1
|
Gangwar H, Kumari P, Gahlaut V, Kumar S, Jaiswal V. Identification and comprehensive analysis of MIPSs in Rosaceae and their expression under abiotic stresses in rose ( Rosa chinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:1021297. [PMID: 36407582 PMCID: PMC9669799 DOI: 10.3389/fpls.2022.1021297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The Myo-Inositol-1-phosphate synthase (MIPS) gene family is involved in the myo-inositol synthesis and plays a significant role in signal transduction, membrane biogenesis, oligosaccharides synthesis, auxin storage and transport, programmed cell death and abiotic stress tolerance in plants. This study comprehensively identified the MIPS genes in Rosaceae plant species, and 51 MIPS genes were identified from 26 Rosaceae species. The phylogenetic analysis divided the MIPSs into two clades (clade I; subfamily Amygdaloideae specific, and clade II; subfamily Rosoideae specific). MIPS genes of all 26 Rosaceae species consist of similar gene structure, motif and domain composition, which shows their conserved nature. The cis-regulatory elements (CREs) analysis revealed that most Rosaceae MIPS genes play a role in growth, development, and stress responses. Furthermore, the qRT-PCR analysis also revealed the involvement of RcMIPS gene in plant development and response to abiotic stresses, including drought and heat. The results of the present study contribute to the understanding of the biological function of Rosaceae MIPS genes, and that could be used in further functional validations.
Collapse
Affiliation(s)
- Himanshi Gangwar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priya Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vijay Gahlaut
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Hazra A, Dasgupta N, Sengupta C, Das S. MIPS: Functional dynamics in evolutionary pathways of plant kingdom. Genomics 2019; 111:1929-1945. [DOI: 10.1016/j.ygeno.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/22/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
|
3
|
Basak P, Sangma S, Mukherjee A, Agarwal T, Sengupta S, Ray S, Majumder AL. Functional characterization of two myo-inositol-1-phosphate synthase (MIPS) gene promoters from the halophytic wild rice (Porteresia coarctata). PLANTA 2018; 248:1121-1141. [PMID: 30066217 DOI: 10.1007/s00425-018-2957-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
MAIN CONCLUSION The promoter deletion mutants from second isoform of INO1 (gene-encoding MIPS) from Porteresia coarctata of 932 bp (pPcINO1.2.932) and 793 bp (pPcINO1.2.793) prove to be very efficient as salt/drought stress-inducible promoters, while pPcINO1.2.932 is found to be responsive to cold stress as well. The promoters of the two identified myo-inositol-1-phosphate synthase (INO1) isoforms from salt-tolerant wild rice, Porteresia coarctata (PcINO1.1 and PcINO1.2) have been compared bioinformatically with their counterparts present in the salt-sensitive rice, Oryza sativa. PcINO1.2 promoter was found to be enriched with many abiotic stress-responsive elements, like abscisic acid-responsive elements, MYC-responsive elements, MYB-binding sites, low-temperature stress-responsive elements, and heat-shock elements similar to the ones found in the conserved motifs of the promoters of salt/drought stress-inducible INO1 promoters across Kingdom Planta. To have detailed analysis on the arrangement of cis-acting regulatory elements present in PcINO1 promoters, 5' deletion mutational studies were performed in dicot model plants. Both transient as well as stable transformation methods were used to check the influence of PcINO1 promoter deletion mutants under salt and physiologically drought conditions using β-glucuronidase as the reporter gene. The deletion mutant from the promoter of PcINO1.2 of length 932 bp (pPcINO1.2.932) was found to be significantly upregulated under drought stress and also in cold stress, while another deletion mutant, pPcINO1.2.793 (of 793 bp), was significantly upregulated under salt stress. P. coarctata being a halophytic species, the high inducibility of pPcINO1.2.932 upon exposure to low-temperature stress was an unexpected result.
Collapse
Affiliation(s)
- Papri Basak
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India
| | - Shiny Sangma
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India
- HSSLC Branch, Meghalaya Board of School Education, Tura, West Garo Hills, Shillong, Meghalaya, India
| | - Abhishek Mukherjee
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India
| | - Tanushree Agarwal
- Department of Botany, University of Calcutta, Ballygunge Campus, Kolkata, West Bengal, India
| | - Sonali Sengupta
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India
- School of Plant, Environment and Soil Sciences, Louisiana State University Agricultural Centre, Baton Rouge, LA, 70803, USA
| | - Sudipta Ray
- Department of Botany, University of Calcutta, Ballygunge Campus, Kolkata, West Bengal, India
| | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India.
| |
Collapse
|
4
|
Mondal TK, Ganie SA, Debnath AB. Identification of Novel and Conserved miRNAs from Extreme Halophyte, Oryza coarctata, a Wild Relative of Rice. PLoS One 2015; 10:e0140675. [PMID: 26506249 PMCID: PMC4623511 DOI: 10.1371/journal.pone.0140675] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/29/2015] [Indexed: 01/25/2023] Open
Abstract
Oryza coarctata, a halophyte and wild relative of rice, is grown normally in saline water. MicroRNAs (miRNAs) are non-coding RNAs that play pivotal roles in every domain of life including stress response. There are very few reports on the discovery of salt-responsive miRNAs from halophytes. In this study, two small RNA libraries, one each from the control and salt-treated (450 mM NaCl for 24 h) leaves of O. coarctata were sequenced, which yielded 338 known and 95 novel miRNAs. Additionally, we used publicly available transcriptomics data of O. coarctata which led to the discovery of additional 48 conserved miRNAs along with their pre-miRNA sequences through in silico analysis. In total, 36 known and 7 novel miRNAs were up-regulated whereas, 12 known and 7 novel miRNAs were down-regulated under salinity stress. Further, 233 and 154 target genes were predicted for 48 known and 14 novel differentially regulated miRNAs respectively. These targets with the help of gene ontology analysis were found to be involved in several important biological processes that could be involved in salinity tolerance. Relative expression trends of majority of the miRNAs as detected by real time-PCR as well as predicted by Illumina sequencing were found to be coherent. Additionally, expression of most of the target genes was negatively correlated with their corresponding miRNAs. Thus, the present study provides an account of miRNA-target networking that is involved in salinity adaption of O. coarctata.
Collapse
Affiliation(s)
- Tapan Kumar Mondal
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi-4, 110012, India
| | - Showkat Ahmad Ganie
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi-4, 110012, India
| | - Ananda Bhusan Debnath
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi-4, 110012, India
| |
Collapse
|
5
|
Deswal R, Gupta R, Dogra V, Singh R, Abat JK, Sarkar A, Mishra Y, Rai V, Sreenivasulu Y, Amalraj RS, Raorane M, Chaudhary RP, Kohli A, Giri AP, Chakraborty N, Zargar SM, Agrawal VP, Agrawal GK, Job D, Renaut J, Rakwal R. Plant proteomics in India and Nepal: current status and challenges ahead. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:461-477. [PMID: 24431515 PMCID: PMC3781272 DOI: 10.1007/s12298-013-0198-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Plant proteomics has made tremendous contributions in understanding the complex processes of plant biology. Here, its current status in India and Nepal is discussed. Gel-based proteomics is predominantly utilized on crops and non-crops to analyze majorly abiotic (49 %) and biotic (18 %) stress, development (11 %) and post-translational modifications (7 %). Rice is the most explored system (36 %) with major focus on abiotic mainly dehydration (36 %) stress. In spite of expensive proteomics setup and scarcity of trained workforce, output in form of publications is encouraging. To boost plant proteomics in India and Nepal, researchers have discussed ground level issues among themselves and with the International Plant Proteomics Organization (INPPO) to act in priority on concerns like food security. Active collaboration may help in translating this knowledge to fruitful applications.
Collapse
Affiliation(s)
- Renu Deswal
- />Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, India
| | - Ravi Gupta
- />Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, India
| | - Vivek Dogra
- />Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh India
| | - Raksha Singh
- />Department of Plant Molecular Biology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Jasmeet Kaur Abat
- />Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Abhijit Sarkar
- />Department of Botany, Banaras Hindu University, Varanasi, India
- />Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal
| | - Yogesh Mishra
- />Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Vandana Rai
- />National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - Yelam Sreenivasulu
- />Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh India
| | - Ramesh Sundar Amalraj
- />Plant Pathology Section, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Tamil Nadu, India
| | - Manish Raorane
- />Plant Molecular Biology Laboratory, Plant Breeding, Genetics and Biotechnology, International Rice Research Institute, Manila, Philippines
| | - Ram Prasad Chaudhary
- />Central Department of Botany, and Research Centre for Applied Science and Technology, Tribhuvan University, Kirtipur, Nepal
| | - Ajay Kohli
- />Plant Molecular Biology Laboratory, Plant Breeding, Genetics and Biotechnology, International Rice Research Institute, Manila, Philippines
| | - Ashok Prabhakar Giri
- />Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Pune, India
| | | | - Sajad Majeed Zargar
- />School of Biotechnology, SK University of Agricultural Sciences and Technology, Chatha, Jammu, 180009 Jammu and Kashmir India
| | | | - Ganesh Kumar Agrawal
- />Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal
| | - Dominique Job
- />CNRS/Bayer Crop Science (UMR 5240) Joint Laboratory, Lyon, France
| | - Jenny Renaut
- />Department of Environment and Agrobiotechnologies, Centre de Recherche Public-Gabriel Lippmann, Belvaux, GD Luxembourg
| | - Randeep Rakwal
- />Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal
- />Organization for Educational Initiatives, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
- />Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 Japan
| |
Collapse
|
6
|
Joshi R, Ramanarao MV, Baisakh N. Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 65:61-66. [PMID: 23416497 DOI: 10.1016/j.plaphy.2013.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/04/2013] [Indexed: 06/01/2023]
Abstract
Salinity is one of the most important environmental constraints limiting agricultural productivity. Considering the importance of the accumulation of osmolytes, myo-inositol in particular, in halophytic plant's adaptive response to salinity, an effort was made to overexpress the SaINO1 gene from the grass halophyte Spartina alterniflora encoding myo-inositol 1-phosphate synthase (MIPS) in Arabidopsis thaliana. We demonstrated that SaINO1 is a stress-responsive gene and its constitutive over expression in Arabidopsis provides significantly improved tolerance to salt stress during germination and seedling growth and development. The transgenics retained more chlorophyll and carotenoid by protecting the photosystem II. The low level of stress-induced cellular damage in the transgenics was clearly evident by lower accumulation of proline in comparison to WT. Our results indicated that possible overaccumulation of MIPS enzyme in the cytosol protected the transgenic Arabidopsis plants overexpressing SaINO1 from the toxic effect of Na(+) under salt stress by reducing cellular damage and chlorophyll loss.
Collapse
Affiliation(s)
- Rohit Joshi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
7
|
Tan J, Wang C, Xiang B, Han R, Guo Z. Hydrogen peroxide and nitric oxide mediated cold- and dehydration-induced myo-inositol phosphate synthase that confers multiple resistances to abiotic stresses. PLANT, CELL & ENVIRONMENT 2013; 36:288-99. [PMID: 22774933 DOI: 10.1111/j.1365-3040.2012.02573.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
myo-Inositol phosphate synthase (MIPS) is the key enzyme of myo-inositol synthesis, which is a central molecule required for cell metabolism and plant growth as a precursor to a large variety of compounds. A full-length fragment of MfMIPS1 cDNA was cloned from Medicago falcata that is more cold-tolerant than Medicago sativa. While MfMIPS1 transcript was induced in response to cold, dehydration and salt stress, MIPS transcript and myo-inositol were maintained longer and at a higher level in M. falcata than in M. sativa during cold acclimation at 5 °C. MfMIPS1 transcript was induced by hydrogen peroxide (H(2) O(2)) and nitric oxide (NO), but was not responsive to abscisic acid (ABA). Pharmacological experiments revealed that H(2) O(2) and NO are involved in the regulation of MfMIPS1 expression by cold and dehydration, but not by salt. Overexpression of MfMIPS1 in tobacco increased the MIPS activity and levels of myo-inositol, galactinol and raffinose, resulting in enhanced resistance to chilling, drought and salt stresses in transgenic tobacco plants. It is suggested that MfMIPS1 is induced by diverse environmental factors and confers resistance to various abiotic stresses.
Collapse
Affiliation(s)
- Jiali Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | |
Collapse
|