1
|
Wang L, Liu L, Zhao J, Li C, Wu H, Zhao H, Wu Q. Granule-bound starch synthase in plants: Towards an understanding of their evolution, regulatory mechanisms, applications, and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111843. [PMID: 37648115 DOI: 10.1016/j.plantsci.2023.111843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Amylose content (AC) is a significant quality trait in starchy crops, affecting their processing and application by the food and non-food industries. Therefore, fine-tuning AC in these crops has become a focus for breeders. Granule-bound starch synthase (GBSS) is the core enzyme that directly determines the AC levels. Several excellent reviews have summarized key progress in various aspects of GBSS research in recent years, but they mostly focus on cereals. Herein, we provide an in-depth review of GBSS research in monocots and dicots, focusing on the molecular characteristics, evolutionary relationships, expression patterns, molecular regulation mechanisms, and applications. We also discuss future challenges and directions for controlling AC in starchy crops, and found simultaneously increasing both the PTST and GBSS gene expression levels may be an effective strategy to increase amylose content.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Linling Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China.
| |
Collapse
|
2
|
Qi M, Yao C, Sun B, Cao X, Fei Q, Liang B, Ran W, Xiang Q, Zhang Y, Lan X. Application of an in situ CO 2-bicarbonate system under nitrogen depletion to improve photosynthetic biomass and starch production and regulate amylose accumulation in a marine green microalga Tetraselmis subcordiformis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:184. [PMID: 31341515 PMCID: PMC6631860 DOI: 10.1186/s13068-019-1523-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/05/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Microalgal starch is regarded as a promising alternative to crop-based starch for biorefinery such as the production of biofuels and bio-based chemicals. The single or separate use of inorganic carbon source, e.g., CO2 and NaHCO3, caused aberrant pH, which restricts the biomass and starch production. The present study applied an in situ CO2-NaHCO3 system to regulate photosynthetic biomass and starch production along with starch quality in a marine green microalga Tetraselmis subcordiformis under nitrogen-depletion (-N) and nitrogen-limitation (±N) conditions. RESULTS The CO2 (2%)-NaHCO3 (1 g L-1) system stabilized the pH at 7.7 in the -N cultivation, under which the optimal biomass and starch accumulation were achieved. The biomass and starch productivity under -N were improved by 2.1-fold and 1.7-fold, respectively, with 1 g L-1 NaHCO3 addition compared with the one without NaHCO3 addition. NaHCO3 addition alleviated the high-dCO2 inhibition caused by the single CO2 aeration, and provided sufficient effective carbon source HCO3 - for the maintenance of adequate photosynthetic efficiency and increase in photoprotection to facilitate the biomass and starch production. The amylose content was also increased by 44% under this CO2-bicarbonate system compared to the single use of CO2. The highest starch productivity of 0.73 g L-1 day-1 under -N cultivation and highest starch concentration of 4.14 g L-1 under ±N cultivation were both achieved with the addition of 1 g L-1 NaHCO3. These levels were comparable to or exceeded the current achievements reported in studies. The addition of 5 g L-1 NaHCO3 under ±N cultivation led to a production of high-amylose starch (59.3% of total starch), which could be used as a source of functional food. CONCLUSIONS The in situ CO2-NaHCO3 system significantly improved the biomass and starch production in T. subcordiformis. It could also regulate the starch quality with varied relative amylose content under different cultivation modes for diverse downstream applications that could promote the economic feasibility of microalgal starch-based biofuel production. Adoption of this system in T. subcordiformis would facilitate the CO2 mitigation couple with its starch-based biorefinery.
Collapse
Affiliation(s)
- Man Qi
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Binhuan Sun
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Xupeng Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 Liaoning China
- Division of Solar Energy, Dalian National Laboratory of Clean Energy, Dalian, 116023 Liaoning China
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 Liaoning China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Bobo Liang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Wenyi Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Xianqiu Lan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| |
Collapse
|
3
|
Convergent Evolution of Starch Metabolism in Cyanobacteria and Archaeplastida. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Suzuki E, Suzuki R. Variation of Storage Polysaccharides in Phototrophic Microorganisms. J Appl Glycosci (1999) 2013. [DOI: 10.5458/jag.jag.jag-2012_016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
5
|
Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1775-801. [PMID: 21220783 DOI: 10.1093/jxb/erq411] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Solid semi-crystalline starch and hydrosoluble glycogen define two distinct physical states of the same type of storage polysaccharide. Appearance of semi-crystalline storage polysaccharides appears linked to the requirement of unicellular diazotrophic cyanobacteria to fuel nitrogenase and protect it from oxygen through respiration of vast amounts of stored carbon. Starch metabolism itself resulted from the merging of the bacterial and eukaryote pathways of storage polysaccharide metabolism after endosymbiosis of the plastid. This generated the three Archaeplastida lineages: the green algae and land plants (Chloroplastida), the red algae (Rhodophyceae), and the glaucophytes (Glaucophyta). Reconstruction of starch metabolism in the common ancestor of Archaeplastida suggests that polysaccharide synthesis was ancestrally cytosolic. In addition, the synthesis of cytosolic starch from the ADP-glucose exported from the cyanobacterial symbiont possibly defined the original metabolic flux by which the cyanobiont provided photosynthate to its host. Additional evidence supporting this scenario include the monophyletic origin of the major carbon translocators of the inner membrane of eukaryote plastids which are sisters to nucleotide-sugar transporters of the eukaryote endomembrane system. It also includes the extent of enzyme subfunctionalization that came as a consequence of the rewiring of this pathway to the chloroplasts in the green algae. Recent evidence suggests that, at the time of endosymbiosis, obligate intracellular energy parasites related to extant Chlamydia have donated important genes to the ancestral starch metabolism network.
Collapse
Affiliation(s)
- Steven Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Bâtiment C9, Cité Scientifique, F-59655 Villeneuve d'Ascq, France.
| | | | | | | | | |
Collapse
|
6
|
Izumo A, Fujiwara S, Sakurai T, Ball SG, Ishii Y, Ono H, Yoshida M, Fujita N, Nakamura Y, Buléon A, Tsuzuki M. Effects of granule-bound starch synthase I-defective mutation on the morphology and structure of pyrenoidal starch in Chlamydomonas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:238-45. [PMID: 21421366 DOI: 10.1016/j.plantsci.2010.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/03/2010] [Accepted: 08/21/2010] [Indexed: 05/04/2023]
Abstract
Lowering of the CO₂ concentration in the environment induces development of a pyrenoidal starch sheath, as well as that of pyrenoid and CO₂-concentrating mechanisms, in many microalgae. In the green algae Chlamydomonas and Chlorella, activity of granule-bound starch synthase (GBSS) concomitantly increases under these conditions. In this study, effects of the GBSS-defective mutation (sta2) on the development of pyrenoidal starch were investigated in Chlamydomonas. Stroma starch- and pyrenoid starch-enriched samples were obtained from log-phase cells grown with air containing 5% CO₂ (high-CO₂ conditions favouring stromal starch synthesis) and from those transferred to low-CO₂ conditions (air level, 0.04% CO₂, favouring pyrenoidal starch synthesis) for 6h, respectively. In the wild type, total starch content per culture volume did not increase during the low-CO₂ conditions, in spite of the development of pyrenoidal starch, suggesting that degradation of some part of stroma starch and synthesis of pyrenoid starch simultaneously occur under these conditions. Even in the GBSS-deficient mutants, pyrenoid and pyrenoid starch enlarged after lowering of the CO₂ concentration. However, the morphology of the pyrenoid starch was thinner and more fragile than the wild type, suggesting that GBSS does affect the morphology of pyrenoidal starch. Surprisingly normal GBSS activity is shown to be required to obtain the high A-type crystallinity levels that we now report for pyrenoidal starch. A model is presented explaining how GBSS-induced starch granule fusion may facilitate the formation of the pyrenoidal starch sheath.
Collapse
Affiliation(s)
- Asako Izumo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yamano T, Fukuzawa H. Carbon-concentrating mechanism in a green alga,Chlamydomonas reinhardtii, revealed by transcriptome analyses. J Basic Microbiol 2009; 49:42-51. [DOI: 10.1002/jobm.200800352] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Hirokawa Y, Fujiwara S, Suzuki M, Akiyama T, Sakamoto M, Kobayashi S, Tsuzuki M. Structural and physiological studies on the storage beta-polyglucan of haptophyte Pleurochrysis haptonemofera. PLANTA 2008; 227:589-599. [PMID: 17940796 DOI: 10.1007/s00425-007-0641-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 09/28/2007] [Indexed: 05/25/2023]
Abstract
The storage beta-polyglucan and catabolic enzyme activities of the haptophyte Pleurochrysis haptonemofera were characterized. The storage beta-polyglucan was prepared by the dimethylsulfoxide-extraction method. (13)C- and (1)H-NMR spectroscopy revealed that the polyglucan consists of beta-(1-->3)- and beta-(1-->6)-linked glucose polymers, with a beta-(1-->6)- to beta-(1-->3)-linkage ratio of 1.5. Gel permeation chromatography showed that the molecular weight of the polyglucan is 1.1-8.4 x 10(4) Da, with a peak at 3.4 x 10(4) Da. The degree of polymerization, which was estimated from the amounts of total carbohydrate and reduced ends, was 203, corresponding to 3.3 x 10(4) Da. A method for measurement of the beta-polyglucan in a small amount of liquid culture involving a mixture of beta-glucanases, Westase, was established. The beta-polyglucan was localized in the soluble fraction of cells. The amount of beta-polyglucan per cell increased at the stationary phase under continuous illumination and decreased in the dark, like those of storage alpha-polyglucans, starch of green algae and glycogen of cyanobacteria. The activities of beta-1,3- and beta-1,6-glucanases involved in the degradation of the storage beta-polyglucan were assayed in vitro, both being optimal at pH 5.0. The beta-1,3-glucanase activity, which was detected on active staining after native polyacrylamide gel electrophoresis, was partially purified by ammonium sulfate precipitation and anion exchange chromatography.
Collapse
Affiliation(s)
- Yasutaka Hirokawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Shimonaga T, Konishi M, Oyama Y, Fujiwara S, Satoh A, Fujita N, Colleoni C, Buléon A, Putaux JL, Ball SG, Yokoyama A, Hara Y, Nakamura Y, Tsuzuki M. Variation in Storage α-Glucans of the Porphyridiales (Rhodophyta). ACTA ACUST UNITED AC 2008; 49:103-16. [DOI: 10.1093/pcp/pcm172] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
10
|
Fujiwara S, Hirokawa Y, Takatsuka Y, Suda K, Asamizu E, Takayanagi T, Shibata D, Tabata S, Tsuzuki M. Gene expression profiling of coccolith-bearing cells and naked cells in haptophyte Pleurochrysis haptonemofera with a cDNA macroarray system. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:550-60. [PMID: 17659451 DOI: 10.1007/s10126-007-9039-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 03/05/2007] [Indexed: 05/16/2023]
Abstract
Pleurochrysis haptonemofera is a unicellular marine coccolithophorid that has calcified scales, coccoliths, on the cell surface. Some coccolithophorids including P. haptonemofera have a coccolith-bearing stage and a naked stage in their life cycles. To characterize genes involved in the coccolithogenesis, we generated a total of 9550 expressed sequence tags (EST) from a normalized cDNA library that was prepared using both coccolith-bearing cells (C-cells) and naked cells (N-cells), constructed a cDNA macroarray using the EST clones, and then analyzed the gene expression specificity in C-cells and N-cells. When cDNA clones whose expression ratio exceeded 3-fold were selected, as many as 180 clones were identified as C-cell-specific ones, while only 12 were found to be N-cell-specific ones. These clones were sequenced, assembled, and homology-searched against a public nonredundant protein database. As a result, they were grouped into 54 C-cell-specific and 6 N-cell-specific genes, and 59% and 50% of these genes exhibited significant similarity to those of other known proteins, respectively. To assess mRNA expression further, Northern hybridization was performed for 12 of the C-cell-specific genes and one of the N-cell-specific ones. These clones, together with the new cDNA macroarray, will provide a powerful tool for the future genome-wide functional analysis of uncharacterized genes related to the regulation of the calcification and life cycle of coccolithophorids.
Collapse
Affiliation(s)
- Shoko Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|