrum disorder (ASD). Valproic acid (VPA) intake during pregnancy has been reported to dramatically elevate autism risk in offspring. Recently, researchers have proposed that VPA exposure could induce excitatory or inhibitory synaptic dysfunction. However, it remains to be determined whether and how alterations in the excitatory/inhibitory (E/I) balance contribute to VPA-induced ASD in a mouse model. In the present study, we explored changes in the E/I balance during different developmental periods in a VPA mouse model. We found that typical markers of pre- and postsynaptic excitatory and inhibitory function involved in E/I balance markedly decreased during development, reflecting difficulties in the development of synaptic plasticity in VPA-exposed mice. The expression of brain-derived neurotrophic factor (BDNF), a neurotrophin that promotes the formation and maturation of glutamatergic and GABAergic synapses during postnatal development, was severely reduced in the VPA-exposed group. Treatment with exogenous BDNF during the critical E/I imbalance period rescued synaptic functions and autism-like behaviors, such as social defects. With these results, we experimentally showed that social dysfunction in the VPA mouse model of autism might be caused by E/I imbalance stemming from BDNF deficits during the developmental stage.
Collapse
Affiliation(s)
- Chuchu Qi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Andi Chen
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Erling Hu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Junye Ge
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi’an, China
| | - Guaiguai Ma
- Department of Physiology, Medical College of Yan’an University, Yan’an, China
| | - Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Qian Xue
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Wenting Wang,
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- Shengxi Wu,
| |
Collapse
|
9
|
Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond. Brain Sci 2022; 12:brainsci12040419. [PMID: 35447949 PMCID: PMC9031223 DOI: 10.3390/brainsci12040419] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
The main neurotransmitter in the brain responsible for the inhibition of neuronal activity is γ-aminobutyric acid (GABA). It plays a crucial role in circuit formation during development, both via its primary effects as a neurotransmitter and also as a trophic factor. The GABAB receptors (GABABRs) are G protein-coupled metabotropic receptors; on one hand, they can influence proliferation and migration; and, on the other, they can inhibit cells by modulating the function of K+ and Ca2+ channels, doing so on a slower time scale and with a longer-lasting effect compared to ionotropic GABAA receptors. GABABRs are expressed pre- and post-synaptically, at both glutamatergic and GABAergic terminals, thus being able to shape neuronal activity, plasticity, and the balance between excitatory and inhibitory synaptic transmission in response to varying levels of extracellular GABA concentration. Furthermore, given their subunit composition and their ability to form complexes with several associated proteins, GABABRs display heterogeneity with regard to their function, which makes them a promising target for pharmacological interventions. This review will describe (i) the latest results concerning GABABRs/GABABR-complex structures, their function, and the developmental time course of their appearance and functional integration in the brain, (ii) their involvement in manifestation of various pathophysiological conditions, and (iii) the current status of preclinical and clinical studies involving GABABR-targeting drugs.
Collapse
|
10
|
Alzheimer C. Commentary on: Bassetti, D., Luhmann, H.J., Kirischuk, S. Presynaptic GABA B receptor-mediated network excitation in the medial prefrontal cortex of Tsc2 + / - mice. Pflugers Arch 2021; 473:1171-1172. [PMID: 34032888 PMCID: PMC8302532 DOI: 10.1007/s00424-021-02584-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Christian Alzheimer
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany.
| |
Collapse
|