1
|
Significant and unique changes in phosphorylation levels of four phosphoproteins in two apple rootstock genotypes under drought stress. Mol Genet Genomics 2017; 292:1307-1322. [PMID: 28710562 DOI: 10.1007/s00438-017-1348-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/03/2017] [Indexed: 01/09/2023]
Abstract
Drought stress is a major problem around the world and there is still little molecular mechanism about how fruit crops deal with moderate drought stress. Here, the physiological and phosphoproteomic responses of drought-sensitive genotype (M26) and drought-tolerant genotype (MBB) under moderate drought stress were investigated. Our results of the physiology analysis indicated that the MBB genotype could produce more osmosis-regulating substances. Furthermore, phosphoproteins from leaves of both genotypes under moderate drought stress were analyzed using the isobaric tags for relative and absolute quantification technology. A total of 595 unique phosphopeptides, 682 phosphorylated sites, and 446 phosphoproteins were quantitatively analyzed in the two genotypes. Five and thirty-five phosphoproteins with the phosphorylation levels significantly changed (PLSC) were identified in M26 and MBB, respectively. Among these, four PLSC phosphoproteins were common to both genotypes, perhaps indicating a partial overlap of the mechanisms to moderate drought stress. Gene ontology analyses revealed that the PLSC phosphoproteins represent a unique combination of metabolism, transcription, translation, and protein processing, suggesting that the response in apple to moderate drought stress encompasses a new and unique homeostasis of major cellular processes. The basic trend was an increase in protein and organic molecules abundance related to drought. These increases were higher in MBB than in M26. Our study is the first to address the phosphoproteome of apple rootstocks in response to moderate drought stress, and provide insights into the molecular regulation mechanisms of apple rootstock under moderate drought stress.
Collapse
|
2
|
Xu H, Cao D, Chen Y, Wei D, Wang Y, Stevenson RA, Zhu Y, Lin J. Gene expression and proteomic analysis of shoot apical meristem transition from dormancy to activation in Cunninghamia lanceolata (Lamb.) Hook. Sci Rep 2016; 6:19938. [PMID: 26832850 PMCID: PMC4735791 DOI: 10.1038/srep19938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/21/2015] [Indexed: 11/17/2022] Open
Abstract
In contrast to annual plants, in perennial plants, the shoot apical meristem (SAM) can undergo seasonal transitions between dormancy and activity; understanding this transition is crucial for understanding growth in perennial plants. However, little is known about the molecular mechanisms of SAM development in trees. Here, light and transmission electron microscopy revealed that evident changes in starch granules, lipid bodies, and cell walls thickness of the SAM in C. lanceolata during the transition from dormancy to activation. HPLC-ESI-MS/MS analysis showed that levels of indole-3-acetic acid (IAA) increased and levels of abscisic acid (ABA) decreased from dormant to active stage. Examination of 20 genes and 132 differentially expressed proteins revealed that the expression of genes and proteins potentially involved in cell division and expansion significantly increased in the active stage, whereas those related to the abscisic acid insensitive 3(ABI3), the cytoskeleton and energy metabolism decreased in the dormant stage. These findings provide new insights into the complex mechanism of gene and protein expression and their relation to cytological and physiological changes of SAM in this coniferous species.
Collapse
Affiliation(s)
- Huimin Xu
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Dechang Cao
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yanmei Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongmei Wei
- School of Life Science, Taizhou University, Zhejiang 318000, China
| | - Yanwei Wang
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Rebecca Ann Stevenson
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Yingfang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Jinxing Lin
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Pagano GJ, King RS, Martin LM, Hufnagel LA. The unique N-terminal insert in the ribosomal protein, phosphoprotein P0, of Tetrahymena thermophila: Bioinformatic evidence for an interaction with 26S rRNA. Proteins 2015; 83:1078-90. [PMID: 25820769 DOI: 10.1002/prot.24800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/27/2015] [Accepted: 03/20/2015] [Indexed: 11/11/2022]
Abstract
Phosphoprotein P0 (P0) is part of the stalk complex of the eukaryotic large ribosomal subunit necessary for recruiting elongation factors. While the P0 sequence is highly conserved, our group noted a 15-16 residue insert exclusive to the P0s of ciliated protists, including Tetrahymena thermophila. We hypothesized that this insert may have a function unique in ciliated protists, such as stalk regulation via phosphorylation of the insert. Almost no mention of this insert exists in the literature, and although the T. thermophila ribosome has been crystallized, there is limited structural data for Tetrahymena's P0 (TtP0) and its insert. To investigate the structure and function of the TtP0 insert, we performed in silico analyses. The TtP0 sequence was scanned with phosphorylation site prediction tools to detect the likelihood of phosphorylation in the insert. TtP0's sequence was also used to produce a homology model of the N-terminal domain of TtP0, including the insert. When the insert was modeled in the context of the 26S rRNA, it associated with a region identified as expansion segment 7B (ES7B), suggesting a potential functional interaction between ES7B and the insert in T. thermophila. We were not able to obtain sufficient data to determine whether a similar relationship exists in other ciliated protists. This study lays the groundwork for future experimental studies to verify the presence of TtP0 insert/ES7 interactions in Tetrahymena, and to explore their functional significance during protein synthesis.
Collapse
Affiliation(s)
- Giovanni J Pagano
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, 02881
| | - Roberta S King
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, 02881
| | - Lenore M Martin
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, 02881
| | - Linda A Hufnagel
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, 02881
| |
Collapse
|
4
|
Zhou J, Wei YH, Liao MY, Xiong Y, Li JL, Cai HB. Identification of cisplatin-resistance associated genes through proteomic analysis of human ovarian cancer cells and a cisplatin-resistant subline. Asian Pac J Cancer Prev 2014; 13:6435-9. [PMID: 23464471 DOI: 10.7314/apjcp.2012.13.12.6435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Chemoresistance to cancer therapy is a major obstacle to the effective treatment of human cancers with cisplatin (DDP), but the mechanisms of cisplatin-resistance are not clear. In this study, we established a cisplatin- resistant human ovarian cancer cell line (COC1/DDP) and identified differentially expressed proteins related to cisplatin resistance. The proteomic expression profiles in COC1 before and after DDP treatment were examined using 2-dimensional electrophoresis technology. Differentially expressed proteins were identified using matrix- assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and high performance liquid chromatography-electrospray tandem MS (NanoUPLC-ESI-MS/MS). 5 protein spots, for cytokeratin 9, keratin 1, deoxyuridine triphosphatase (dUTPase), aarF domain containing kinase 4 (ADCK 4) and cofilin1, were identified to be significantly changed in COC1/DDP compared with its parental cells. The expression of these five proteins was further validated by quantitative PCR and Western blotting, confirming the results of proteomic analysis. Further research on these proteins may help to identify novel resistant biomarkers or reveal the mechanism of cisplatin-resistance in human ovarian cancers.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Gynecology Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
5
|
Zhu HY, Li CM, Wang LF, Bai H, Li YP, Yu WX, Xia DA, Liu CC. In silico identification and characterization of N-Terminal acetyltransferase genes of poplar (Populus trichocarpa). Int J Mol Sci 2014; 15:1852-64. [PMID: 24473137 PMCID: PMC3958825 DOI: 10.3390/ijms15021852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/17/2014] [Accepted: 01/18/2014] [Indexed: 11/24/2022] Open
Abstract
N-terminal acetyltransferase (Nats) complex is responsible for protein N-terminal acetylation (Nα-acetylation), which is one of the most common covalent modifications of eukaryotic proteins. Although genome-wide investigation and characterization of Nat catalytic subunits (CS) and auxiliary subunits (AS) have been conducted in yeast and humans they remain unexplored in plants. Here we report on the identification of eleven genes encoding eleven putative Nat CS polypeptides, and five genes encoding five putative Nat AS polypeptides in Populus. We document that the expansion of Nat CS genes occurs as duplicated blocks distributed across 10 of the 19 poplar chromosomes, likely only as a result of segmental duplication events. Based on phylogenetic analysis, poplar Nat CS were assigned to six subgroups, which corresponded well to the Nat CS types (CS of Nat A–F), being consistent with previous reports in humans and yeast. In silico analysis of microarray data showed that in the process of normal development of the poplar, their Nat CS and AS genes are commonly expressed at one relatively low level but share distinct tissue-specific expression patterns. This exhaustive survey of Nat genes in poplar provides important information to assist future studies on their functional role in poplar.
Collapse
Affiliation(s)
- Hang-Yong Zhu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Chun-Ming Li
- Forestry Research Institution of Heilongjiang Province, Harbin 150081, China.
| | - Li-Feng Wang
- Faculty of life Science and Technology, Mudanjiang Normal University, 191 Wenhua Street, Mudanjiang 157012, China.
| | - Hui Bai
- Forestry Research Institution of Heilongjiang Province, Harbin 150081, China.
| | - Yan-Ping Li
- Faculty of life Science and Technology, Mudanjiang Normal University, 191 Wenhua Street, Mudanjiang 157012, China.
| | - Wen-Xi Yu
- Forestry Research Institution of Heilongjiang Province, Harbin 150081, China.
| | - De-An Xia
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Chang-Cai Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
6
|
Nilo-Poyanco R, Olivares D, Orellana A, Hinrichsen P, Pinto M. Proteomic analysis of grapevine (Vitis vinifera L.) leaf changes induced by transition to autotrophy and exposure to high light irradiance. J Proteomics 2013; 91:309-30. [PMID: 23933133 DOI: 10.1016/j.jprot.2013.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 06/25/2013] [Accepted: 07/02/2013] [Indexed: 01/08/2023]
Abstract
UNLABELLED Using a proteomics approach, we evaluated the response of heterotrophic and autotrophic leaves of grapevine when exposed to high light irradiation. From a total of 572 protein spots detected on two-dimensional gels, 143 spots showed significant variation caused by changes in the trophic state. High light treatment caused variation in 90 spots, and 51 spots showed variation caused by the interaction between both factors. Regarding the trophic state of the leaf, most of the proteins detected in the heterotrophic stage decreased in abundance when the leaf reached the autotrophic stage. Major differences induced by high light were detected in autotrophic leaves. In the high-light-treated autotrophic leaves several proteins involved in the oxidative stress response were up-regulated. This pattern was not observed in the high-light-treated heterotrophic leaves. This indicates that in these types of leaves other mechanisms different to the protein antioxidant system are acting to protect young leaves against the excess of light. This also suggests that these protective mechanisms rely on other sets of proteins or non-enzymatic molecules, or that differences in protein dynamics between the heterotrophic and autotrophic stages makes the autotrophic leaves more prone to the accumulation of oxidative stress response proteins. BIOLOGICAL SIGNIFICANCE Transition from a heterotrophic to an autotrophic state is a key period during which the anatomical, physiological and molecular characteristics of a leaf are defined. In many aspects the right functioning of a leaf at its mature stage depends on the conditions under what this transition occurs. This because apart of the genetic control, environmental factors like mineral nutrition, temperature, water supply, light etc. are also important in its control. Many anatomical and physiological changes have been described in several plant species, however in grapevine molecular data regarding changes triggered by this transition or by light stress are still scarce. In this study, we identify that the transition from heterotrophic to autotrophic state in grapevine triggers major changes in the leaf proteome, which are mainly related to processes such as protein synthesis, protein folding and degradation, photosynthesis and chloroplast development. With the exception of proteins involved in carbon fixation, that increased in abundance, most of the proteins detected during the heterotrophic stage decreased in abundance when the leaf reached its autotrophic stage. This is most likely because leaves have reached their full size and from now they have to work as a carbon source for sink organs located in other parts of the plant. Despite the potential control of this transition by light, to date, no studies using a proteomics approach have been conducted to gain a broader view of the effects of short-term high light stress. Our results indicate that short-term high light exposure has a major impact on the proteome of the autotrophic leaves, and trigger a differential accumulation of several proteins involved in the oxidative stress response. Surprisingly, heterotrophic leaves do not display this pattern which can be attributed to a lower sensitivity of these leaves to high light stimulus. In fact we discovered that heterotrophic leaves are more tolerant to light stress than autotrophic leaves. This finding is of high biological significance because it helps to understand how young leaves are able to evolve to autotrophy in areas where high light intensities are predominant. This also reveals in this type of leaves the existence of alternative mechanisms to address this stressful condition. These observations provide new insights into the molecular changes occurring during transition of leaves to autotrophy particularly when this transition occurs under high light intensities. This for example occurs during the springtime when the grapevine buds burst and the young leaves are suddenly exposed to high light intensities.
Collapse
Affiliation(s)
- R Nilo-Poyanco
- FONDAP Centre for Genome Regulation, Núcleo Milenio en Biotecnología Celular Vegetal, Universidad Andrés Bello, Santiago, Chile
| | | | | | | | | |
Collapse
|
7
|
Ning DL, Liu CC, Liu JW, Shen Z, Chen S, Liu F, Wang BC, Yang CP. Label-free quantitative proteomics analysis of dormant terminal buds of poplar. Mol Biol Rep 2013; 40:4529-42. [PMID: 23677710 DOI: 10.1007/s11033-013-2548-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 04/29/2013] [Indexed: 01/02/2023]
Abstract
Induction and break of bud dormancy are important features for perennial plants surviving extreme seasonal variations in climate. However, the molecular mechanism of the dormancy regulation, still remain poorly understood. To better understand the molecular basis of poplar bud dormancy, we used a label-free quantitative proteomics method based on nanoscale ultra performance liquid chromatography-ESI-MS(E) for investigation of differential protein expression during dormancy induction, dormancy, and dormancy break in apical buds of poplar (Populus simonii × P. nigra). Among these identified over 300 proteins during poplar bud dormancy, there are 74 significantly altered proteins, most of which involved in carbohydrate metabolism (22 %), redox regulation (19 %), amino acid transport and metabolism (10 %), and stress response (8 %). Thirty-one of these proteins were up-regulated, five were down-regulated during three phase, and thirty-eight were expressed specifically under different conditions. Pathway analysis suggests that there are still the presence of various physiological activities and a particular influence on photosynthesis and energy metabolism during poplar bud dormancy. Differential expression patterns were identified for key enzymes involved in major metabolic pathways such as glycolysis and the pentose phosphate pathway, thus manifesting the interplay of intricate molecular events in energy generation for new protein synthesis in the dormant buds. Furthermore, there are significant changes present in redox regulation and defense response proteins, for instance in peroxidase and ascorbate peroxidase. Overall, this study provides a better understanding of the possible regulation mechanisms during poplar bud dormancy.
Collapse
Affiliation(s)
- De-Li Ning
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Chang IF, Hsu JL, Hsu PH, Sheng WA, Lai SJ, Lee C, Chen CW, Hsu JC, Wang SY, Wang LY, Chen CC. Comparative phosphoproteomic analysis of microsomal fractions of Arabidopsis thaliana and Oryza sativa subjected to high salinity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:131-42. [PMID: 22325874 DOI: 10.1016/j.plantsci.2011.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 05/20/2023]
Abstract
Plants respond to salt stress by initiating phosphorylation cascades in their cells. Many key phosphorylation events take place at membranes. Microsomal fractions from 400 mM salt-treated Arabidopsis suspension plants were isolated, followed by trypsin shaving, enrichment using Zirconium ion-charged or TiO(2) magnetic beads, and tandem mass spectrometry analyses for site mapping. A total of 27 phosphorylation sites from 20 Arabidopsis proteins including photosystem II reaction center protein H PsbH were identified. In addition to Arabidopsis, microsomal fractions from shoots of 200 mM salt-treated rice was carried out, followed by trypsin digestion using shaving or tube-gel, and enrichment using Zirconium ion-charged or TiO(2) magnetic beads. This yielded identification of 13 phosphorylation sites from 8 proteins including photosystem II reaction center protein H PsbH. Label-free quantitative analysis suggests that the phosphorylation sites of PsbH were regulated by salt stress in Arabidopsis and rice. Sequence alignment of PsbH phosphorylation sites indicates that Thr-2 and Thr-4 are evolutionarily conserved in plants. Four conserved phosphorylation motifs were predicted, and these suggest that a specific unknown kinase or phosphatase is involved in high-salt stress responses in plants.
Collapse
Affiliation(s)
- Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu CC, Liu CF, Wang HX, Shen ZY, Yang CP, Wei ZG. Identification and analysis of phosphorylation status of proteins in dormant terminal buds of poplar. BMC PLANT BIOLOGY 2011; 11:158. [PMID: 22074553 PMCID: PMC3234192 DOI: 10.1186/1471-2229-11-158] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 11/11/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Although there has been considerable progress made towards understanding the molecular mechanisms of bud dormancy, the roles of protein phosphorylation in the process of dormancy regulation in woody plants remain unclear. RESULTS We used mass spectrometry combined with TiO₂ phosphopeptide-enrichment strategies to investigate the phosphoproteome of dormant terminal buds (DTBs) in poplar (Populus simonii × P. nigra). There were 161 unique phosphorylated sites in 161 phosphopeptides from 151 proteins; 141 proteins have orthologs in Arabidopsis, and 10 proteins are unique to poplar. Only 34 sites in proteins in poplar did not match well with the equivalent phosphorylation sites of their orthologs in Arabidopsis, indicating that regulatory mechanisms are well conserved between poplar and Arabidopsis. Further functional classifications showed that most of these phosphoproteins were involved in binding and catalytic activity. Extraction of the phosphorylation motif using Motif-X indicated that proline-directed kinases are a major kinase group involved in protein phosphorylation in dormant poplar tissues. CONCLUSIONS This study provides evidence about the significance of protein phosphorylation during dormancy, and will be useful for similar studies on other woody plants.
Collapse
Affiliation(s)
- Chang-Cai Liu
- State Key Laboratory of Forest Genetics and Tree Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
- Laboratory for Chemical Defence and Microscale Analysis, P.O. Box 3, Zhijiang 443200, China
| | - Chang-Fu Liu
- Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning 110866, China
| | - Hong-Xia Wang
- Institute of Basic Medical Sciences, National Center for Biomedical Analysis, 27 Taiping Road, Beijing 100850, China
| | - Zhi-Ying Shen
- Daqing Branch, Harbin Medical University, Daqing 163319, China
| | - Chuan-Ping Yang
- State Key Laboratory of Forest Genetics and Tree Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Zhi-Gang Wei
- State Key Laboratory of Forest Genetics and Tree Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
10
|
Abril N, Gion JM, Kerner R, Müller-Starck G, Cerrillo RMN, Plomion C, Renaut J, Valledor L, Jorrin-Novo JV. Proteomics research on forest trees, the most recalcitrant and orphan plant species. PHYTOCHEMISTRY 2011; 72:1219-42. [PMID: 21353265 DOI: 10.1016/j.phytochem.2011.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/27/2010] [Accepted: 01/06/2011] [Indexed: 05/06/2023]
Abstract
The contribution of proteomics to the knowledge of forest tree (the most recalcitrant and almost forgotten plant species) biology is being reviewed and discussed, based on the author's own research work and papers published up to November 2010. This review is organized in four introductory sections starting with the definition of forest trees (1), the description of the environmental and economic importance (2) and its derived current priorities and research lines for breeding and conservation (3) including forest tree genomics (4). These precede the main body of this review: a general overview to proteomics (5) for introducing the forest tree proteomics section (6). Proteomics, defined as scientific discipline or experimental approach, it will be discussed both from a conceptual and methodological point of view, commenting on realities, challenges and limitations. Proteomics research in woody plants is limited to a reduced number of genera, including Pinus, Picea, Populus, Eucalyptus, and Fagus, mainly using first-generation approaches, e.g., those based on two-dimensional electrophoresis coupled to mass spectrometry. This area joins the own limitations of the technique and the difficulty and recalcitrance of the plant species as an experimental system. Furthermore, it contributes to a deeper knowledge of some biological processes, namely growth, development, organogenesis, and responses to stresses, as it is also used in the characterization and cataloguing of natural populations and biodiversity (proteotyping) and in assisting breeding programmes.
Collapse
Affiliation(s)
- Nieves Abril
- Dpt. of Biochemistry and Molecular Biology, ETSIAM, University of Cordoba, Campus de Rabanales, Ed. Severo Ochoa, Cordoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kolaiti RM, Baier A, Szyszka R, Kouyanou-Koutsoukou S. Isolation of a CK2α subunit and the holoenzyme from the mussel Mytilus galloprovincialis and construction of the CK2α and CK2β cDNAs. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:505-516. [PMID: 20922551 DOI: 10.1007/s10126-010-9321-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/07/2010] [Indexed: 05/29/2023]
Abstract
Protein kinase CK2 is a ubiquitous, highly pleiotropic, and constitutively active phosphotransferase that phosphorylates mainly serine and threonine residues. CK2 has been studied and characterized in many organisms, from yeast to mammals. The holoenzyme is generally composed of two catalytic (α and/or α') and two regulatory (β) subunits, forming a differently assembled tetramer. The free and catalytically active α/α' subunits can be present in cells under some circumstances. We present here the isolation of a putative catalytic CK2α subunit and holoenzyme from gills of the mussel Mytilus galloprovincialis capable of phosphorylating the purified recombinant ribosomal protein rMgP1. For further analysis of M. galloprovincialis protein kinase CK2, the cDNA molecules of CK2α and CK2β subunits were constructed and cloned into expression vectors, and the recombinant proteins were purified after expression in Escherichia coli. The recombinant MgCK2β subunit and MgP1 were phosphorylated by the purified recombinant MgCK2α subunit. The mussel enzyme presented features typical for CK2: affinity for GTP, inhibition by both heparin and ATP competitive inhibitors (TBBt, TBBz), and sensitivity towards NaCl. Predicted amino acid sequence comparison showed that the M. galloprovincialis MgCK2α and MgCK2β subunits have similar features to their mammalian orthologs.
Collapse
Affiliation(s)
- Regina-Maria Kolaiti
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, 15701, Greece
| | | | | | | |
Collapse
|
12
|
Sghaier-Hammami B, Jorrín-Novo JV, Gargouri-Bouzid R, Drira N. Abscisic acid and sucrose increase the protein content in date palm somatic embryos, causing changes in 2-DE profile. PHYTOCHEMISTRY 2010; 71:1223-36. [PMID: 20605176 DOI: 10.1016/j.phytochem.2010.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 05/22/2023]
Abstract
Various supplements (abscisic acid (ABA) or sucrose) were added to the initial embryo culture medium (M3) with the aim of improving the vigour of vitroplants deriving from date palm somatic embryogenesis. ABA (20 and 40 microM) and sucrose (90 g/l) applied for 4 and 2 weeks respectively increased embryo thickness, with no apparent difference in length. ABA (5-40 microM) increased embryo proliferation rate. Somatic embryos maintained in modified M3 (M3 supplemented with ABA and an increased sucrose concentration) contained a higher amount of protein than those maintained in initial M3 (no ABA, 30 g/l of sucrose), with a 1.5-1.7-fold increase depending on the compound and concentration assayed. The 1-D and 2-DE protein profiles showed qualitative and quantitative differences between the somatic embryos cultured in initial M3 (control) and in modified M3. Statistical analysis of spot intensity was performed by principal component analysis, yielding two accurate groups of samples and determining the most discriminating spots. Samples were also clustered using Euclidean distance with an average linkage algorithm. Thirty-four variable spots were identified using mass spectrometry analysis. Identified proteins were classified into the following functional categories: energy metabolism (five proteins); protein translation, folding and degradation (9); redox maintenance (5); cytoskeleton (3); storage protein (2); and with no assigned function as (10). While "up-regulation" of stress-related proteins and "down-regulation" of energy metabolism proteins were observed in somatic embryos matured in M3 supplemented with ABA, storage proteins (legumin) were "up-regulated" in somatic embryos matured in M3 supplemented with increased sucrose.
Collapse
Affiliation(s)
- Besma Sghaier-Hammami
- Laboratoire des Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Sfax, Tunisia.
| | | | | | | |
Collapse
|