1
|
Wang C, Yu X, Wang J, Zhao Z, Wan J. Genetic and molecular mechanisms of reproductive isolation in the utilization of heterosis for breeding hybrid rice. J Genet Genomics 2024; 51:583-593. [PMID: 38325701 DOI: 10.1016/j.jgg.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Heterosis, also known as hybrid vigor, is commonly observed in rice crosses. The hybridization of rice species or subspecies exhibits robust hybrid vigor, however, the direct harnessing of this vigor is hindered by reproductive isolation. Here, we review recent advances in the understanding of the molecular mechanisms governing reproductive isolation in inter-subspecific and inter-specific hybrids. This review encompasses the genetic model of reproductive isolation within and among Oryza sativa species, emphasizing the essential role of mitochondria in this process. Additionally, we delve into the molecular intricacies governing the interaction between mitochondria and autophagosomes, elucidating their significant contribution to reproductive isolation. Furthermore, our exploration extends to comprehending the evolutionary dynamics of reproductive isolation and speciation in rice. Building on these advances, we offer a forward-looking perspective on how to overcome the challenges of reproductive isolation and facilitate the utilization of heterosis in future hybrid rice breeding endeavors.
Collapse
Affiliation(s)
- Chaolong Wang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaowen Yu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Jian Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zhao
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Wang J, Jian A, Wan H, Lei D, Zhou J, Zhu S, Ren Y, Lin Q, Lei C, Wang J, Zhao Z, Guo X, Zhang X, Cheng Z, Tao D, Jiang L, Zhao Z, Wan J. Genetic characterization and fine mapping of qHMS4 responsible for pollen sterility in hybrids between Oryza sativa L. and Oryza glaberrima Steud. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:47. [PMID: 37313516 PMCID: PMC10248710 DOI: 10.1007/s11032-022-01306-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
African cultivated rice (Oryza glaberrima Steud) contains many favorable genes for tolerance to biotic and abiotic stresses and F1 hybrids between Asian cultivated rice (Oryza sativa L.) show strong heterosis. However, the hybrids of two species often exhibit hybrid sterility. Here, we identified a male sterility locus qHMS4 on chromosome 4 (Chr.4), which induces pollen semi-sterility in F1 hybrids of japonica rice variety Dianjingyou1 (DJY1) and a near-isogenic line (NIL) carrying a Chr.4 segment from Oryza glaberrima accession IRGC101854. Cytological observations indicated that non-functional pollen grains produced by the hybrids and lacking starch accumulation abort at the late bicellular stage. Molecular genetic analysis revealed distorted segregation in male gametogenesis carrying qHMS4 allele from DJY1. Fine-mapping of qHMS4 using an F2 population of 22,500 plants delimited qHMS4 to a region of 110-kb on the short arm of Chr.4. Sequence analysis showed that the corresponding sequence region in DJY1 and Oryza glaberrima were 114-kb and 323-kb, respectively, and that the sequence homology was very poor. Gene prediction analysis identified 16 and 46 open reading frames (ORFs) based on the sequences of DJY1 and O. glaberrima, respectively, among which 3 ORFs were shared by both. Future map-based cloning of qHMS4 will help to understand the underlying molecular mechanism of hybrid sterility between the two cultivated rice species. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01306-8.
Collapse
Affiliation(s)
- Jian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Anqi Jian
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hua Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dekun Lei
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiawu Zhou
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dayun Tao
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
3
|
Zhang Y, Wang J, Pu Q, Yang Y, Lv Y, Zhou J, Li J, Deng X, Wang M, Tao D. Understanding the Nature of Hybrid Sterility and Divergence of Asian Cultivated Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:908342. [PMID: 35832226 PMCID: PMC9272003 DOI: 10.3389/fpls.2022.908342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Intraspecific hybrid sterility is a common form of postzygotic reproductive isolation in Asian cultivated rice, which is also the major obstacle to utilize the strong heterosis in the rice breeding program. Here, we review recent progress in classification and hybrid sterility in Asian cultivated rice. A genome-wide analysis of numerous wild relatives of rice and Asian cultivated rice has provided insights into the origin and differentiation of Asian cultivated rice, and divided Asian cultivated rice into five subgroups. More than 40 conserved and specific loci were identified to be responsible for the hybrid sterility between subgroup crosses by genetic mapping, which also contributed to the divergence of Asian cultivated rice. Most of the studies are focused on the sterile barriers between indica and japonica crosses, ignoring hybrid sterility among other subgroups, leading to neither a systematical understanding of the nature of hybrid sterility and subgroup divergence, nor effectively utilizing strong heterosis between the subgroups in Asian cultivated rice. Future studies will aim at identifying and characterizing genes for hybrid sterility and segregation distortion, comparing and understanding the molecular mechanism of hybrid sterility, and drawing a blueprint for intraspecific hybrid sterility loci derived from cross combinations among the five subgroups. These studies would provide scientific and accurate guidelines to overcome the intraspecific hybrid sterility according to the parent subgroup type identification, allowing the utilization of heterosis among subgroups, also helping us unlock the mysterious relationship between hybrid sterility and Asian cultivated rice divergence.
Collapse
Affiliation(s)
- Yu Zhang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
| | - Jie Wang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Qiuhong Pu
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
| | - Ying Yang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
| | - Yonggang Lv
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
| | - Jiawu Zhou
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
| | - Jing Li
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
| | - Xianneng Deng
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
| | - Min Wang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Dayun Tao
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
| |
Collapse
|
4
|
Lee CM, Suh JP, Park HS, Baek MK, Jeong OY, Yun SJ, Cho YC, Kim SM. Identification of QTL Combinations that Cause Spikelet Sterility in Rice Derived from Interspecific Crosses. RICE (NEW YORK, N.Y.) 2021; 14:99. [PMID: 34874500 PMCID: PMC8651928 DOI: 10.1186/s12284-021-00540-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The exploitation of useful genes through interspecific and intersubspecific crosses has been an important strategy for the genetic improvement of rice. Postzygotic reproductive isolation routinely occurs to hinder the growth of pollen or embryo sacs during the reproductive development of the wide crosses. RESULT In this study, we investigated the genetic relationship between the hybrid breakdown of the population and transferred resistance genes derived from wide crosses using a near-isogenic population composed of 225 lines. Five loci (qSS12, qSS8, qSS11, ePS6-1, and ePS6-2) associated with spikelet fertility (SF) were identified by QTL and epistatic analysis, and two out of five epistasis interactions were found between the three QTLs (qSS12, qSS8 and qSS11) and background marker loci (ePS6-1 and ePS6-2) on chromosome 6. The results of the QTL combinations suggested a genetic model that explains most of the interactions between spikelet fertility and the detected loci with positive or negative effects. Moreover, the major-effect QTLs, qSS12 and qSS8, which exhibited additive gene effects, were narrowed down to 82- and 200-kb regions on chromosomes 12 and 8, respectively. Of the 13 ORFs present in the target regions, Os12g0589400 and Os12g0589898 for qSS12 and OS8g0298700 for qSS8 induced significantly different expression levels of the candidate genes in rice at the young panicle stage. CONCLUSION The results will be useful for obtaining a further understanding of the mechanism causing the hybrid breakdown of a wide cross and will provide new information for developing rice cultivars with wide compatibility.
Collapse
Affiliation(s)
- Chang-Min Lee
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jung-Pil Suh
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Hyun-Su Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Man-Kee Baek
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - O-Young Jeong
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Song-Joong Yun
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Young-Chan Cho
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Suk-Man Kim
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea.
- Department of Ecological and Environmental System, Kyungpook National University, Sangju, Republic of Korea.
| |
Collapse
|
5
|
Yang Y, Xuan L, Yu C, Wang Z, Xu J, Fan W, Guo J, Yin Y. High-density genetic map construction and quantitative trait loci identification for growth traits in (Taxodium distichum var. distichum × T. mucronatum) × T. mucronatum. BMC PLANT BIOLOGY 2018; 18:263. [PMID: 30382825 PMCID: PMC6474422 DOI: 10.1186/s12870-018-1493-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/19/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND 'Zhongshanshan' is the general designation for the superior interspecific hybrid clones of Taxodium species, which is widely grown for economic and ecological purposes in southern China. Growth is the priority objective in 'Zhongshanshan' tree improvement. A high-density linkage map is vital to efficiently identify key quantitative trait loci (QTLs) that affect growth. RESULTS In total, 403.16 Gb of data, containing 2016,336 paired-end reads, was obtained after preprocessing. The average sequencing depth was 28.49 in T. distichum var. distichum, 25.18 in T. mucronatum, and 11.12 in each progeny. In total, 524,662 high-quality SLAFs were detected, of which 249,619 were polymorphic, and 6166 of the polymorphic markers met the requirements for use in constructing a genetic map. The final map harbored 6156 SLAF markers on 11 linkage groups, and was 1137.86 cM in length, with an average distance of 0.18 cM between adjacent markers. Separate QTL analyses of traits in different years by CIM detected 7 QTLs. While combining multiple-year data, 13 QTLs were detected by ICIM. 5 QTLs were repeatedly detected by the two methods, and among them, 3 significant QTLs (q6-2, q4-2 and q2-1) were detected in at least two traits. Bioinformatic analysis discoveried a gene annotated as a leucine-rich repeat receptor-like kinase gene within q4-2. CONCLUSIONS This map is the most saturated one constructed in a Taxodiaceae species to date, and would provide useful information for future comparative mapping, genome assembly, and marker-assisted selection.
Collapse
Affiliation(s)
- Ying Yang
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Lei Xuan
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Chaoguang Yu
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Ziyang Wang
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jianhua Xu
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Wencai Fan
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jinbo Guo
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yunlong Yin
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
6
|
Chen H, Zhao Z, Liu L, Kong W, Lin Y, You S, Bai W, Xiao Y, Zheng H, Jiang L, Li J, Zhou J, Tao D, Wan J. Genetic analysis of a hybrid sterility gene that causes both pollen and embryo sac sterility in hybrids between Oryza sativa L. and Oryza longistaminata. Heredity (Edinb) 2017; 119:166-173. [PMID: 28657614 DOI: 10.1038/hdy.2017.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022] Open
Abstract
Oryza longistaminata originates from African wild rice and contains valuable traits conferring tolerance to biotic and abiotic stress. However, interspecific crosses between O. longistaminata and Oryza sativa cultivars are hindered by reproductive barriers. To dissect the mechanism of interspecific hybrid sterility, we developed a near-isogenic line (NIL) using indica variety RD23 as the recipient parent and O. longistaminata as the donor parent. Both pollen and embryo sac semi-sterility were observed in F1 hybrids between RD23 and NIL. Cytological analysis demonstrated that pollen abortion in F1 hybrids occurred at the early bi-nucleate stage due to a failure of the first mitosis in microspores. Partial embryo sacs in the F1 hybrids were defective during the functional megaspore formation stage. Most notably, nearly half of the male or female gametes were aborted in heterozygotes S40iS40l, regardless of their genotypes. Thus, S40 was indicated as a one-locus sporophytic sterility gene controlling both male and female fertility in hybrids between RD23 and O. longistaminata. A population of 16 802 plants derived from the hybrid RD23/NIL-S40 was developed to fine-map S40. Finally, the S40 locus was delimited to an 80-kb region on the short arm of chromosome 1 in terms with reference sequences of cv. 93-11. Eight open reading frames (ORFs) were localized in this region. On the basis of gene expression and genomic sequence analysis, ORF5 and ORF8 were identified as candidate genes for the S40 locus. These results are helpful in cloning the S40 gene and marker-assisted transferring of the corresponding neutral allele in rice breeding programs.
Collapse
Affiliation(s)
- H Chen
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Z Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - L Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - W Kong
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Y Lin
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - S You
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - W Bai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Y Xiao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - H Zheng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - L Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - J Li
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - J Zhou
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - D Tao
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - J Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China.,National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Overcoming inter-subspecific hybrid sterility in rice by developing indica-compatible japonica lines. Sci Rep 2016; 6:26878. [PMID: 27246799 PMCID: PMC4887987 DOI: 10.1038/srep26878] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/10/2016] [Indexed: 11/09/2022] Open
Abstract
Rice (Oryza sativa L.) is an important staple crop. The exploitation of the great heterosis that exists in the inter-subspecific crosses between the indica and japonica rice has long been considered as a promising way to increase the yield potential. However, the male and female sterility frequently occurred in the inter-subspecific hybrids hampered the utilization of the heterosis. Here we report that the inter-subspecific hybrid sterility in rice is mainly affected by the genes at Sb, Sc, Sd and Se loci for F1 male sterility and the gene at S5 locus for F1 female sterility. The indica-compatible japonica lines (ICJLs) developed by pyramiding the indica allele (S-i) at Sb, Sc, Sd and Se loci and the neutral allele (S-n) at S5 locus in japonica genetic background through marker-assisted selection are compatible with indica rice in pollen fertility and in spikelet fertility. These results showed a great promise of overcoming the inter-subspecific hybrid sterility and exploiting the heterosis by developing ICJLs.
Collapse
|
8
|
Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein. Genetics 2016; 203:1439-51. [PMID: 27182946 DOI: 10.1534/genetics.115.183848] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/20/2016] [Indexed: 11/18/2022] Open
Abstract
Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments. Abnormal positioning of polar nuclei and smaller embryo sac were observed in F1 compared with male and female parents. Female gametes carrying S7(cp) and S7(i) were aborted in S7(ai)/S7(cp) and S7(ai)/S7(i), respectively, whereas they were normal in both N22 and Dular possessing a neutral allele, S7(n) S7 was fine mapped to a 139-kb region in the centromere region on chromosome 7, where the recombination was remarkably suppressed due to aggregation of retrotransposons. Among 16 putative open reading frames (ORFs) localized in the mapping region, ORF3 encoding a tetratricopeptide repeat domain containing protein was highly expressed in the pistil. Transformation experiments demonstrated that ORF3 is the candidate gene: downregulated expression of ORF3 restored spikelet fertility and eliminated absolutely preferential transmission of S7(ai) in heterozygote S7(ai)/S7(cp); sterility occurred in the transformants Cpslo17-S7(ai) Our results may provide implications for overcoming hybrid embryo sac sterility in intersubspecific hybrid rice and utilization of hybrid heterosis for cultivated rice improvement.
Collapse
|
9
|
Pollen Killer Gene S35 Function Requires Interaction with an Activator That Maps Close to S24, Another Pollen Killer Gene in Rice. G3-GENES GENOMES GENETICS 2016; 6:1459-68. [PMID: 27172610 PMCID: PMC4856096 DOI: 10.1534/g3.116.027573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pollen killer genes disable noncarrier pollens, and are responsible for male sterility and segregation distortion in hybrid populations of distantly related plant species. The genetic networks and the molecular mechanisms underlying the pollen killer system remain largely unknown. Two pollen killer genes, S24 and S35, have been found in an intersubspecific cross of Oryza sativa ssp. indica and japonica The effect of S24 is counteracted by an unlinked locus EFS Additionally, S35 has been proposed to interact with S24 to induce pollen sterility. These genetic interactions are suggestive of a single S24-centric genetic pathway (EFS-S24-S35) for the pollen killer system. To examine this hypothetical genetic pathway, the S35 and the S24 regions were further characterized and genetically dissected in this study. Our results indicated that S35 causes pollen sterility independently of both the EFS and S24 genes, but is dependent on a novel gene close to the S24 locus, named incentive for killing pollen (INK). We confirmed the phenotypic effect of the INK gene separately from the S24 gene, and identified the INK locus within an interval of less than 0.6 Mb on rice chromosome 5. This study characterized the genetic effect of the two independent genetic pathways of INK-S35 and EFS-S24 in indica-japonica hybrid progeny. Our results provide clear evidence that hybrid male sterility in rice is caused by several pollen killer networks with multiple factors positively and negatively regulating pollen killer genes.
Collapse
|
10
|
Yang Y, Shi J, Wang X, Liu G, Wang H. Genetic architecture and mechanism of seed number per pod in rapeseed: elucidated through linkage and near-isogenic line analysis. Sci Rep 2016; 6:24124. [PMID: 27067010 PMCID: PMC4828700 DOI: 10.1038/srep24124] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/16/2016] [Indexed: 11/09/2022] Open
Abstract
Seed number per pod (SNPP) is one of the major yield components and breeding targets in rapeseed that shows great variation and is invaluable for genetic improvement. To elucidate the genetic architecture and uncover the mechanism of SNPP, we identified five quantitative trait loci (QTLs) using the BnaZNRIL population, which were integrated with those of previous studies by physical map to demonstrate a complex and relatively complete genetic architecture of SNPP. A major QTL, qSN.A6, was successfully fine-mapped from 1910 to 267 kb using near-isogenic line (NIL). In addition, qSN.A6 exhibited an antagonistic pleiotropy on seed weight (SW), which is caused by a physiological interaction in which SNPP acts "upstream" of SW. Because the negative effect of qSN.A6 on SW cannot fully counteract its positive effect on SNPP, it also enhanced the final yield (17.4%), indicating its great potential for utilization in breeding. The following genetic and cytological experiments further confirmed that the different rate of ovule abortion was responsible for the ~5 seed difference between Zhongshuang11 and NIL-qSN.A6. This systematic approach to dissecting the comprehensive genetic architecture of SNPP and characterizing the underlying mechanism has advanced the understanding of SNPP and will facilitate the development of high-yield cultivars.
Collapse
Affiliation(s)
- Yuhua Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Guihua Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
11
|
Mi J, Li G, Huang J, Yu H, Zhou F, Zhang Q, Ouyang Y, Mou T. Stacking S5-n and f5-n to overcome sterility in indica-japonica hybrid rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:563-75. [PMID: 26704419 DOI: 10.1007/s00122-015-2648-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/30/2015] [Indexed: 05/17/2023]
Abstract
Pyramiding of S5 - n and f5 - n cumulatively improved seed-setting rate of indica-japonica hybrids, which provided an effective approach for utilization of inter-subspecific heterosis in rice breeding. Breeding for indica-japonica hybrid rice is an attractive approach to increase rice yield. However, hybrid sterility is a major obstacle in utilization of inter-subspecific heterosis. Wide-compatibility alleles can break the fertility barrier between indica and japonica subspecies, which have the potential to overcome inter-subspecific hybrid sterility. Here, we improved the compatibility of an elite indica restorer line 9311 to a broad spectrum of japonica varieties, by introducing two wide-compatibility alleles, S5-n and f5-n, regulating embryo-sac and pollen fertility, respectively. Through integrated backcross breeding, two near isogenic lines harboring either S5-n or f5-n and a pyramiding line carrying S5-n plus f5-n were obtained, with the recurrent parent genome recovery of 99.95, 99.49, and 99.44 %, respectively. The three lines showed normal fertility when crossed to typical indica testers. When testcrossed to five typical japonica varieties, these lines allowed significant increase of compatibility with constant agronomic performance. The introgressed S5-n could significantly improve 14.7-32.9 % embryo-sac fertility in indica-japonica hybrids. In addition, with the presence of f5-n fragment, S5-n would increase the spikelet fertility from 9.5 to 21.8 %. The introgressed f5-n fragment greatly improved anther dehiscence, embryo-sac and pollen fertility in indica-japonica hybrids, thus leading to improvement of spikelet fertility from 20.4 to 30.9 %. Moreover, the pyramiding line showed 33.6-46.7 % increase of spikelet fertility, suggesting cumulative effect of S5-n and f5-n fragment in seed-set improvement of inter-subspecific hybrids. Our results provided an effective approach for exploiting heterosis between indica and japonica subspecies, which had a profound implication in rice breeding.
Collapse
Affiliation(s)
- Jiaming Mi
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070, Wuhan, China
| | - Guangwei Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070, Wuhan, China
| | - Jianyan Huang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070, Wuhan, China
| | - Huihui Yu
- Life Science and Technology Center, China National Seed Group Co., Ltd., 430075, Wuhan, China
| | - Fasong Zhou
- Life Science and Technology Center, China National Seed Group Co., Ltd., 430075, Wuhan, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070, Wuhan, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070, Wuhan, China.
| | - Tongmin Mou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
12
|
Shen Y, Zhao Z, Ma H, Bian X, Yu Y, Yu X, Chen H, Liu L, Zhang W, Jiang L, Zhou J, Tao D, Wan J. Fine mapping of S37, a locus responsible for pollen and embryo sac sterility in hybrids between Oryza sativa L. and O. glaberrima Steud. PLANT CELL REPORTS 2015; 34:1885-1897. [PMID: 26169392 DOI: 10.1007/s00299-015-1835-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 06/04/2023]
Abstract
Hybrid sterility locus S37 between Oryza glaberrima and Oryza sativa results in both pollen and embryo sac sterility. Interspecific crossing between African cultivated rice Oryza glaberrima and Oryza sativa cultivars is hindered by hybrid sterility. To dissect the mechanism of interspecific hybrid sterility, we developed a near-isogenic line (NIL)-S37 using Dianjingyou1 (DJY1) as the recipient parent and an African cultivated rice variety as the donor parent. Empty pollen and embryo sac sterility were observed in F1 hybrids between DJY1 and NIL-S37. Cytological analyses showed that pollen abortion in the F1 hybrids occurred at the late binucleate stage due to a failure of starch accumulation in pollen grains. In addition, partial abortion of the embryo sac in the F1 hybrid was observed during function megaspore developing into mature embryo sac. Molecular analysis revealed that the semi-sterility was largely caused by the abortion of male and female gametophytes carrying the S37 allele from DJY1. A population of 25,600 plants derived from the hybrid DJY1/NIL-S37 was developed to fine map S37. Based on the physical location of molecular markers, S37 locus was finally delimited to a region of 205 kb on the short arm of chromosome 1 in terms of reference sequences of cv. Nipponbare. Interestingly, an about 97-kb DNA segment was deleted in the NIL-S37 based on BAC clone information of O. glaberrima. Fifty-four open reading frames (ORF) were predicted in this 205-kb region of DJY1, whereas only 31 ORFs were in that of NIL-S37. These results are valuable for cloning of S37 gene and further breaking reproductive isolation between Oryza glaberrima and Oryza sativa cultivars, as well as marker-assisted transferring of the corresponding neutral allele in rice breeding programs.
Collapse
Affiliation(s)
- Yumin Shen
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyang Ma
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaofeng Bian
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Yu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowen Yu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyuan Chen
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linglong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwei Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawu Zhou
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Dayun Tao
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
13
|
Liu K, Liu LL, Ren YL, Wang ZQ, Zhou KN, Liu X, Wang D, Zheng M, Cheng ZJ, Lin QB, Wang JL, Wu FQ, Zhang X, Guo XP, Wang CM, Zhai HQ, Jiang L, Wan JM. Dwarf and tiller-enhancing 1 regulates growth and development by influencing boron uptake in boron limited conditions in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:18-28. [PMID: 26025517 DOI: 10.1016/j.plantsci.2015.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 05/25/2023]
Abstract
Boron (B) is essential for plant growth, and B deficiency causes severe losses in crop yield. Here we isolated and characterized a rice (Oryza sativa L.) mutant named dwarf and tiller-enhancing 1 (dte1), which exhibits defects under low-B conditions, including retarded growth, increased number of tillers and impaired pollen fertility. Map-based cloning revealed that dte1 encodes a NOD26-LIKE INTRINSIC PROTEIN orthologous to known B channel proteins AtNIP5;1 in Arabidopsis and TASSEL-LESS1 in maize. Its identity was verified by transgenic complementation and RNA-interference. Subcellular localization showed DTE1 is mainly localized in the plasma membrane. The accumulation of DTE1 transcripts both in roots and shoots significantly increased within 3h of the onset of B starvation, but decreased within 1h of B replenishment. GUS staining indicated that DTE1s are expressed abundantly in exodermal cells in roots, as well as in nodal region of adult leaves. Although the dte1 mutation apparently reduces the total B content in plants, it does not affect in vivo B concentrations under B-deficient conditions. These data provide evidence that DTE1 is critical for vegetative growth and reproductive development in rice grown under B-deficient conditions.
Collapse
Affiliation(s)
- Kai Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ling-Long Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yu-Long Ren
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zhi-Quan Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kun-Neng Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xi Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Dan Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Ming Zheng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhi-Jun Cheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qi-Bing Lin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jiu-Lin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Fu-Qing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xin Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiu-Ping Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Chun-Ming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hu-Qu Zhai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jian-Min Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
14
|
Shi X, Sun X, Zhang Z, Feng D, Zhang Q, Han L, Wu J, Lu T. GLUCAN SYNTHASE-LIKE 5 (GSL5) Plays an Essential Role in Male Fertility by Regulating Callose Metabolism During Microsporogenesis in Rice. ACTA ACUST UNITED AC 2014; 56:497-509. [DOI: 10.1093/pcp/pcu193] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Kim B, Jang SM, Chu SH, Bordiya Y, Akter MB, Lee J, Chin JH, Koh HJ. Analysis of segregation distortion and its relationship to hybrid barriers in rice. RICE (NEW YORK, N.Y.) 2014; 7:3. [PMID: 26055992 PMCID: PMC4884001 DOI: 10.1186/s12284-014-0003-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 03/31/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Segregation distortion (SD) is a frequently observed occurrence in mapping populations generated from crosses involving divergent genotypes. In the present study, ten genetic linkage maps constructed from reciprocal F2 and BC1F1 mapping populations derived from the parents Dasanbyeo (indica) and Ilpumbyeo (japonica) were used to identify the distribution, effect, and magnitude of the genetic factors underlying the mechanisms of SD between the two subspecies. RESULTS SD loci detected in the present study were affected by male function, female function, and zygotic selection. The most pronounced SD loci were mapped to chromosome 3 (transmitted through male gametes), chromosome 5 (transmitted through male gametes), and chromosome 6 (transmitted through female gametes). The level of SD in BC1F1 populations which defined by chi-square value independence multiple tests was relatively low in comparison to F2 populations. Dasanbyeo alleles were transmitted at a higher frequency in both F2 and BC1F1 populations, suggesting that indica alleles are strongly favored in inter-subspecific crosses in rice. SD loci in the present study corresponded to previously reported loci for reproductive barriers. In addition, new SD loci were detected on chromosomes 2 and 12. CONCLUSION The identification of the distribution of SD and the effect of genetic factors causing SD in genetic mapping populations provides an opportunity to survey the whole genome for new SD loci and their relationships to reproductive barriers. This provides a basis for future research on the elucidation of the genetic mechanisms underlying SD in rice, and will be useful in molecular breeding programs.
Collapse
Affiliation(s)
- Backki Kim
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Sun Mi Jang
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Sang-Ho Chu
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yogendra Bordiya
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Md Babul Akter
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Joohyun Lee
- />Department of Applied Bioscience, Konkuk University, Seoul, 143-701 Korea
| | | | - Hee-Jong Koh
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| |
Collapse
|
16
|
Kubo T. Genetic mechanisms of postzygotic reproductive isolation: An epistatic network in rice. BREEDING SCIENCE 2013; 63:359-66. [PMID: 24399907 PMCID: PMC3859346 DOI: 10.1270/jsbbs.63.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/27/2013] [Indexed: 05/10/2023]
Abstract
Products of interspecific crosses often show abnormal phenotypes such as sterility, weakness and inviability. These phenomena play an important role in speciation as mechanisms of postzygotic reproductive isolation (RI). During the past two decades, genetics studies in rice have characterized a number of gene loci responsible for postzygotic RI. I have identified 10 loci including three sets of epistatic networks in a single inter-subspecific cross (Oryza sativa ssp. indica × japonica). These results suggest that RI genes cause developmental dysfunction of vegetative and/or reproductive organs through a variety of molecular pathways. The latest molecular studies demonstrated that hybrid incompatibility is mainly due to deleterious interactions caused by species-specific mutations of two or more genes, mediated by proteins acting within the same molecular pathway. Because genetic interactions provide a perspective on gene function, epistatic networks are a key to the understanding of the molecular basis of postzygotic RI. In this review, I focus on recent progress in postzygotic RI studies in rice and discuss the evolutionary significance as well as implications for improving rice productivity.
Collapse
Affiliation(s)
- Takahiko Kubo
- Plant Genetics Laboratory, National Institute of Genetics,
Mishima, Shizuoka 411-8540,
Japan
- Department of Life Science, Graduate University for Advanced Studies (SOKENDAI),
1111 Yata, Mishima, Shizuoka 411-8540,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
17
|
Ouyang Y, Zhang Q. Understanding reproductive isolation based on the rice model. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:111-35. [PMID: 23638826 DOI: 10.1146/annurev-arplant-050312-120205] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Reproductive isolation is both an indicator of speciation and a mechanism for maintaining species identity. Here we review the progress in studies of hybrid sterility in rice to illustrate the present understanding of the molecular and evolutionary mechanisms underlying reproductive isolation. Findings from molecular characterization of genes controlling hybrid sterility can be summarized with three evolutionary genetic models. The parallel divergence model features duplicated loci generated by genome evolution; in this model, the gametes abort when the two copies of loss-of-function mutants meet in hybrids. In the sequential divergence model, mutations of two linked loci occur sequentially in one lineage, and negative interaction between the ancestral and nascent alleles of different genes causes incompatibility. The parallel-sequential divergence model involves three tightly linked loci, exemplified by a killer-protector system formed of mutations in two steps. We discuss the significance of such findings and their implications for crop improvement.
Collapse
Affiliation(s)
- Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
18
|
Reflinur, Chin JH, Jang SM, Kim B, Lee J, Koh HJ. QTLs for hybrid fertility and their association with female and male sterility in rice. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0209-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Wang Z, Yu C, Liu X, Liu S, Yin C, Liu L, Lei J, Jiang L, Yang C, Chen L, Zhai H, Wan J. Identification of Indica rice chromosome segments for the improvement of Japonica inbreds and hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1351-1364. [PMID: 22311371 DOI: 10.1007/s00122-012-1792-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 12/22/2011] [Indexed: 05/27/2023]
Abstract
Exploitation of heterosis has brought significant advance in plant breeding and agricultural production, although its genetic basis is still poorly understood. In this study, a total of 66 chromosome segment substitution (CSS) lines, derived from a cross between japonica rice inbred line Asominori (as the recurrent parent) and indica rice inbred line IR24 (as the donor parent), were used to investigate the genetic basis of heterosis in indica × japonica inter-subspecific rice hybrids. Each CSS line was crossed with the background parent Asominori, and the heterosis of F(1) hybrids was estimated by comparing the F(1) performance with its two parental lines. Field experiments were carried out across six different environments to evaluate yield and yield-related traits in the 66 CSS lines and their 66 corresponding F(1) hybrids. Quantitative trait loci (QTL) analyses were conducted using a likelihood ratio test based on the stepwise regression. Thirty-six QTL were identified with significant effects in CSSL, 21 with significant effects in hybrids and 13 with significant effects in both. On the basis of average dominance degree, of all the 70 QTL affecting yield-related agronomic traits, 28.6% (20) showed an overdominance, 35.7% (25) a partial dominance and 30% (21) an additive effect, indicating that all effects contribute to trait variation in japonica-indica rice hybrids. Effects of these QTL were examined to identify Indica rice chromosome segments of interest for the improvement of japonica inbred lines and hybrids.
Collapse
Affiliation(s)
- Zhiquan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhao ZG, Zhu SS, Zhang YH, Bian XF, Wang Y, Jiang L, Liu X, Chen LM, Liu SJ, Zhang WW, Ikehashi H, Wan JM. Molecular analysis of an additional case of hybrid sterility in rice (Oryza sativa L.). PLANTA 2011; 233:485-494. [PMID: 21082325 DOI: 10.1007/s00425-010-1313-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 11/02/2010] [Indexed: 05/27/2023]
Abstract
Hybrid sterility hinders the exploitation of the heterosis displayed by japonica × indica rice hybrids. The variation in pollen semi-sterility observed among hybrids between the japonica recipient cultivar and each of two sets of chromosome segment substitution lines involving introgression from an indica cultivar was due to a factor on chromosome 5 known to harbor the gene S24. S24 was fine mapped to a 42 kb segment by analyzing a large F(2) population bred from the cross S24-NIL × Asominori, while the semi-sterility shown by the F(1) hybrid was ascribable to mitotic failure at the early bicellular pollen stage. Interestingly, two other pollen sterility genes (f5-Du and Sb) map to the same region (Li et al. in Chin Sci Bull 51:675-680, 2006; Wang et al. in Theor Appl Genet 112:382-387, 2006), allowing a search for candidate genes in the 6.4 kb overlap between the three genes. By sequencing the overlapped fragment in wild rice, indica cultivars and japonica cultivars, a protein ankyrin-3 encoded by the ORF2 was identified as the molecular base for S24. A cultivar Dular was found to have a hybrid-sterility-neutral allele, S24-n, in which an insertion of 30 bp was confirmed. Thus, it was possible to add one more case of molecular bases for the hybrid sterility. No gamete abortion is caused on heterozygous maternal genotype with an impaired sequence from the hybrid-sterility-neutral genotype. This result will be useful in understanding of wide compatibility in rice breeding.
Collapse
Affiliation(s)
- Z G Zhao
- National Key Laboratory For Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhou S, Wang Y, Li W, Zhao Z, Ren Y, Wang Y, Gu S, Lin Q, Wang D, Jiang L, Su N, Zhang X, Liu L, Cheng Z, Lei C, Wang J, Guo X, Wu F, Ikehashi H, Wang H, Wan J. Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. THE PLANT CELL 2011; 23:111-29. [PMID: 21282525 PMCID: PMC3051251 DOI: 10.1105/tpc.109.073692] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 12/16/2010] [Accepted: 12/28/2010] [Indexed: 05/20/2023]
Abstract
In flowering plants, male meiosis produces four microspores, which develop into pollen grains and are released by anther dehiscence to pollinate female gametophytes. The molecular and cellular mechanisms regulating male meiosis in rice (Oryza sativa) remain poorly understood. Here, we describe a rice pollen semi-sterility1 (pss1) mutant, which displays reduced spikelet fertility (~40%) primarily caused by reduced pollen viability (~50% viable), and defective anther dehiscence. Map-based molecular cloning revealed that PSS1 encodes a kinesin-1-like protein. PSS1 is broadly expressed in various organs, with highest expression in panicles. Furthermore, PSS1 expression is significantly upregulated during anther development and peaks during male meiosis. The PSS1-green fluorescent protein fusion is predominantly localized in the cytoplasm of rice protoplasts. Substitution of a conserved Arg (Arg-289) to His in the PSS1 motor domain nearly abolishes its microtubule-stimulated ATPase activity. Consistent with this, lagging chromosomes and chromosomal bridges were found at anaphase I and anaphase II of male meiosis in the pss1 mutant. Together, our results suggest that PSS1 defines a novel member of the kinesin-1 family essential for male meiotic chromosomal dynamics, male gametogenesis, and anther dehiscence in rice.
Collapse
Affiliation(s)
- Shirong Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanchang Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Suhai Gu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Su
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Linglong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hiroshi Ikehashi
- Department of Plant and Resources College of Bioresources, Nihon University, Fujisawa, Kanagawa 252-8510, Japan
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
22
|
Garavito A, Guyot R, Lozano J, Gavory F, Samain S, Panaud O, Tohme J, Ghesquière A, Lorieux M. A genetic model for the female sterility barrier between Asian and African cultivated rice species. Genetics 2010; 185:1425-40. [PMID: 20457876 PMCID: PMC2927767 DOI: 10.1534/genetics.110.116772] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/28/2010] [Indexed: 02/07/2023] Open
Abstract
S(1) is the most important locus acting as a reproductive barrier between Oryza sativa and O. glaberrima. It is a complex locus, with factors that may affect male and female fertility separately. Recently, the component causing the allelic elimination of pollen was fine mapped. However, the position and nature of the component causing female sterility remains unknown. To fine map the factor of the S(1) locus affecting female fertility, we developed a mapping approach based on the evaluation of the degree of female transmission ratio distortion (fTRD) of markers. Through implementing this methodology in four O. sativa x O. glaberrima crosses, the female component of the S(1) locus was mapped into a 27.8-kb (O. sativa) and 50.3-kb (O. glaberrima) region included within the interval bearing the male component of the locus. Moreover, evidence of additional factors interacting with S(1) was also found. In light of the available data, a model where incompatibilities in epistatic interactions between S(1) and the additional factors are the cause of the female sterility barrier between O. sativa and O. glaberrima was developed to explain the female sterility and the TRD mediated by S(1). According to our model, the recombination ratio and allelic combinations between these factors would determine the final allelic frequencies observed for a given cross.
Collapse
Affiliation(s)
- Andrea Garavito
- Plant Genome and Development Laboratory, Institut de Recherche pour le Développement (IRD), 34394 Montpellier Cedex 5, France, Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia, Génoscope, Institut de Génomique, Commissariat à l'Énergie Atomique (CEA), 91057 Evry, France and Plant Genome and Development Laboratory, Université de Perpignan, 66860 Perpignan, France
| | - Romain Guyot
- Plant Genome and Development Laboratory, Institut de Recherche pour le Développement (IRD), 34394 Montpellier Cedex 5, France, Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia, Génoscope, Institut de Génomique, Commissariat à l'Énergie Atomique (CEA), 91057 Evry, France and Plant Genome and Development Laboratory, Université de Perpignan, 66860 Perpignan, France
| | - Jaime Lozano
- Plant Genome and Development Laboratory, Institut de Recherche pour le Développement (IRD), 34394 Montpellier Cedex 5, France, Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia, Génoscope, Institut de Génomique, Commissariat à l'Énergie Atomique (CEA), 91057 Evry, France and Plant Genome and Development Laboratory, Université de Perpignan, 66860 Perpignan, France
| | - Frédérick Gavory
- Plant Genome and Development Laboratory, Institut de Recherche pour le Développement (IRD), 34394 Montpellier Cedex 5, France, Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia, Génoscope, Institut de Génomique, Commissariat à l'Énergie Atomique (CEA), 91057 Evry, France and Plant Genome and Development Laboratory, Université de Perpignan, 66860 Perpignan, France
| | - Sylvie Samain
- Plant Genome and Development Laboratory, Institut de Recherche pour le Développement (IRD), 34394 Montpellier Cedex 5, France, Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia, Génoscope, Institut de Génomique, Commissariat à l'Énergie Atomique (CEA), 91057 Evry, France and Plant Genome and Development Laboratory, Université de Perpignan, 66860 Perpignan, France
| | - Olivier Panaud
- Plant Genome and Development Laboratory, Institut de Recherche pour le Développement (IRD), 34394 Montpellier Cedex 5, France, Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia, Génoscope, Institut de Génomique, Commissariat à l'Énergie Atomique (CEA), 91057 Evry, France and Plant Genome and Development Laboratory, Université de Perpignan, 66860 Perpignan, France
| | - Joe Tohme
- Plant Genome and Development Laboratory, Institut de Recherche pour le Développement (IRD), 34394 Montpellier Cedex 5, France, Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia, Génoscope, Institut de Génomique, Commissariat à l'Énergie Atomique (CEA), 91057 Evry, France and Plant Genome and Development Laboratory, Université de Perpignan, 66860 Perpignan, France
| | - Alain Ghesquière
- Plant Genome and Development Laboratory, Institut de Recherche pour le Développement (IRD), 34394 Montpellier Cedex 5, France, Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia, Génoscope, Institut de Génomique, Commissariat à l'Énergie Atomique (CEA), 91057 Evry, France and Plant Genome and Development Laboratory, Université de Perpignan, 66860 Perpignan, France
| | - Mathias Lorieux
- Plant Genome and Development Laboratory, Institut de Recherche pour le Développement (IRD), 34394 Montpellier Cedex 5, France, Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia, Génoscope, Institut de Génomique, Commissariat à l'Énergie Atomique (CEA), 91057 Evry, France and Plant Genome and Development Laboratory, Université de Perpignan, 66860 Perpignan, France
| |
Collapse
|
23
|
Wang Y, Zhong ZZ, Zhao ZG, Jiang L, Bian XF, Zhang WW, Liu LL, Ikehashi H, Wan JM. Fine mapping of a gene causing hybrid pollen sterility between Yunnan weedy rice and cultivated rice (Oryza sativa L.) and phylogenetic analysis of Yunnan weedy rice. PLANTA 2010; 231:559-570. [PMID: 19946705 DOI: 10.1007/s00425-009-1063-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 11/09/2009] [Indexed: 05/28/2023]
Abstract
Weedy rice represents an important resource for rice improvement. The F(1) hybrid between the japonica wide compatibility rice cultivar 02428 and a weedy rice accession from Yunnan province (SW China) suffered from pollen sterility. Pollen abortion in the hybrid occurred at the early bicellular pollen stage, as a result of mitotic failure in the microspore, although the tapetum developed normally. Genetic mapping in a BC(1)F(1) population (02428//Yunnan weedy rice (YWR)/02428) showed that a major QTL for hybrid pollen sterility (qPS-1) was present on chromosome 1. qPS-1 was fine-mapped to a 110 kb region known to contain the hybrid pollen sterility gene Sa, making it likely that qPS-1 is either identical to, or allelic with Sa. Interestingly, F(1) hybrid indicated that Dular and IR36 were assumed to carry the sterility-neutral allele, Sa ( n ). Re-sequencing SaM and SaF, the two component genes present at Sa, suggested that variation for IR36 and Dular may be responsible for the loss of male sterility, and the qPS-1 sequence might be derived from wild rice or indica cultivars. A phylogenetic analysis based on microsatellite genotyping suggested that the YWR accession is more closely related to wild rice and indica type cultivars than to japonica types. Thus it is probable that the YWR accession evolved from a spontaneous hybrid between wild rice and an ancient cultivated strain of domesticated rice.
Collapse
Affiliation(s)
- Yong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, 210095 Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fine mapping and marker development for the crossability gene SKr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.). Genetics 2009; 183:469-81, 1SI-3SI. [PMID: 19652174 DOI: 10.1534/genetics.109.107706] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most elite wheat varieties cannot be crossed with related species thereby restricting greatly the germplasm that can be used for alien introgression in breeding programs. Inhibition to crossability is controlled genetically and a number of QTL have been identified to date, including the major gene Kr1 on 5BL and SKr, a strong QTL affecting crossability between wheat and rye on chromosome 5BS. In this study, we used a recombinant SSD population originating from a cross between the poorly crossable cultivar Courtot (Ct) and the crossable line MP98 to characterize the major dominant effect of SKr and map the gene at the distal end of the chromosome near the 5B homeologous GSP locus. Colinearity with barley and rice was used to saturate the SKr region with new markers and establish orthologous relationships with a 54-kb region on rice chromosome 12. In total, five markers were mapped within a genetic interval of 0.3 cM and 400 kb of BAC contigs were established on both sides of the gene to lay the foundation for map-based cloning of SKr. Two SSR markers completely linked to SKr were used to evaluate a collection of crossable wheat progenies originating from primary triticale breeding programs. The results confirm the major effect of SKr on crossability and the usefulness of the two markers for the efficient introgression of crossability in elite wheat varieties.
Collapse
|
25
|
Advances in the understanding of inter-subspecific hybrid sterility and wide-compatibility in rice. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0371-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Kubo T, Yamagata Y, Eguchi M, Yoshimura A. A novel epistatic interaction at two loci causing hybrid male sterility in an inter-subspecific cross of rice (Oryza sativa L.). Genes Genet Syst 2009; 83:443-53. [PMID: 19282622 DOI: 10.1266/ggs.83.443] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Postzygotic reproductive isolation (RI) often arises in inter-subspecific crosses as well as inter-specific crosses of rice (Oryza sativa L.). To further understand the genetic architecture of the postzygotic RI, we analyzed genes causing hybrid sterility and hybrid breakdown in a rice inter-subspecific cross. Here we report hybrid male sterility caused by epistatic interaction between two novel genes, S24 and S35, which were identified on rice chromosomes 5 and 1, respectively. Genetic analysis using near-isogenic lines (NILs) carrying IR24 (ssp. indica) segments with Asominori (ssp. japonica) genetic background revealed a complicated aspect of the epistasis. Allelic interaction at the S24 locus in the heterozygous plants caused abortion of male gametes carrying the Asominori allele (S24-as) independent of the S35 genotype. On the other hand, male gametes carrying the Asominori allele at the S35 locus (S35-as) showed abortion only when the IR24 allele at the S24 locus (S24-ir) was concurrently introgressed into the S35 heterozygous plants, indicating that the sterility phenotype due to S35 was dependent on the S24 genotype through negative epistasis between S24-ir and S35-as alleles. Due to the interaction between S24 and S35, self-pollination of the double heterozygous plants produced pollen-sterile progeny carrying the S24-ir/S24-ir S35-as/S35-ir genotype in addition to the S24 heterozygous plants. This result suggests that the S35 gene might function as a modifier of S24. This study presents strong evidence for the importance of epistatic interaction as a part of the genetic architecture of hybrid sterility in rice. In addition, it suggests that diverse systems have been developed as postzygotic RI mechanisms within the rice.
Collapse
Affiliation(s)
- Takahiko Kubo
- Plant Breeding Laboratory, Division of Genetics and Plant Breeding, Department of Applied Genetics and Pest Management, Faculty of Agriculture, Kyushu University, Japan.
| | | | | | | |
Collapse
|