1
|
Ma L, Jiang H, Ren YY, Yang JW, Han Y, Si HJ, Prusky D, Bi Y, Wang Y. Overexpression of StCDPK23 promotes wound healing of potato tubers by regulating StRbohs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:279-289. [PMID: 35724622 DOI: 10.1016/j.plaphy.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/21/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Calcium-dependent protein kinase (CDPK) is a Ca2+ sensor that can phosphorylate and regulate respiratory burst oxidase homolog (Rboh), inducing the production of O2-. However, little is known about how StCDPK23 affects ROS production in the deposition of suberin at potato tuber wounds by regulating StRbohs. In this study, we found that StCDPK23 was induced significantly by the wound in potato tubers, which contains a typical CDPK structure, and was highly homologous to AtCDPK13 in Arabidopsis. Subcellular localization of results showed that StCDPK23 was located in the nucleus and plasma membrane of N. benthamiana epidermis cells. StCDPK23-overexpressing plants and tubers were obtained via Agrobacterium transformation. The expression of StCDPK23 was significantly upregulated in the overexpressing tubers during healing and increased 2.3-fold at 5 d. The expression levels of StRbohs (A-E) were also upregulated in the overexpressing tubers. Among them, StrbohA showed significant expression in the early stage of healing, which was 16.3-fold higher than that of the wild-type tubers at 8 h of healing. Moreover, the overexpressing tubers produced more O2- and H2O2, which are 1.1-fold and 3.5-fold higher than that of the wild-type at 8 h, respectively. More SPP deposition was observed at the wounds of the overexpressing tubers. The thickness of SPP cell layers was 53.2% higher than that of the wild-type after 3 d of the wound. It is suggested that StCDPK23 may participate in the wound healing of potato tubers by regulating Strbohs, which mainly contributes to H2O2 production during healing.
Collapse
Affiliation(s)
- Li Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hong Jiang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ying-Yue Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiang-Wei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huai-Jun Si
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China; Department of Postharvest Science, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yi Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Grossi CEM, Santin F, Quintana SA, Fantino E, Ulloa RM. Calcium-dependent protein kinase 2 plays a positive role in the salt stress response in potato. PLANT CELL REPORTS 2022; 41:535-548. [PMID: 33651205 DOI: 10.1007/s00299-021-02676-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
StCDPK2 is an early player in the salt stress response in potato plants; its overexpression promoted ROS scavenging, chlorophyll stability, and the induction of stress-responsive genes conferring tolerance to salinity. The salinity of soils affects plant development and is responsible for great losses in crop yields. Calcium-dependent protein kinases (CDPKs) are sensor-transducers that decode Ca2+ signatures triggered by abiotic stimuli and translate them into physiological responses. Histochemical analyses of potato plants harboring StCDPK2 promoter fused to the reporter gene β-glucuronidase (ProStCDPK2:GUS) revealed that GUS activity was high in the leaf blade and veins, it was restricted to root tips and lateral root primordia, and was observed upon stolon swelling. Comparison with ProStCDPK1:GUS and ProStCDPK3:GUS plants revealed their differential activities in the plant tissues. ProStCDPK2:GUS plants exposed to high salt presented enhanced GUS activity in roots which correlated with the numerous stress-responsive sites predicted in its promoter sequence. Moreover, StCDPK2 expression increased in in vitro potato plants after 2 h of high salt exposure and in greenhouse plants exposed to a dynamic stress condition. As inferred from biometric data and chlorophyll content, plants that overexpress StCDPK2 were more tolerant than wild-type plants when exposed to high salt. Overexpressing plants have a more efficient antioxidant system; they showed reduced accumulation of peroxide and higher catalase activity under salt conditions, and enhanced expression of WRKY6 and ERF5 transcription factors under control conditions. Our results indicate that StCDPK2 is an early player in the salt stress response and support a positive correlation between StCDPK2 overexpression and tolerance towards salt stress.
Collapse
Affiliation(s)
- Cecilia Eugenia María Grossi
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A., Buenos Aires, Argentina
| | - Franco Santin
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A., Buenos Aires, Argentina
- Instituto de Botánica Darwinion (IBODA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silverio Andrés Quintana
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A., Buenos Aires, Argentina
- Departamento de Biotecnología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Elisa Fantino
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A., Buenos Aires, Argentina
- Laboratoire de Recherche Sur le Métabolisme Spécialisé Végétal, Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Québec, Canada
| | - Rita María Ulloa
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A., Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Sciorra MD, Fantino E, Grossi CEM, Ulloa RM. Characterization of two group III potato CDPKs, StCDPK22 and StCDPK24, that contain three EF-Hand motifs in their CLDs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:716-729. [PMID: 33799183 DOI: 10.1016/j.plaphy.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Four members of the potato (Solanum tuberosum L.) calcium-dependent protein kinase (CDPK) family StCDPK22/23/24 and StCDPK27, present three functional EF-hands motifs in their calmodulin-like domain (CLD). StCDPK22/23/24 are clustered in clade III-b1 with tomato and Arabidopsis CDPKs that lack the first EF-hand motif, while StCDPK27 is clustered in clade III-b3 with CDPKs that lack EF-hand 2. Members of each clade share similar intron-exon structures and acylation profiles. 3D model predictions suggested that StCDPK22 and StCDPK24 are active kinases that undergo a conformational switch in the presence of Ca2+ even when lacking one functional EF-hand motif; however, assays performed with recombinant proteins indicated that StCDPK24:6xHis was active in all the conditions tested, and its activity was enhanced in the presence of Ca2+, but StCDPK22:6xHis had scarce or null activity. Both kinases share with AtCPK8 the same autophosphorylation pattern in the autoinhibitory (AD) and C-terminal variable (CTV) domains, suggesting that it could be a characteristic of clade III-b1. RT-qPCR analysis revealed that StCDPK22 is mainly expressed in early stages of tuberization, but not limited to, while StCDPK24 expression is more ubiquitous. In silico analysis predicted several abiotic stress-responsive elements in its promoters. Accordingly, StCDPK24 expression peaked at 10 h in in vitro plants exposed to salt shock and then declined. Moreover, a significant increase was observed at 2 h in stems of salt-treated greenhouse plants, suggesting that this CDPK could participate in the early events of the signaling cascade triggered in response to salt.
Collapse
Affiliation(s)
- Marcelo Daniel Sciorra
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A.), Argentina
| | - Elisa Fantino
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A.), Argentina
| | - Cecilia Eugenia María Grossi
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A.), Argentina
| | - Rita María Ulloa
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A.), Argentina; Departamento de Química Biológica, UBA, C.A.B.A, Argentina.
| |
Collapse
|
4
|
Yousaf MF, Demirel U, Naeem M, Çalışkan ME. Association mapping reveals novel genomic regions controlling some root and stolon traits in tetraploid potato ( Solanum tuberosum L.). 3 Biotech 2021; 11:174. [PMID: 33927965 PMCID: PMC7973339 DOI: 10.1007/s13205-021-02727-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022] Open
Abstract
Tuber crops have measurable biological variation in root and stolon phenotyping and thus may be utilized to identify genomic regions associated with these variations. This is the first comprehensive association mapping study related to potato root and stolon traits. A diverse panel of 192 tetraploid potato (Solanum tuberosum L.) genotypes were grown in aeroponics to reveal a biologically significant variation and detection of genomic regions associated with the root and stolon traits. Phenotyping of root traits was performed by image analysis software "WinRHIZO" (a root scanning method), and stolon traits was measured manually, while SolCAP 25K potato array was used for genotyping. Significant variation was observed between the potato genotypes for root and stolon traits along with high heritabilities (0.80 in TNS to 0.95 in SL). For marker-trait associations, Q + K linear mixed model was implemented and 50 novel genomic regions were detected. Significantly associated SNPs with stolon traits were located on chr 4, chr 6, chr 7, chr 9, chr 11 and chr 12, while those linked to root traits on chr 1, chr 2, chr 3, chr 9, chr 11, and chr 12. Structure and PCA analysis grouped genotypes into four sub-populations disclosing population genetic diversity. LD decay was observed at 2.316 Mbps (r 2 = 0.29) in the population. The identified SNPs were associated with genes performing vital functions such as root signaling and signal transduction in stress environments (GT-2 factors, protein kinases SAPK2-like and protein phosphatases "StPP1"), transcriptional and post-transcriptional gene regulation (RNA-binding proteins), sucrose synthesis and transporter families (UGPase, Sus3, SuSy, and StSUT1) and PVY resistance (Ry sto). The findings of our study can be employed in future breeding programs for improvement in potato production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02727-6.
Collapse
Affiliation(s)
- Muhammad Farhan Yousaf
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| | - Ufuk Demirel
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| | - Muhammad Naeem
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| | - Mehmet Emin Çalışkan
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| |
Collapse
|
5
|
Rojas BE, Santin F, Ulloa RM, Iglesias AA, Figueroa CM. A fluorometric method for the assay of protein kinase activity. Anal Biochem 2018; 557:120-122. [PMID: 30036499 DOI: 10.1016/j.ab.2018.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022]
Abstract
Protein kinases constitute one of the largest protein families in nature. Current methods to assay their activity involve the use of radioactive ATP or very expensive reagents. In this work, we developed a highly sensitive, cost-effective and straightforward protocol to measure protein kinase activity using a microplate layout. Released ADP is converted into NAD+, which is quantified by its fluorescent properties after alkaline treatment (linear range 0-10 nmol ADP). To validate our protocol, we characterized a recombinant calcium-dependent protein kinase from potato. Overall, this tool represents a critical step forward in the functional characterization of protein kinases.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 Km 0, 3000 Santa Fe, Argentina.
| | - Franco Santin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, UBA, CONICET, FCEN, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Rita M Ulloa
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, UBA, CONICET, FCEN, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina.
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 Km 0, 3000 Santa Fe, Argentina.
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 Km 0, 3000 Santa Fe, Argentina.
| |
Collapse
|
6
|
Fantino E, Segretin ME, Santin F, Mirkin FG, Ulloa RM. Analysis of the potato calcium-dependent protein kinase family and characterization of StCDPK7, a member induced upon infection with Phytophthora infestans. PLANT CELL REPORTS 2017; 36:1137-1157. [PMID: 28451820 DOI: 10.1007/s00299-017-2144-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/15/2017] [Indexed: 05/25/2023]
Abstract
We describe the potato CDPK family and place StCDPK7 as a player in potato response to Phytophthora infestans infection, identifying phenylalanine ammonia lyase as its specific phosphorylation target in vitro. Calcium-dependent protein kinases (CDPKs) decode calcium (Ca2+) signals and activate different signaling pathways involved in hormone signaling, plant growth, development, and both abiotic and biotic stress responses. In this study, we describe the potato CDPK/CRK multigene family; bioinformatic analysis allowed us to identify 20 new CDPK isoforms, three CDPK-related kinases (CRKs), and a CDPK-like kinase. Phylogenetic analysis indicated that 26 StCDPKs can be classified into four groups, whose members are predicted to undergo different acylation patterns and exhibited diverse expression levels in different tissues and in response to various stimuli. With the aim of characterizing those members that are particularly involved in plant-pathogen interaction, we focused on StCDPK7. Tissue expression profile revealed that StCDPK7 transcript levels are high in swollen stolons, roots, and mini tubers. Moreover, its expression is induced upon Phytophthora infestans infection in systemic leaves. Transient expression assays showed that StCDPK7 displays a cytosolic/nuclear localization in spite of having a predicted chloroplast transit peptide. The recombinant protein, StCDPK7:6xHis, is an active Ca2+-dependent protein kinase that can phosphorylate phenylalanine ammonia lyase, an enzyme involved in plant defense response. The analysis of the potato CDPK family provides the first step towards the identification of CDPK isoforms involved in biotic stress. StCDPK7 emerges as a relevant player that could be manipulated to deploy disease resistance in potato crops.
Collapse
Affiliation(s)
- Elisa Fantino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Eugenia Segretin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Franco Santin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Gabriel Mirkin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rita M Ulloa
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
7
|
Santin F, Bhogale S, Fantino E, Grandellis C, Banerjee AK, Ulloa RM. Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development. PHYSIOLOGIA PLANTARUM 2017; 159:244-261. [PMID: 27716933 DOI: 10.1111/ppl.12517] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Among many factors that regulate potato tuberization, calcium and calcium-dependent protein kinases (CDPKs) play an important role. CDPK activity increases at the onset of tuber formation with StCDPK1 expression being strongly induced in swollen stolons. However, not much is known about the transcriptional and posttranscriptional regulation of StCDPK1 or its downstream targets in potato development. To elucidate further, we analyzed its expression in different tissues and stages of the life cycle. Histochemical analysis of StCDPK1::GUS (β-glucuronidase) plants demonstrated that StCDPK1 is strongly associated with the vascular system in stems, roots, during stolon to tuber transition, and in tuber sprouts. In agreement with the observed GUS profile, we found specific cis-acting elements in StCDPK1 promoter. In silico analysis predicted miR390 to be a putative posttranscriptional regulator of StCDPK1. Quantitative real time-polymerase chain reaction (qRT-PCR) analysis showed ubiquitous expression of StCDPK1 in different tissues which correlated well with Western blot data except in leaves. On the contrary, miR390 expression exhibited an inverse pattern in leaves and tuber eyes suggesting a possible regulation of StCDPK1 by miR390. This was further confirmed by Agrobacterium co-infiltration assays. In addition, in vitro assays showed that recombinant StCDPK1-6xHis was able to phosphorylate the hydrophilic loop of the auxin efflux carrier StPIN4. Altogether, these results indicate that StCDPK1 expression is varied in a tissue-specific manner having significant expression in vasculature and in tuber eyes; is regulated by miR390 at posttranscriptional level and suggest that StPIN4 could be one of its downstream targets revealing the overall role of this kinase in potato development.
Collapse
Affiliation(s)
- Franco Santin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490 2do piso, 1428 Buenos Aires, Argentina
| | - Sneha Bhogale
- Biology Division, Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Elisa Fantino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490 2do piso, 1428 Buenos Aires, Argentina
| | - Carolina Grandellis
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490 2do piso, 1428 Buenos Aires, Argentina
| | - Anjan K Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Rita M Ulloa
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490 2do piso, 1428 Buenos Aires, Argentina
| |
Collapse
|
8
|
Grandellis C, Fantino E, Muñiz García MN, Bialer MG, Santin F, Capiati DA, Ulloa RM. StCDPK3 Phosphorylates In Vitro Two Transcription Factors Involved in GA and ABA Signaling in Potato: StRSG1 and StABF1. PLoS One 2016; 11:e0167389. [PMID: 27907086 PMCID: PMC5131985 DOI: 10.1371/journal.pone.0167389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022] Open
Abstract
Calcium-dependent protein kinases, CDPKs, decode calcium (Ca2+) transients and initiate downstream responses in plants. In order to understand how CDPKs affect plant physiology, their specific target proteins must be identified. In tobacco, the bZIP transcription factor Repression of Shoot Growth (NtRSG) that modulates gibberellin (GA) content is a specific target of NtCDPK1. StCDPK3 from potato is homologous (88% identical) to NtCDPK1 even in its N-terminal variable domain. In this work, we observe that NtRSG is also phosphorylated by StCDPK3. The potato RSG family of transcription factors is composed of three members that share similar features. The closest homologue to NtRSG, which was named StRSG1, was amplified and sequenced. qRT-PCR data indicate that StRSG1 is mainly expressed in petioles, stems, lateral buds, and roots. In addition, GA treatment affected StRSG1 expression. StCDPK3 transcripts were detected in leaves, petioles, stolons, roots, and dormant tubers, and transcript levels were modified in response to GA. The recombinant StRSG1-GST protein was produced and tested as a substrate for StCDPK3 and StCDPK1. 6xHisStCDPK3 was able to phosphorylate the potato StRSG1 in a Ca2+-dependent way, while 6xHisStCDPK1 could not. StCDPK3 also interacts and phosphorylates the transcription factor StABF1 (ABRE binding factor 1) involved in ABA signaling, as shown by EMSA and phosphorylation assays. StABF1 transcripts were mainly detected in roots, stems, and stolons. Our data suggest that StCDPK3 could be involved in the cross-talk between ABA and GA signaling at the onset of tuber development.
Collapse
Affiliation(s)
- Carolina Grandellis
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
| | - Elisa Fantino
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
| | - María Noelia Muñiz García
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
| | - Magalí Graciela Bialer
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
| | - Franco Santin
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
| | - Daniela Andrea Capiati
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
- Biochemistry Department, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Rita María Ulloa
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
- Biochemistry Department, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|