1
|
Sunil B, Rajsheel P, Aswani V, Bapatla RB, Talla SK, Raghavendra AS. Photosynthesis is sensitive to nitric oxide and respiration sensitive to hydrogen peroxide: Studies with pea mesophyll protoplasts. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153133. [PMID: 32065920 DOI: 10.1016/j.jplph.2020.153133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 05/27/2023]
Abstract
Reports on the effect of nitric oxide (NO) or reactive oxygen species (ROS) on photosynthesis and respiration in leaf tissues are intriguing; therefore, the effects of exogenous addition of sodium nitroprusside (SNP, releases NO) or H2O2 on the photosynthetic O2 evolution and respiratory O2 uptake by mesophyll protoplasts in pea (Pisum sativum) were evaluated in the present study. Low concentrations of SNP or H2O2 were used to minimize nonspecific effects. The effects of NO or H2O2 on respiration and photosynthesis were different. The presence of NO decreased the rate of photosynthesis but caused a marginal stimulation of dark respiration. Conversely, externally administered H2O2 drastically decreased the rate of respiration but only slightly decreased photosynthesis. The PS I activity was more sensitive to NO than PS II. On the other hand, 100 μM H2O2 had no effect on the photochemical reactions of either PS I or PS II. The sensitivity of photosynthesis to antimycin A or SHAM (reflecting the interplay between chloroplasts and mitochondria) was not affected by NO. By contrast, H2O2 markedly decreased the sensitivity of photosynthesis to antimycin A and SHAM. It can be concluded that chloroplasts are the primary targets of NO, while mitochondria are the primary targets of ROS in plant cells. We propose that H2O2 can be an important signal to modulate the crosstalk between chloroplasts and mitochondria.
Collapse
Affiliation(s)
- Bobba Sunil
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Pidakala Rajsheel
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Vetcha Aswani
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Ramesh B Bapatla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Sai K Talla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
2
|
Misra AN, Vladkova R, Singh R, Misra M, Dobrikova AG, Apostolova EL. Action and target sites of nitric oxide in chloroplasts. Nitric Oxide 2014; 39:35-45. [PMID: 24731839 DOI: 10.1016/j.niox.2014.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 03/17/2014] [Accepted: 04/03/2014] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is an important signalling molecule in plants under physiological and stress conditions. Here we review the influence of NO on chloroplasts which can be directly induced by interaction with the photosynthetic apparatus by influencing photophosphorylation, electron transport activity and oxido-reduction state of the Mn clusters of the oxygen-evolving complex or by changes in gene expression. The influence of NO-induced changes in the photosynthetic apparatus on its functions and sensitivity to stress factors are discussed.
Collapse
Affiliation(s)
- Amarendra N Misra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi 435020, India.
| | - Radka Vladkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, Sofia 1113, Bulgaria
| | - Ranjeet Singh
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi 435020, India
| | - Meena Misra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi 435020, India
| | - Anelia G Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, Sofia 1113, Bulgaria
| | - Emilia L Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, Sofia 1113, Bulgaria
| |
Collapse
|
3
|
Ördög A, Wodala B, Rózsavölgyi T, Tari I, Horváth F. Regulation of guard cell photosynthetic electron transport by nitric oxide. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1357-66. [PMID: 23364939 DOI: 10.1093/jxb/ers397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nitric oxide (NO) is one of the key elements in the complex signalling pathway leading to stomatal closure by inducing reversible protein phosphorylation and Ca(2+) release from intracellular stores. As photosynthesis in guard cells also contributes to stomatal function, the aim of this study was to explore the potential role of NO as a photosynthetic regulator. This work provides the first description of the reversible inhibition of the effect of NO on guard cell photosynthetic electron transport. Pulse amplitude modulation (PAM) chlorophyll fluorescence measurements on individual stomata of peeled abaxial epidermal strips indicated that exogenously applied 450nM NO rapidly increases the relative fluorescence yield, followed by a slow and constant decline. It was found that NO instantly decreases photochemical fluorescence quenching coefficients (qP and qL), the operating quantum efficiency of photosystem II (ΦPSII), and non-photochemical quenching (NPQ) to close to zero with different kinetics. NO caused a decrease in NPQ, which is followed by a slow and continuous rise. The removal of NO from the medium surrounding the epidermal strips using a rapid liquid perfusion system showed that the effect of NO on qP and ΦPSII, and thus on the linear electron transport rate through PSII (ETR), is reversible, and the constant rise in NPQ disappears, resulting in a near steady-state value. The reversible inhibition by NO of the ETR could be restored by bicarbonate, a compound known to compete with NO for one of the two coordination sites of the non-haem iron (II) in the QAFe(2+)QB complex.
Collapse
Affiliation(s)
- Attila Ördög
- Department of Plant Biology, University of Szeged, PO Box 654, H-6701 Szeged, Hungary
| | | | | | | | | |
Collapse
|
4
|
Romanowska E, Wasilewska W, Fristedt R, Vener AV, Zienkiewicz M. Phosphorylation of PSII proteins in maize thylakoids in the presence of Pb ions. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:345-52. [PMID: 22169074 DOI: 10.1016/j.jplph.2011.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 05/03/2023]
Abstract
Lead is potentially toxic to all organisms including plants. Many physiological studies suggest that plants have developed various mechanisms to contend with heavy metals, however the molecular mechanisms remain unclear. We studied maize plants in which lead was introduced into detached leaves through the transpiration stream. The photochemical efficiency of PSII, measured as an Fv/Fm ratio, in the maize leaves treated with Pb was only 10% lower than in control leaves. The PSII activity was not affected by Pb ions in mesophyll thylakoids, whereas in bundle sheath it was reduced. Protein phosphorylation in mesophyll and bundle sheath thylakoids was analyzed using mass spectrometry and protein blotting before and after lead treatment. Both methods clearly demonstrated increase in phosphorylation of the PSII proteins upon treatment with Pb(2+), however, the extent of D1, D2 and CP43 phosphorylation in the mesophyll chloroplasts was clearly higher than in bundle sheath cells. We found that in the presence of Pb ions there was no detectable dephosphorylation of the strongly phosphorylated D1 and PsbH proteins of PSII complex in darkness or under far red light. These results suggest that Pb(2+) stimulates phosphorylation of PSII core proteins, which can affect stability of the PSII complexes and the rate of D1 protein degradation. Increased phosphorylation of the PSII core proteins induced by Pb ions may be a crucial protection mechanism stabilizing optimal composition of the PSII complexes under metal stress conditions. Our results show that acclimation to Pb ions was achieved in both types of maize chloroplasts in the same way. However, these processes are obviously more complex because of different metabolic status in mesophyll and bundle sheath chloroplasts.
Collapse
Affiliation(s)
- Elżbieta Romanowska
- Department of Molecular Plant Physiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
5
|
Bricker TM, Frankel LK. Auxiliary functions of the PsbO, PsbP and PsbQ proteins of higher plant Photosystem II: a critical analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:165-78. [PMID: 21353792 DOI: 10.1016/j.jphotobiol.2011.01.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/25/2011] [Accepted: 01/31/2011] [Indexed: 01/08/2023]
Abstract
Numerous studies over the last 25 years have established that the extrinsic PsbO, PsbP and PsbQ proteins of Photosystem II play critically important roles in maintaining optimal manganese, calcium and chloride concentrations at the active site of Photosystem II. Chemical or genetic removal of these components induces multiple and profound defects in Photosystem II function and oxygen-evolving complex stability. Recently, a number of studies have indicated possible additional roles for these proteins within the photosystem. These include putative enzymatic activities, regulation of reaction center protein turnover, modulation of thylakoid membrane architecture, the mediation of PS II assembly/stability, and effects on the reducing side of the photosystem. In this review we will critically examine the findings which support these auxiliary functions and suggest additional lines of investigations which could clarify the nature of the functional interactions of these proteins with the photosystem.
Collapse
Affiliation(s)
- Terry M Bricker
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
6
|
Bog M, Baumbach H, Schween U, Hellwig F, Landolt E, Appenroth KJ. Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. PLANTA 2010; 232:609-19. [PMID: 20526614 DOI: 10.1007/s00425-010-1201-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 05/19/2010] [Indexed: 05/10/2023]
Abstract
Duckweeds (Lemnaceae) are extremely reduced in morphology, which made their taxonomy a challenge for a long time. The amplified fragment length polymorphism (AFLP) marker technique was applied to solve this problem. 84 clones of the genus Lemna were investigated representing all 13 accepted Lemna species. By neighbour-joining (NJ) analysis, 10 out of these 13 species were clearly recognized: L. minor, L. obscura, L. turionifera, L. japonica, L. disperma, L. aequinoctialis, L. perpusilla, L. trisulca, L. tenera, and L. minuta. However, L. valdiviana and L. yungensis could be distinguished neither by NJ cluster analysis nor by structure analysis. Moreover, the 16 analysed clones of L. gibba were assembled into four genetically differentiated groups. Only one of these groups, which includes the standard clones 7107 (G1) and 7741 (G3), represents obviously the "true" L. gibba. At least four of the clones investigated, so far considered as L. gibba (clones 8655a, 9481, 9436b, and Tra05-L), represent evidently close relatives to L. turionifera but do not form turions under any of the conditions tested. Another group of clones (6745, 6751, and 7922) corresponds to putative hybrids and may be identical with L. parodiana, a species not accepted until now because of the difficulties of delineation on morphology alone. In conclusion, AFLP analysis offers a solid base for the identification of Lemna clones, which is particularly important in view of Lemnaceae application in biomonitoring.
Collapse
Affiliation(s)
- Manuela Bog
- Institute of Plant Physiology, University of Jena, Dornburger Str 159, 07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Krol M, Ivanov AG, Booij-James I, Mattoo AK, Sane PV, Hüner NP. Absence of the major light-harvesting antenna proteins alters the redox properties of photosystem II reaction centres in thechlorina F2mutant of barley. Biochem Cell Biol 2009; 87:557-66. [DOI: 10.1139/o09-013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the chlorina F2 mutant of barley specifically exhibits reduced levels of the major light-harvesting polypeptides associated with photosystem II (PSII), thermoluminescence measurements of photosystem reaction centre photochemistry revealed that S2/S3QB–charge recombinations were shifted to lower temperatures, while the characteristic peak of S2QA–charge recombinations was shifted to higher temperatures compared with wild-type (WT) barley. Thus, we show that the absence of the major light-harvesting polypeptides affects the redox properties of PSII reaction centres. Radiolabeling studies in vivo and in vitro with [32P]orthophosphate or [γ-32P]ATP, respectively, demonstrated that the D1 PSII reaction centre polypeptide is phosphorylated in both the WT and the F2 mutant. In contrast with the radiolabeling results, phosphorylation of D1 and other PSII proteins, although detected in WT barley, was ambiguous in the F2 mutant when the phosphothreonine antibody method of detection was used. Thus, caution must be exercised in the use of commercially available phosphothreonine antibodies to estimate thylakoid polypeptide phosphorylation. Furthermore, in membrano, the D1 polypeptide of the F2 mutant was less susceptible to trypsin treatment than that of WT barley. The role of the light-harvesting complex in modulating the structure and function of the D1 polypeptide of PSII reaction centers is discussed.
Collapse
Affiliation(s)
- Marianna Krol
- Department of Biology and the Biotron Experimental Climate Change Research Centre, University of Western Ontario, 1151 Richmond Street N., London, ON N6A 5B7, Canada
- Henry A. Wallace Beltsville Agricultural Research Center, USDA/ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Alexander G. Ivanov
- Department of Biology and the Biotron Experimental Climate Change Research Centre, University of Western Ontario, 1151 Richmond Street N., London, ON N6A 5B7, Canada
- Henry A. Wallace Beltsville Agricultural Research Center, USDA/ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Isabelle Booij-James
- Department of Biology and the Biotron Experimental Climate Change Research Centre, University of Western Ontario, 1151 Richmond Street N., London, ON N6A 5B7, Canada
- Henry A. Wallace Beltsville Agricultural Research Center, USDA/ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Autar K. Mattoo
- Department of Biology and the Biotron Experimental Climate Change Research Centre, University of Western Ontario, 1151 Richmond Street N., London, ON N6A 5B7, Canada
- Henry A. Wallace Beltsville Agricultural Research Center, USDA/ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - P. V. Sane
- Department of Biology and the Biotron Experimental Climate Change Research Centre, University of Western Ontario, 1151 Richmond Street N., London, ON N6A 5B7, Canada
- Henry A. Wallace Beltsville Agricultural Research Center, USDA/ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Norman P.A. Hüner
- Department of Biology and the Biotron Experimental Climate Change Research Centre, University of Western Ontario, 1151 Richmond Street N., London, ON N6A 5B7, Canada
- Henry A. Wallace Beltsville Agricultural Research Center, USDA/ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| |
Collapse
|