1
|
Hao JF, Wang C, Gu CR, Xu DX, Zhang L, Zhang HG. Anatomical observation and transcriptome analysis of buds reveal the association between the AP2 gene family and reproductive induction in hybrid larch (Larix kaempferi × Larix olgensis). TREE PHYSIOLOGY 2023; 43:118-129. [PMID: 36150026 PMCID: PMC9833870 DOI: 10.1093/treephys/tpac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Hybrid larch is an excellent afforestation species in northern China. The instability of seed yield is an urgent problem to be solved. The biological characteristics related to seed setting in larch are different from those in angiosperms and other gymnosperms. Studying the developmental mechanism of the larch sporophyll can deepen our understanding of conifer reproductive development and help to ensure an adequate supply of seeds in the seed orchard. The results showed that the formation of microstrobilus primordia in hybrid larch could be observed in anatomical sections collected in the middle of July. The contents of endogenous gibberellin 3 (GA3) and abscisic acid (ABA) were higher and the contents of GA4, GA7, jasmonic acid and salicylic acid were lower in multiseeded larch. Transcriptome analysis showed that transcription factors were significantly enriched in the AP2 family. There were 23 differentially expressed genes in the buds of the multiseeded and less-seeded types, and the expression of most of these genes was higher in the buds than in the needles. We conclude that mid-July is the early stage of reproductive organ development in hybrid larch and is suitable for the study of reproductive development. GA3 and ABA may be helpful for improving seed setting in larch, and 23 AP2/EREBP family genes are involved in the regulation of reproductive development in larch.
Collapse
Affiliation(s)
- Jun-Fei Hao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Chen Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Chen-Rui Gu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Dai-Xi Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Han-Guo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51 Hexing Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
2
|
Overexpression of PagERF072 from Poplar Improves Salt Tolerance. Int J Mol Sci 2022; 23:ijms231810707. [PMID: 36142609 PMCID: PMC9502824 DOI: 10.3390/ijms231810707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Extreme environments, especially drought and high salt conditions, seriously affect plant growth and development. Ethylene-responsive factor (ERF) transcription factors play an important role in salt stress response. In this study, a significantly upregulated ERF gene was identified in 84K (Populus alba × P. glandulosa), which was named PagERF072. PagERF072 was confirmed to be a nuclear-localized protein. The results of yeast two-hybrid (Y2H) assay showed that PagERF072 protein exhibited no self-activating activity, and yeast one-hybrid (Y1H) demonstrated that PagERF072 could specifically bind to GCC-box element. Under salt stress, the transgenic poplar lines overexpressing PagERF072 showed improved salt tolerance. The activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) in transgenic poplars were significantly increased relative to those of wild-type (WT) plants, whereas malondialdehyde (MDA) content showed an opposite trend. In addition, reactive oxygen species (ROS) was significantly reduced, and the expression levels of POD- and SOD-related genes were significantly increased in transgenic poplars under salt stress compared with WT. All results indicate that overexpression of the PagERF072 gene can improve the salt tolerance of transgenic poplars.
Collapse
|
3
|
Genome-Wide Analysis and the Expression Pattern of the MADS-Box Gene Family in Bletilla striata. PLANTS 2021; 10:plants10102184. [PMID: 34685993 PMCID: PMC8539064 DOI: 10.3390/plants10102184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 02/04/2023]
Abstract
Bletilla striata (Thunb. ex A. Murray) Rchb. f., a species of the perennial herb Orchidaceae, has potent anti-inflammatory and antiviral biological activities. MADS-box transcription factors play critical roles in the various developmental processes of plants. Although this gene family has been extensively investigated in many species, it has not been analyzed for B. striata. In total, 45 MADS-box genes were identified from B. striata in this study, which were classified into five subfamilies (Mδ, MIKC, Mα, Mβ, and Mγ). Meanwhile, the highly correlated protein domains, motif compositions, and exon-intron structures of BsMADSs were investigated according to local B. striata databases. Chromosome distribution and synteny analyses revealed that segmental duplication and homologous exchange were the main BsMADSs expansion mechanisms. Further, RT-qPCR analysis revealed that BsMADSs had different expression patterns in response to various stress treatments. Our results provide a potential theoretical basis for further investigation of the functions of MADS genes during the growth of B. striata.
Collapse
|
4
|
Ma JJ, Chen X, Song YT, Zhang GF, Zhou XQ, Que SP, Mao F, Pervaiz T, Lin JX, Li Y, Li W, Wu HX, Niu SH. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine. PLANT PHYSIOLOGY 2021; 187:247-262. [PMID: 34618133 PMCID: PMC8418398 DOI: 10.1093/plphys/kiab250] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
The reproductive transition is an important event that is crucial for plant survival and reproduction. Relative to the thorough understanding of the vegetative phase transition in angiosperms, a little is known about this process in perennial conifers. To gain insight into the molecular basis of the regulatory mechanism in conifers, we used temporal dynamic transcriptome analysis with samples from seven different ages of Pinus tabuliformis to identify a gene module substantially associated with aging. The results first demonstrated that the phase change in P. tabuliformis occurred as an unexpectedly rapid transition rather than a slow, gradual progression. The age-related gene module contains 33 transcription factors and was enriched in genes that belong to the MADS (MCMl, AGAMOUS, DEFICIENS, SRF)-box family, including six SOC1-like genes and DAL1 and DAL10. Expression analysis in P. tabuliformis and a late-cone-setting P. bungeana mutant showed a tight association between PtMADS11 and reproductive competence. We then confirmed that MADS11 and DAL1 coordinate the aging pathway through physical interaction. Overexpression of PtMADS11 and PtDAL1 partially rescued the flowering of 35S::miR156A and spl1,2,3,4,5,6 mutants in Arabidopsis (Arabidopsis thaliana), but only PtMADS11 could rescue the flowering of the ft-10 mutant, suggesting PtMADS11 and PtDAL1 play different roles in flowering regulatory networks in Arabidopsis. The PtMADS11 could not alter the flowering phenotype of soc1-1-2, indicating it may function differently from AtSOC1 in Arabidopsis. In this study, we identified the MADS11 gene in pine as a regulatory mediator of the juvenile-to-adult transition with functions differentiated from the angiosperm SOC1.
Collapse
Affiliation(s)
- Jing-Jing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yi-Tong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Gui-Fang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xian-Qing Zhou
- Qigou State-Owned Forest Farm, Pingquan, Hebei Province 067509, PR China
| | - Shu-Peng Que
- Beijing Ming Tombs Forest Farm, Beijing 102200, PR China, Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | - Fei Mao
- Beijing Ming Tombs Forest Farm, Beijing 102200, PR China, Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | - Tariq Pervaiz
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Jin-Xing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Harry X. Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shi-Hui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
5
|
Zumajo-Cardona C, Pabón-Mora N, Ambrose BA. The Evolution of euAPETALA2 Genes in Vascular Plants: From Plesiomorphic Roles in Sporangia to Acquired Functions in Ovules and Fruits. Mol Biol Evol 2021; 38:2319-2336. [PMID: 33528546 PMCID: PMC8136505 DOI: 10.1093/molbev/msab027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The field of evolutionary developmental biology can help address how morphological novelties evolve, a key question in evolutionary biology. In Arabidopsis thaliana, APETALA2 (AP2) plays a role in the development of key plant innovations including seeds, flowers, and fruits. AP2 belongs to the AP2/ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR family which has members in all viridiplantae, making it one of the oldest and most diverse gene lineages. One key subclade, present across vascular plants is the euAPETALA2 (euAP2) clade, whose founding member is AP2. We reconstructed the evolution of the euAP2 gene lineage in vascular plants to better understand its impact on the morphological evolution of plants, identifying seven major duplication events. We also performed spatiotemporal expression analyses of euAP2/TOE3 genes focusing on less explored vascular plant lineages, including ferns, gymnosperms, early diverging angiosperms and early diverging eudicots. Altogether, our data suggest that euAP2 genes originally contributed to spore and sporangium development, and were subsequently recruited to ovule, fruit and floral organ development. Finally, euAP2 protein sequences are highly conserved; therefore, changes in the role of euAP2 homologs during development are most likely due to changes in regulatory regions.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY 10458, United States.,The Graduate Center, City University of New York, New York, NY 10016, United States
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia
| | | |
Collapse
|
6
|
Wang Q, Zhang X, Lin S, Yang S, Yan X, Bendahmane M, Bao M, Fu X. Mapping a double flower phenotype-associated gene DcAP2L in Dianthus chinensis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1915-1927. [PMID: 31990971 PMCID: PMC7242084 DOI: 10.1093/jxb/erz558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 01/25/2020] [Indexed: 05/12/2023]
Abstract
The double flower is a highly important breeding trait that affects the ornamental value in many flowering plants. To get a better understanding of the genetic mechanism of double flower formation in Dianthus chinensis, we have constructed a high-density genetic map using 140 F2 progenies derived from a cross between a single flower genotype and a double flower genotype. The linkage map was constructed using double-digest restriction site-associated DNA sequencing (ddRAD-seq) with 2353 single nucleotide polymorphisms (SNPs). Quantitative trait locus (QTL) mapping analysis was conducted for 12 horticultural traits, and major QTLs were identified for nine of the 12 traits. Among them, two major QTLs accounted for 20.7% and 78.1% of the total petal number variation, respectively. Bulked segregant RNA-seq (BSR-seq) was performed to search accurately for candidate genes associated with the double flower trait. Integrative analysis of QTL mapping and BSR-seq analysis using the reference genome of Dianthus caryophyllus suggested that an SNP mutation in the miR172 cleavage site of the A-class flower organ identity gene APETALA2 (DcAP2L) is responsible for double flower formation in Dianthus through regulating the expression of DcAG genes.
Collapse
Affiliation(s)
- Qijian Wang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Xiaoni Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Shengnan Lin
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Shaozong Yang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Xiuli Yan
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Mohammed Bendahmane
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Laboratoire Reproduction et Development des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Xiaopeng Fu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
- Correspondence:
| |
Collapse
|
7
|
Effects of Cutting, Pruning, and Grafting on the Expression of Age-Related Genes in Larix kaempferi. FORESTS 2020. [DOI: 10.3390/f11020218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Grafting, cutting, and pruning are important horticultural techniques widely used in the establishment of clonal forestry. After the application of these techniques, some properties of the plants change, however, the underlying molecular mechanisms are still unclear. In our previous study, 27 age-related transcripts were found to be expressed differentially between the juvenile vegetative (1- and 2-year-old) and adult reproductive (25- and 50-year-old) phases of Larix kaempferi. Here, we re-analyzed the 27 age-related transcripts, cloned their full-length cDNA sequences, and measured their responses to grafting, cutting, and pruning. After sequence analysis and cloning, 20 transcription factors were obtained and annotated, most of which were associated with reproductive development, and six (LaAGL2-1, LaAGL2-2, LaAGL2-3, LaSOC1-1, LaAGL11, and LaAP2-2) showed regular expression patterns with L. kaempferi aging. Based on the expression patterns of these transcription factors in L. kaempferi trees subjected to grafting, cutting, and pruning, we concluded that (1) cutting and pruning rejuvenate the plants and change their expression, and the effects of cutting on gene expression are detectable within 14 years, although the cutting seedlings are still maturing during these years; (2) within three months after grafting, the rootstock is more sensitive to grafting than the scion and readily becomes mature with the effect of the scion, while the scion is not readily rejuvenated by the effect of the rootstock; and (3) LaAGL2-2 and LaAGL2-3 are more sensitive to grafting, while LaAP2-2 is impervious to it. These findings not only provide potential molecular markers to assess the state of plants but also aid in studies of the molecular mechanisms of rejuvenation.
Collapse
|
8
|
Jiang W, Zhang X, Song X, Yang J, Pang Y. Genome-Wide Identification and Characterization of APETALA2/Ethylene-Responsive Element Binding Factor Superfamily Genes in Soybean Seed Development. FRONTIERS IN PLANT SCIENCE 2020; 11:566647. [PMID: 33013987 PMCID: PMC7498640 DOI: 10.3389/fpls.2020.566647] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/17/2020] [Indexed: 05/15/2023]
Abstract
Glycine max is one of the most important grain and oil crops, and improvement of seed yield is one of the major objectives in soybean breeding. The AP2/ERF superfamily members are involved in regulating flower and seed development in many species, and therefore play key roles in seed yield. However, it is still unknown that how many AP2/ERF members were presented in the G. max genome and whether these AP2/ERF family members function in flower and seed development in G. max. Here, we identified 380 AP2/ERF superfamily genes in the G. max genome. Phylogenetic analysis showed that 323 members were grouped into the ERF family, and 49 into the AP2 family. Among the AP2 family, 14 members of the euAP2 lineage showed high identity with their orthologs, and eight member of the ANT lineage were expressed highly in the seeds. Furthermore, seven of them (GmAP2-1 to GmAP2-7) were successfully cloned and over-expressed in Arabidopsis thaliana. The transgenic Arabidopsis plants over-expressing these GmAP2 genes flowered earlier relative to the wild type control. The seed length and width, and seed area of these over-expression lines were increased compared with the wild type, and seed weight of over-expression lines of GmAP2-1, GmAP2-4, GmAP2-5, and GmAP2-6 were greater than those of the wild type. Furthermore, the seed number per silique of the over-expression lines for GmAP2 genes were not affected except GmAP2-5. Collectively, GmAP2-1, GmAP2-4, and GmAP2-6 played important roles in regulating seed weight by affecting seed length, width and area, and further controlling seed yield.
Collapse
Affiliation(s)
- Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuejing Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xuewei Song
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Junfeng Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yongzhen Pang,
| |
Collapse
|
9
|
Lei M, Li ZY, Wang JB, Fu YL, Xu L. Ectopic expression of the Aechmea fasciata APETALA2 gene AfAP2-2 reduces seed size and delays flowering in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:642-650. [PMID: 31048121 DOI: 10.1016/j.plaphy.2019.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/18/2019] [Accepted: 03/23/2019] [Indexed: 05/07/2023]
Abstract
The Bromeliaceae family, which is distributed pantropically, is one of the most morphologically diverse families. Except for the edible pineapple (Ananas comosus), the vast majority of bromeliads cultivated worldwide are appreciated mainly for their ornamental value. As subtropical and tropical flowering plants, these bromeliads, among with Aechmea fasciata, have significant economic importance. However, the molecular mechanism of flowering in bromeliads remains unrevealed. In this study, an APETALA2 (AP2) homologue, AfAP2-2, which belongs to the AP2/ethylene response element binding protein (AP2/EREBP) transcription factor superfamily, was identified in A. fasciata. AfAP2-2 contains two conserved AP2 domains and is a nuclear-localized transactivator. The expression level of AfAP2-2 was predominantly higher in vegetative organs of the reproductive phase than in those of the vegetative phase. Ectopic expression of AfAP2-2 in Arabidopsis specifically delayed flowering in short-day (SD) conditions. Furthermore, the size and weight of seeds of AfAP2-2-overexpressing Arabidopsis plants were significantly reduced compared to those of the wild type (WT). Our findings suggest that AfAP2-2 might be a negative regulator of flowering and seed size and weight. These results may help facilitate the molecular breeding of bromeliads.
Collapse
Affiliation(s)
- Ming Lei
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China; Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, 530023, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, China; Mid Tropical Crop Gene Bank of National Crop Resources, Danzhou, 571737, China.
| | - Zhi-Ying Li
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, China; Mid Tropical Crop Gene Bank of National Crop Resources, Danzhou, 571737, China.
| | - Jia-Bin Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, China; Mid Tropical Crop Gene Bank of National Crop Resources, Danzhou, 571737, China.
| | - Yun-Liu Fu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, China; Mid Tropical Crop Gene Bank of National Crop Resources, Danzhou, 571737, China.
| | - Li Xu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China; Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, China; Mid Tropical Crop Gene Bank of National Crop Resources, Danzhou, 571737, China.
| |
Collapse
|
10
|
Wu Y, Ke Y, Wen J, Guo P, Ran F, Wang M, Liu M, Li P, Li J, Du H. Evolution and expression analyses of the MADS-box gene family in Brassica napus. PLoS One 2018; 13:e0200762. [PMID: 30024950 PMCID: PMC6053192 DOI: 10.1371/journal.pone.0200762] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
MADS-box transcription factors are important for plant growth and development, and hundreds of MADS-box genes have been functionally characterized in plants. However, less is known about the functions of these genes in the economically important allopolyploid oil crop, Brassica napus. We identified 307 potential MADS-box genes (BnMADSs) in the B. napus genome and categorized them into type I (Mα, Mβ, and Mγ) and type II (MADS DNA-binding domain, intervening domain, keratin-like domain, and C-terminal domain [MIKC]c and MIKC*) based on phylogeny, protein motif structure, and exon-intron organization. We identified one conserved intron pattern in the MADS-box domain and seven conserved intron patterns in the K-box domain of the MIKCc genes that were previously ignored and may be associated with function. Chromosome distribution and synteny analysis revealed that hybridization between Brassica rapa and Brassica oleracea, segmental duplication, and homologous exchange (HE) in B. napus were the main BnMADSs expansion mechanisms. Promoter cis-element analyses indicated that BnMADSs may respond to various stressors (drought, heat, hormones) and light. Expression analyses showed that homologous genes in a given subfamily or sister pair are highly conserved, indicating widespread functional conservation and redundancy. Analyses of BnMADSs provide a basis for understanding their functional roles in plant development.
Collapse
Affiliation(s)
- Yunwen Wu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yunzhuo Ke
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Pengcheng Guo
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Feng Ran
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Mangmang Wang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Mingming Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Pengfeng Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Lai YS, Zhang X, Zhang W, Shen D, Wang H, Xia Y, Qiu Y, Song J, Wang C, Li X. The association of changes in DNA methylation with temperature-dependent sex determination in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2899-2912. [PMID: 28498935 DOI: 10.1093/jxb/erx144] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/13/2017] [Indexed: 05/26/2023]
Abstract
Cucumber (Cucumis sativus L.) is characterized by its diverse and flexible sexual types. Here, we evaluated the effect of low temperature (LT) exposure on cucumber femaleness under short-day conditions. Shoot apices were subjected to whole-genome bisulfate sequencing (WGBS), mRNA-seq, and sRNA-seq. The results showed that temperature had a substantial and global impact on transposable element (TE)-related small RNA-directed DNA methylation (RdDM) mechanisms, resulting in large amounts of CHH-type cytosine demethylation. In the cucumber genome, TEs are common in regions near genes that are also subject to DNA demethylation. TE-gene interactions showed very strong reactions to LT treatment, as nearly 80% of the differentially methylated regions (DMRs) were distributed in genic regions. Demethylation near genes led to the co-ordinated expression of genes and TEs. More importantly, genome-wide de novo methylation changes also resulted in small amounts of CG- and CHG-type DMRs. Methylation changes in CG-DMRs located <600 bp from the transcription start and end sites (TSSs/TESs) negatively correlated with transcription changes in differentially expressed genes (DEGs), probably indicating epiregulation. Ethylene is called the 'sex hormone' of cucumbers. We observed the up-regulation of ethylene biosynthesis-related CsACO3 and the down-regulation of an Arabidopsis RAP2.4-like ethylene-responsive (AP2/ERF) transcription factor, demonstrating the inferred epiregulation. Our study characterized the response of the apex methylome to LT and predicted the possible epiregulation of temperature-dependent sex determination (TSD) in cucumber.
Collapse
Affiliation(s)
- Yun-Song Lai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaohui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Di Shen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yudong Xia
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Qiu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiangping Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenchen Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xixiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Wang P, Cheng T, Lu M, Liu G, Li M, Shi J, Lu Y, Laux T, Chen J. Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis. FRONTIERS IN PLANT SCIENCE 2016; 7:1383. [PMID: 27703459 PMCID: PMC5029118 DOI: 10.3389/fpls.2016.01383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/30/2016] [Indexed: 05/20/2023]
Abstract
The APETALA2 (AP2) genes represent the AP2 group within a large group of DNA-binding proteins called AP2/EREBP. The AP2 gene is functional and necessary for flower development, stem cell maintenance, and seed development, whereas the other members of AP2 group redundantly affect flowering time. Here we study the phylogeny of AP2 group genes in spermatophytes. Spermatophyte AP2 group genes can be classified into AP2 and TOE types, six clades, and we found that the AP2 group homologs in gymnosperms belong to the AP2 type, whereas TOE types are absent, which indicates the AP2 type gene are more ancient and TOE type was split out of AP2 type and losing the major function. In Brassicaceae, the expansion of AP2 and TOE type lead to the gene number of AP2 group were up to six. Purifying selection appears to have been the primary driving force of spermatophyte AP2 group evolution, although positive selection occurred in the AP2 clade. The transition from exon to intron of AtAP2 in Arabidopsis mutant leads to the loss of gene function and the same situation was found in AtTOE2. Combining this evolutionary analysis and published research, the results suggest that typical AP2 group genes may first appear in gymnosperms and diverged in angiosperms, following expansion of group members and functional differentiation. In angiosperms, AP2 genes (AP2 clade) inherited key functions from ancestors and other genes of AP2 group lost most function but just remained flowering time controlling in gene formation. In this study, the phylogenies of AP2 group genes in spermatophytes was analyzed, which supported the evidence for the research of gene functional evolution of AP2 group.
Collapse
Affiliation(s)
- Pengkai Wang
- Ministry of Education, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry UniversityNanjing, China
- Suzhou Polytechnic Institute of AgricultureSuzhou, China
| | - Tielong Cheng
- Ministry of Education, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry UniversityNanjing, China
| | - Mengzhu Lu
- Laboratory of Biotechnology, Chinese Academy of ForestryBeijing, China
| | - Guangxin Liu
- Ministry of Education, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry UniversityNanjing, China
| | - Meiping Li
- Ministry of Education, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry UniversityNanjing, China
| | - Jisen Shi
- Ministry of Education, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry UniversityNanjing, China
| | - Ye Lu
- Ministry of Education, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry UniversityNanjing, China
| | - Thomas Laux
- Institute of Biology III, University of FreiburgFreiburg, Germany
| | - Jinhui Chen
- Ministry of Education, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry UniversityNanjing, China
| |
Collapse
|
13
|
Identifying Genetic Signatures of Natural Selection Using Pooled Population Sequencing in Picea abies. G3-GENES GENOMES GENETICS 2016; 6:1979-89. [PMID: 27172202 PMCID: PMC4938651 DOI: 10.1534/g3.116.028753] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The joint inference of selection and past demography remain a costly and demanding task. We used next generation sequencing of two pools of 48 Norway spruce mother trees, one corresponding to the Fennoscandian domain, and the other to the Alpine domain, to assess nucleotide polymorphism at 88 nuclear genes. These genes are candidate genes for phenological traits, and most belong to the photoperiod pathway. Estimates of population genetic summary statistics from the pooled data are similar to previous estimates, suggesting that pooled sequencing is reliable. The nonsynonymous SNPs tended to have both lower frequency differences and lower FST values between the two domains than silent ones. These results suggest the presence of purifying selection. The divergence between the two domains based on synonymous changes was around 5 million yr, a time similar to a recent phylogenetic estimate of 6 million yr, but much larger than earlier estimates based on isozymes. Two approaches, one of them novel and that considers both FST and difference in allele frequencies between the two domains, were used to identify SNPs potentially under diversifying selection. SNPs from around 20 genes were detected, including genes previously identified as main target for selection, such as PaPRR3 and PaGI.
Collapse
|
14
|
Pirone-Davies C, Prior N, von Aderkas P, Smith D, Hardie D, Friedman WE, Mathews S. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production. ANNALS OF BOTANY 2016; 117:973-84. [PMID: 27045089 PMCID: PMC4866313 DOI: 10.1093/aob/mcw026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/08/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. METHODS Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. KEY RESULTS About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. CONCLUSIONS The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops from Cephalotaxus than expected from studies of other conifers. This is consistent with the observation of nucellar breakdown during drop formation in Cephalotaxus The transcriptome data provide a framework for understanding multiple metabolic processes that occur within the ovule and the pollination drop just before fertilization. They reveal the deep conservation of WUSCHEL expression in ovules and raise questions about whether any of the S-locus transcripts in Cephalotaxus ovules might be involved in pollen-ovule recognition.
Collapse
Affiliation(s)
| | | | | | - Derek Smith
- UVic Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Darryl Hardie
- UVic Genome BC Proteomics Centre, Victoria, BC, Canada
| | - William E Friedman
- The Arnold Arboretum of Harvard University, Boston, MA, USA, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Sarah Mathews
- CSIRO, Centre for Australian National Biodiversity Research, Canberra, Australia and
| |
Collapse
|
15
|
Li A, Zhou Y, Jin C, Song W, Chen C, Wang C. LaAP2L1, a heterosis-associated AP2/EREBP transcription factor of Larix, increases organ size and final biomass by affecting cell proliferation in Arabidopsis. PLANT & CELL PHYSIOLOGY 2013; 54:1822-36. [PMID: 24009335 DOI: 10.1093/pcp/pct124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In Larix and in some crops, heterosis is prevalent and has been widely used in breeding to produce excellent varieties. However, the molecular basis of heterosis in Larix remains ambiguous. LaAP2L1, a member of the AP2/EREBP transcription factor family, has been suggested to be involved in heterosis in Larix hybrids. Here, the function and regulation of LaAP2L1 were further explored. Overexpression of LaAP2L1 led to markedly enlarged organs and heterosis-like traits in Arabidopsis. Fresh weight of leaves was almost twice as great as in vector controls. Likewise, seed yield of 35S::LaAP2L1 individual plants was >200% greater than that of control plants. The enlarged organs and heterosis-like traits displayed by 35S::LaAP2L1 plants were mainly due to enhanced cell proliferation and prolonged growth duration. At the molecular level, LaAP2L1 upregulated the expression of ANT, EBP1, and CycD3;1 and inhibited the expression of ARGOS in 35S::LaAP2L1 plants, suggesting an important molecular role of LaAP2L1 in regulating plant organ development. These findings provide new insights into the formation of heterosis in woody plants and suggest that LaAP2L1 has potential applications in breeding high-yielding crops and energy plants. In addition, 50 AP2/EREBP transcription factors, including LaAP2L1, in Larix were identified by transcriptome sequencing, and phylogenetic analysis was conducted. This provided information that will be important in further revealing the functions of these transcription factors.
Collapse
Affiliation(s)
- Ai Li
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
16
|
Salemme M, Sica M, Iazzetti G, Gaudio L, Aceto S. The AP2-like gene OitaAP2 is alternatively spliced and differentially expressed in inflorescence and vegetative tissues of the orchid Orchis italica. PLoS One 2013; 8:e77454. [PMID: 24204832 PMCID: PMC3804621 DOI: 10.1371/journal.pone.0077454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/02/2013] [Indexed: 11/23/2022] Open
Abstract
The AP2/ERF proteins are plant-specific transcription factors involved in multiple regulatory pathways, from plant organ development to response to various environmental stresses. One of the mechanisms that regulates the AP2-like genes involves the microRNA miR172, which controls their activity at the post-transcriptional level. Extensive studies on AP2-like genes are available in many different species; however, in orchids, one of the largest plant families, studies are restricted to a few species, all belonging to the Epidendroideae subfamily. In the present study, we report the isolation of an AP2-like gene in the Mediterranean orchid Orchis italica (Orchidoideae). The OitaAP2 locus includes 10 exons and 9 introns, and its transcript is alternatively spliced, resulting in the long OitaAP2 and the short OitaAP2_ISO isoforms, with the latter skipping exon 9. Both isoforms contain the conserved target site for miR172, whose action is demonstrated by the presence of cleaved OitaAP2 mRNA. The OitaAP2 and OitaAP2_ISO mRNAs are present in the tepals and lip before and after anthesis at different expression levels. In addition, the OitaAP2_ISO isoform is expressed in the ovary before pollination and in the root and stem. The isoform-specific expression pattern suggests a functional differentiation of the OitaAP2 alternatively spliced transcripts. The expression profile of miR172 is complementary to that of the OitaAP2 isoforms in inflorescence tissues before anthesis, whereas after anthesis and in ovary tissue before and after pollination, this relationship disappears, suggesting the existence of OitaAP2 inhibitory mechanisms in these tissues that differ from that involving miR172.
Collapse
Affiliation(s)
- Marinella Salemme
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Maria Sica
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Giovanni Iazzetti
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Luciano Gaudio
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Napoli, Italy
- * E-mail:
| |
Collapse
|
17
|
Carlsbecker A, Sundström JF, Englund M, Uddenberg D, Izquierdo L, Kvarnheden A, Vergara-Silva F, Engström P. Molecular control of normal and acrocona mutant seed cone development in Norway spruce (Picea abies) and the evolution of conifer ovule-bearing organs. THE NEW PHYTOLOGIST 2013; 200:261-275. [PMID: 0 DOI: 10.1111/nph.12360] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/03/2013] [Indexed: 05/03/2023]
Abstract
Reproductive organs in seed plants are morphologically divergent and their evolutionary history is often unclear. The mechanisms controlling their development have been extensively studied in angiosperms but are poorly understood in conifers and other gymnosperms. Here, we address the molecular control of seed cone development in Norway spruce, Picea abies. We present expression analyses of five novel MADS-box genes in comparison with previously identified MADS and LEAFY genes at distinct developmental stages. In addition, we have characterized the homeotic transformation from vegetative shoot to female cone and associated changes in regulatory gene expression patterns occurring in the acrocona mutant. The analyses identified genes active at the onset of ovuliferous and ovule development and identified expression patterns marking distinct domains of the ovuliferous scale. The reproductive transformation in acrocona involves the activation of all tested genes normally active in early cone development, except for an AGAMOUS-LIKE6/SEPALLATA (AGL6/SEP) homologue. This absence may be functionally associated with the nondeterminate development of the acrocona ovule-bearing scales. Our morphological and gene expression analyses give support to the hypothesis that the modern cone is a complex structure, and the ovuliferous scale the result of reductions and compactions of an ovule-bearing axillary short shoot in cones of Paleozoic conifers.
Collapse
Affiliation(s)
- Annelie Carlsbecker
- Department of Organismal Biology, Physiological Botany, Uppsala University, and The Linnean Center for Plant Biology, Ullsv. 24E, SE-756 51, Uppsala, Sweden
| | - Jens F Sundström
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and The Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Marie Englund
- Department of Organismal Biology, Physiological Botany, Uppsala University, and The Linnean Center for Plant Biology, Ullsv. 24E, SE-756 51, Uppsala, Sweden
| | - Daniel Uddenberg
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and The Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Liz Izquierdo
- Department of Organismal Biology, Physiological Botany, Uppsala University, and The Linnean Center for Plant Biology, Ullsv. 24E, SE-756 51, Uppsala, Sweden
| | - Anders Kvarnheden
- Department of Organismal Biology, Physiological Botany, Uppsala University, and The Linnean Center for Plant Biology, Ullsv. 24E, SE-756 51, Uppsala, Sweden
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and The Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Francisco Vergara-Silva
- Laboratorio de Sistemática Molecular (Jardín Botánico), Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México DF, 04510, Mexico
| | - Peter Engström
- Department of Organismal Biology, Physiological Botany, Uppsala University, and The Linnean Center for Plant Biology, Ullsv. 24E, SE-756 51, Uppsala, Sweden
| |
Collapse
|
18
|
Zhao Y, Thammannagowda S, Staton M, Tang S, Xia X, Yin W, Liang H. An EST dataset for Metasequoia glyptostroboides buds: the first EST resource for molecular genomics studies in Metasequoia. PLANTA 2013; 237:755-770. [PMID: 23117391 DOI: 10.1007/s00425-012-1783-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/03/2012] [Indexed: 06/01/2023]
Abstract
The "living fossil" Metasequoia glyptostroboides Hu et Cheng, commonly known as dawn redwood or Chinese redwood, is the only living species in the genus and is valued for its essential oil and crude extracts that have great potential for anti-fungal activity. Despite its paleontological significance and economical value as a rare relict species, genomic resources of Metasequoia are very limited. In order to gain insight into the molecular mechanisms behind the formation of reproductive buds and the transition from vegetative phase to reproductive phase in Metasequoia, we performed sequencing of expressed sequence tags from Metasequoia vegetative buds and female buds. By using the 454 pyrosequencing technology, a total of 1,571,764 high-quality reads were generated, among which 733,128 were from vegetative buds and 775,636 were from female buds. These EST reads were clustered and assembled into 114,124 putative unique transcripts (PUTs) with an average length of 536 bp. The 97,565 PUTs that were at least 100 bp in length were functionally annotated by a similarity search against public databases and assigned with Gene Ontology (GO) terms. A total of 59 known floral gene families and 190 isotigs involved in hormone regulation were captured in the dataset. Furthermore, a set of PUTs differentially expressed in vegetative and reproductive buds, as well as SSR motifs and high confidence SNPs, were identified. This is the first large-scale expressed sequence tags ever generated in Metasequoia and the first evidence for floral genes in this critically endangered deciduous conifer species.
Collapse
Affiliation(s)
- Ying Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Tsinghua Eastern Road, Beijing, 100083, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Plant AP2/ERF transcription factor with AP2/ERF domain containing 60-70 amino acids is a huge gene family present in all plant. AP2/ERF transcriptional factors are involved in various biological functions such as plant development, flower development, fruit and seed maturation, wounding, pathogen defense, high salty, drought, and so on. AP2/ERF transcription factor are involved in salicylic acid, jasmonic acid, ethylene, abscisic acid signal transduction pathways and among them. The transcription factors are cross-talk factor in stress signal pathway. This paper summarizes the most advanced researches on types, biological functions, and gene regulations of plant AP2/ERF transcription factors.
Collapse
|
20
|
Heijmans K, Morel P, Vandenbussche M. MADS-box genes and floral development: the dark side. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5397-404. [PMID: 22915743 DOI: 10.1093/jxb/ers233] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The origin of the flower during evolution has been a crucial step in further facilitating plants to colonize a wide range of different niches on our planet. The >250 000 species of flowering plants existing today display an astonishing diversity in floral architecture. For this reason, the flower is a very attractive subject for evolutionary developmental (evo-devo) genetics studies. Research during the last two decades has provided compelling evidence that the origin and functional diversification of MIKC(c) MADS-box transcription factors has played a critical role during evolution of flowering plants. As master regulators of floral organ identity, MADS-box proteins are at the heart of the classic ABC model for floral development. Despite the enormous progress made in the field of floral development, there still remain aspects that are less well understood. Here we highlight some of the dark corners within our current knowledge on MADS-box genes and flower development, which would be worthwhile investigating in more detail in future research. These include the general question of to what extent MADS-box gene functions are conserved between species, the function of TM8-clade MADS-box genes which so far have remained uncharacterized, the divergence within the A-function, and post-transcriptional regulation of the ABC-genes.
Collapse
Affiliation(s)
- Klaas Heijmans
- Plant Genetics, IWWR, Radboud University Nijmegen 6525AJ Nijmegen The Netherlands
| | | | | |
Collapse
|
21
|
Liu Z, Gu C, Chen F, Jiang J, Yang Y, Li P, Chen S, Zhang Z. Identification and expression of an APETALA2-like gene from Nelumbo nucifera. Appl Biochem Biotechnol 2012; 168:383-91. [PMID: 22821410 DOI: 10.1007/s12010-012-9782-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
Arabidopsis transcription factor APETALA2 (AP2) controls multiple aspects of plant growth and development, including seed development, stem cell maintenance, and specification of floral organ identity. Based on sequence similar of Arabidopsis AP2 and its homologues genes from other plant species, degenerate RT-PCR and rapid amplification of cDNA ends assay were used to clone AP2 genes from lotus (Nelumbo nucifera). A 2,048-bp cDNA fragment was obtained, which contains a 1,536-bp open reading frame encoding a protein of 511 amino acids. The protein contains two AP2 domains that are conserved in AP2 proteins from other plant species, thus was named as N. nucifera APETALA2 (NnAP2). Quantitative RT-PCR revealed that NnAP2 gene was expressed in flowers, roots, leaves, and stems of N. nucifera, with flowers which have the highest transcript levels. Further analysis showed that in all five lotus cultivars examined, including "Zhongguogudailian," "Yaoniangyujiao," "Jinxia," "Hongtailian," and "Yiliangqianban," petals always have the highest expression levels when compared with the other four flower organs, though the number of petals in these cultivars ranged from simple to thousands. However, NnAP2 expression level in four nonsimple petal flower cultivars was higher than that in the simple petal flower cultivar Zhongguogudailian, indicating that NnAP2 may play a role in specification of petal identity during the evolutionary process of the ancient species N. nucifera.
Collapse
Affiliation(s)
- Zhaolei Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Luo H, Chen S, Jiang J, Teng N, Chen Y, Chen F. The AP2-like gene NsAP2 from water lily is involved in floral organogenesis and plant height. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:992-8. [PMID: 22591856 DOI: 10.1016/j.jplph.2012.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 02/19/2012] [Accepted: 02/21/2012] [Indexed: 05/07/2023]
Abstract
APETALA2 (AP2) genes are ancient and widely distributed among the seed plants, and play an important role during the plant life cycle, acting as key regulators of many developmental processes. In this study, an AP2 homologue, NsAP2, was characterized from water lily (Nymphaea sp. cv. 'Yellow Prince') and is believed to be rather primitive in the evolution of the angiosperms. In situ RNA hybridization showed that NsAP2 transcript was present in all regions of the floral primordium, but had the highest level in the emerging floral organ primordium. After the differentiation of floral organs, NsAP2 was strongly expressed in sepals and petals, while low levels were found in stamens and carpels. The NsAP2 protein was suggested to be localized in the cell nucleus by onion transient expression experiment. Overexpression of NsAP2 in Arabidopsis led to more petal numbers, and Arabidopsis plants expressing NsAP2 exhibited higher plant height, which may be a result of down-regulated expression of GA2ox2 and GA2ox7. Our results indicated that the NsAP2 protein may function in flower organogenesis in water lily, and it is a promising gene for plant height improvement.
Collapse
Affiliation(s)
- Huolin Luo
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
El Kayal W, Allen CCG, Ju CJT, Adams E, King-Jones S, Zaharia LI, Abrams SR, Cooke JEK. Molecular events of apical bud formation in white spruce, Picea glauca. PLANT, CELL & ENVIRONMENT 2011; 34:480-500. [PMID: 21118421 DOI: 10.1111/j.1365-3040.2010.02257.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Bud formation is an adaptive trait that temperate forest trees have acquired to facilitate seasonal synchronization. We have characterized transcriptome-level changes that occur during bud formation of white spruce [Picea glauca (Moench) Voss], a primarily determinate species in which preformed stem units contained within the apical bud constitute most of next season's growth. Microarray analysis identified 4460 differentially expressed sequences in shoot tips during short day-induced bud formation. Cluster analysis revealed distinct temporal patterns of expression, and functional classification of genes in these clusters implied molecular processes that coincide with anatomical changes occurring in the developing bud. Comparing expression profiles in developing buds under long day and short day conditions identified possible photoperiod-responsive genes that may not be essential for bud development. Several genes putatively associated with hormone signalling were identified, and hormone quantification revealed distinct profiles for abscisic acid (ABA), cytokinins, auxin and their metabolites that can be related to morphological changes to the bud. Comparison of gene expression profiles during bud formation in different tissues revealed 108 genes that are differentially expressed only in developing buds and show greater transcript abundance in developing buds than other tissues. These findings provide a temporal roadmap of bud formation in white spruce.
Collapse
Affiliation(s)
- Walid El Kayal
- University of Alberta, Department of Biological Sciences, Edmonton, Alberta, Canada T6G2E9
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu T, Qin Z, Zhou X, Feng Z, Du Y. Transcriptome profile analysis of floral sex determination in cucumber. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:905-13. [PMID: 20303197 DOI: 10.1016/j.jplph.2010.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 02/18/2010] [Accepted: 02/18/2010] [Indexed: 05/07/2023]
Abstract
Cucumber has been widely studied as a model for floral sex determination. In this investigation, we performed genome-wide transcriptional profiling of apical tissue of a gynoecious mutant (Csg-G) and the monoecious wild-type (Csg-M) of cucumber in an attempt to isolate genes involved in sex determination, using the Solexa technology. The profiling analysis revealed numerous changes in gene expression attributable to the mutation, which resulted in the down-regulation of 600 genes and the up-regulation of 143 genes. The Solexa data were confirmed by reverse transcription polymerase chain reaction (RT-PCR) and real-time quantitative RT-PCR (qRT-PCR). Gene ontology (GO) analysis revealed that the differentially expressed genes were mainly involved in biogenesis, transport and organization of cellular component, macromolecular and cellular biosynthesis, localization, establishment of localization, translation and other processes. Furthermore, the expression of some of these genes depended upon the tissue and the developmental stage of the flowers of gynoecious mutant. The results of this study suggest two important concepts, which govern sex determination in cucumber. First, the differential expression of genes involved in plant hormone signaling pathways, such as ACS, Asr1, CsIAA2, CS-AUX1 and TLP, indicate that phytohormones and their crosstalk might play a critical role in the sex determination. Second, the regulation of some transcription factors, including EREBP-9, may also be involved in this developmental process.
Collapse
Affiliation(s)
- Tao Wu
- Horticultural Department, Northeast Agricultural University, 59 Mucai Road, Harbin 150030, China
| | | | | | | | | |
Collapse
|
25
|
Tang M, Li G, Chen M. The phylogeny and expression pattern of APETALA2-like genes in rice. J Genet Genomics 2009; 34:930-8. [PMID: 17945171 DOI: 10.1016/s1673-8527(07)60104-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 05/26/2007] [Indexed: 10/22/2022]
Abstract
The multigene families undergo birth-and-death evolution and thus contribute to biological innovations. The APETALA2-like genes belong to the euAP2 group of the AP2 gene family. These genes are characterized by several distinct motifs and exist in ferns, gymnosperms, and angiosperms. The phylogenetic analysis indicated that these genes have undergone the birth-and-death evolution. The five APETALA2-like genes in rice (Oryza sativa L.) display redundant but distinct expression patterns as demonstrated by RT-PCR and in situ hybridization. The potential functions of these genes were discussed on the basis of phylogenetic and expression pattern.
Collapse
Affiliation(s)
- Meifang Tang
- College of Animal Science and Technology, Northwest A &F University, Yangling 712100, China
| | | | | |
Collapse
|
26
|
Ghiglione HO, Gonzalez FG, Serrago R, Maldonado SB, Chilcott C, Curá JA, Miralles DJ, Zhu T, Casal JJ. Autophagy regulated by day length determines the number of fertile florets in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:1010-24. [PMID: 18547393 DOI: 10.1111/j.1365-313x.2008.03570.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The wheat spikelet meristem differentiates into up to 12 floret primordia, but many of them fail to reach the fertile floret stage at anthesis. We combined microarray, biochemical and anatomical studies to investigate floret development in wheat plants grown in the field under short or long days (short days extended with low-fluence light) after all the spikelets had already differentiated. Long days accelerated spike and floret development and greening, and the expression of genes involved in photosynthesis, photoprotection and carbohydrate metabolism. These changes started while the spike was in the light-depleted environment created by the surrounding leaf sheaths. Cell division ceased in the tissues of distal florets, which interrupted their normal developmental progression and initiated autophagy, thus decreasing the number of fertile florets at anthesis. A massive decrease in the expression of genes involved in cell proliferation, a decrease in soluble carbohydrate levels, and an increase in the expression of genes involved in programmed cell death accompanied anatomical signs of cell death, and these effects were stronger under long days. We propose a model in which developmentally generated sugar starvation triggers floret autophagy, and long days intensify these processes due to the increased carbohydrate consumption caused by the accelerated plant development.
Collapse
Affiliation(s)
- Hernán O Ghiglione
- Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Av San Martín 4453, 1417 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Futamura N, Totoki Y, Toyoda A, Igasaki T, Nanjo T, Seki M, Sakaki Y, Mari A, Shinozaki K, Shinohara K. Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genomics 2008; 9:383. [PMID: 18691438 PMCID: PMC2568000 DOI: 10.1186/1471-2164-9-383] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 08/11/2008] [Indexed: 12/05/2022] Open
Abstract
Background Cryptomeria japonica D. Don is one of the most commercially important conifers in Japan. However, the allergic disease caused by its pollen is a severe public health problem in Japan. Since large-scale analysis of expressed sequence tags (ESTs) in the male strobili of C. japonica should help us to clarify the overall expression of genes during the process of pollen development, we constructed a full-length enriched cDNA library that was derived from male strobili at various developmental stages. Results We obtained 36,011 expressed sequence tags (ESTs) from either one or both ends of 19,437 clones derived from the cDNA library of C. japonica male strobili at various developmental stages. The 19,437 cDNA clones corresponded to 10,463 transcripts. Approximately 80% of the transcripts resembled ESTs from Pinus and Picea, while approximately 75% had homologs in Arabidopsis. An analysis of homologies between ESTs from C. japonica male strobili and known pollen allergens in the Allergome Database revealed that products of 180 transcripts exhibited significant homology. Approximately 2% of the transcripts appeared to encode transcription factors. We identified twelve genes for MADS-box proteins among these transcription factors. The twelve MADS-box genes were classified as DEF/GLO/GGM13-, AG-, AGL6-, TM3- and TM8-like MIKCC genes and type I MADS-box genes. Conclusion Our full-length enriched cDNA library derived from C. japonica male strobili provides information on expression of genes during the development of male reproductive organs. We provided potential allergens in C. japonica. We also provided new information about transcription factors including MADS-box genes expressed in male strobili of C. japonica. Large-scale gene discovery using full-length cDNAs is a valuable tool for studies of gymnosperm species.
Collapse
Affiliation(s)
- Norihiro Futamura
- Department of Molecular and Cell Biology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Guillaumot D, Lelu-Walter MA, Germot A, Meytraud F, Gastinel L, Riou-Khamlichi C. Expression patterns of LmAP2L1 and LmAP2L2 encoding two-APETALA2 domain proteins during somatic embryogenesis and germination of hybrid larch (Larix x marschlinsii). JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1003-1010. [PMID: 18160178 DOI: 10.1016/j.jplph.2007.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/01/2007] [Accepted: 08/07/2007] [Indexed: 05/25/2023]
Abstract
Two APETALA2 domain transcription factors were characterized first in angiosperms, and, recently, in several gymnosperms. These proteins are involved in several processes, from flowering to embryogenesis in Arabidopsis thaliana. We extrapolated this result to hybrid larch (Larixxmarschlinsii Coaz) resulting from a cross between European (Larix decidua) and Japanese (Larix kaempferi) larches. Somatic embryogenesis is well described and controlled for this Pinaceae. We characterized two-AP2 domain genes: LmAP2L1 and LmAP2L2. Phylogenetic analysis confirmed that LmAP2L1 and LmAP2L2 were orthologous to Norway spruce PaAP2L1 and PaAP2L2 and that L1 forms appeared to be specific to Pinaceae. RT-PCR analysis showed that larch APETALA2 was differentially expressed during late somatic embryogenesis and during the first steps of germination. Whereas LmAP2L2 was constitutively expressed during this process, LmAP2L1 expression appeared only during late somatic embryogenesis, when embryos were able to germinate. Further, LmAP2L1 appeared to be the preferentially expressed form during embryo germination. Thus, LmAP2L1 seems to be a valuable molecular marker for hybrid larch late somatic embryogenesis and could play a role during post-embryonic development.
Collapse
Affiliation(s)
- Damien Guillaumot
- Glycobiologie Végétale et Biotechnologie (EA3176), Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | | | | | | | | | | |
Collapse
|
29
|
Yin Z, Li C, Han X, Shen F. Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 2008; 414:60-6. [PMID: 18387754 DOI: 10.1016/j.gene.2008.02.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/12/2008] [Accepted: 02/14/2008] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that have important gene regulation roles in various organisms. To date, a total of 1279 plant miRNAs have been deposited in the miRNA miRBase database (Release 10.1). Many of them are conserved during the evolution of land plants suggesting that the well-conserved miRNAs may also retain homologous target interactions. Recently, little is known about the experimental or computational identification of conserved miRNAs and their target genes in tomato. Here, using a computational homology search approach, 21 conserved miRNAs were detected in the Expressed Sequence Tags (EST) and Genomic Survey Sequence (GSS) databases. Following this, 57 potential target genes were predicted by searching the mRNA database. Most of the target mRNAs appeared to be involved in plant growth and development. Our findings verified that the well-conserved tomato miRNAs have retained homologous target interactions amongst divergent plant species. Some miRNAs express diverse combinations in different cell types and have been shown to regulate cell-specific target genes coordinately. We believe that the targeting propensity for genes in different biological processes can be explained largely by their protein connectivity.
Collapse
Affiliation(s)
- Zujun Yin
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, PR China
| | | | | | | |
Collapse
|