1
|
Ohnuma M, Ito K, Hamada K, Takeuchi A, Asano K, Noda T, Watanabe A, Hokura A, Teramura H, Takahashi F, Mutsuro-Aoki H, Tamura K, Shimada H. Peculiar properties of tuber starch in a potato mutant lacking the α-glucan water dikinase 1 gene GWD1 created by targeted mutagenesis using the CRISPR/dMac3-Cas9 system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:219-227. [PMID: 38420564 PMCID: PMC10901162 DOI: 10.5511/plantbiotechnology.23.0823a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/23/2023] [Indexed: 03/02/2024]
Abstract
Glucose chains in starch are phosphorylated and contribute to structural stabilization. Phosphate groups contained in starch also play a role in retaining moisture. α-Glucan water dikinase 1 (GWD1) is involved in the phosphorylation of glucose chains in starch. In this study, we generated potato mutants of the GWD1 gene using the CRISPR/dMac3-Cas9 system. Observation of the phenotypes of the GWD1-deficient mutants revealed their physiological roles in tuber starch formation. The 4-allele mutants showed growth retardation and a delay in tuber formation. A significant decrease in phosphorus content was detected in the tuber starch of the gwd1 mutant. This mutant starch showed a higher amylose content than the wild-type starch, whereas its gelatinization temperature was slightly lower than that of the WT starch. The peak viscosity of the mutant starch was lower than that of the WT starch. These observations revealed that the starch of the gwd1 mutants had peculiar and unique properties compared to those of WT, sbe3 and gbss1 mutant starches. The amount of tissue-released water due to freeze-thawing treatment was determined on tubers of the gwd1 mutant and compared with those of WT and the other mutants. Significantly less water loss was found in the gwd1, sbe3 and gbss1 mutant tubers than in the WT tubers. Our results indicate that the GWD1 gene is not only important for potato growth, but also largely effective for the traits of tuber starch.
Collapse
Affiliation(s)
- Mariko Ohnuma
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Kosuke Ito
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Karin Hamada
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Ami Takeuchi
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Kenji Asano
- Division of Large-Scale Upland Farming Research, Field Crop Breeding Group, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Kasai, Hokkaido 082-0081, Japan
| | - Takahiro Noda
- Division of Large-Scale Upland Farming Research, Field Crop Breeding Group, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Kasai, Hokkaido 082-0081, Japan
| | - Akira Watanabe
- Department of Applied Chemistry, Tokyo Denki University, Adachi, Tokyo 120-8551, Japan
| | - Akiko Hokura
- Department of Applied Chemistry, Tokyo Denki University, Adachi, Tokyo 120-8551, Japan
| | - Hiroshi Teramura
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Fuminori Takahashi
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Hiromi Mutsuro-Aoki
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| |
Collapse
|
2
|
Starch and Glycogen Analyses: Methods and Techniques. Biomolecules 2020; 10:biom10071020. [PMID: 32660096 PMCID: PMC7407607 DOI: 10.3390/biom10071020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/16/2023] Open
Abstract
For complex carbohydrates, such as glycogen and starch, various analytical methods and techniques exist allowing the detailed characterization of these storage carbohydrates. In this article, we give a brief overview of the most frequently used methods, techniques, and results. Furthermore, we give insights in the isolation, purification, and fragmentation of both starch and glycogen. An overview of the different structural levels of the glucans is given and the corresponding analytical techniques are discussed. Moreover, future perspectives of the analytical needs and the challenges of the currently developing scientific questions are included.
Collapse
|
3
|
Zhang YF, Tang YL, Jiang MJ, Ji Q. Effect of glgB/GASBD fusion gene expression on increased branching degree of potato starch and changes in physicochemical properties of starch. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1734614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yun-Feng Zhang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
| | - Yu-Ling Tang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
| | - Meng-Jun Jiang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
| | - Qin Ji
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
4
|
Tian Y, Xu W, Zhang W, Zhang T, Guang C, Mu W. Amylosucrase as a transglucosylation tool: From molecular features to bioengineering applications. Biotechnol Adv 2018; 36:1540-1552. [PMID: 29935268 DOI: 10.1016/j.biotechadv.2018.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/10/2018] [Accepted: 06/15/2018] [Indexed: 02/04/2023]
Abstract
Amylosucrase (EC 2.4.1.4, ASase), an outstanding sucrose-utilizing transglucosylase in the glycoside hydrolase family 13, can produce glucans with only α-1,4 linkages. Generally, on account of a double-displacement mechanism, ASase can catalyze polymerization, isomerization, and hydrolysis reactions with sucrose as the sole substrate, and has transglycosylation capacity to attach glucose molecules from sucrose to extra glycosyl acceptors. Based on extensive enzymology research, this review presents the characteristics of various ASases, including their microbial metabolism, preparation, and enzymatic properties, and exhibits structure-based strategies in the improvement of activity, specificity, and thermostability. As a vital transglucosylation tool of producing sugars, carbohydrate-based bioactive compounds, and materials, the bioengineering applications of ASases are also systematically summarized.
Collapse
Affiliation(s)
- Yuqing Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Huang XF, Nazarian F, Vincken JP, Visser RGF, Trindade LM. A tandem CBM25 domain of α-amylase from Microbacterium aurum as potential tool for targeting proteins to starch granules during starch biosynthesis. BMC Biotechnol 2017; 17:86. [PMID: 29202734 PMCID: PMC5715617 DOI: 10.1186/s12896-017-0406-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/27/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Starch-binding domains from carbohydrate binding module family 20 have been used as a tool for starch engineering. Previous studies showed that expression of starch binding domain fusion proteins in planta resulted in modified starch granule structures and physicochemical properties. However, although 13 carbohydrate binding module families have been reported to contain starch-binding domains, only starch-binding domains from carbohydrate binding module family 20 have been well studied and introduced into plants successfully. In this study, two fragments, the tandem CBM25 domain and the tandem CBM25 with multiple fibronectin type III (FN3) domains of the α-amylase enzyme from Microbacterium aurum, were expressed in the tubers of a wild type potato cultivar (cv. Kardal) and an amylose-free (amf) potato mutant. RESULTS The (CBM25)2 and FN3 protein were successfully accumulated in the starch granules of both Kardal and amf transformants. The accumulation of (CBM25)2 protein did not result in starch morphological alterations in Kardal but gave rise to rough starch granules in amf, while the FN3 resulted in morphological changes of starch granules (helical starch granules in Kardal and rough surface granules in amf) but only at a very low frequency. The starches of the different transformants did not show significant differences in starch size distribution, apparent amylose content, and physico-chemical properties in comparison to that of untransformed controls. CONCLUSION These results suggest that the starch-binding domains from carbohydrate binding module family 25 can be used as a novel tool for targeting proteins to starch granules during starch biosynthesis without side-effects on starch morphology, composition and properties.
Collapse
Affiliation(s)
- Xing-Feng Huang
- Wageningen University and Research, Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Present address: Department of Chemical and Biological Engineering, Colorado State University, Campus delivery 1370, Fort Collins, CO 80523 USA
| | - Farhad Nazarian
- Wageningen University and Research, Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Present address: Agronomy and plant breeding group, Faculty of Agriculture, University of Lorestan, P.O.Box 465, Khorramabad, Iran
| | - Jean-Paul Vincken
- Wageningen University and Research, Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Present address: Laboratory of Food Chemistry, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Richard G. F. Visser
- Wageningen University and Research, Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Luisa M. Trindade
- Wageningen University and Research, Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
6
|
Study on the synthesis and physicochemical properties of starch acetate with low substitution under microwave assistance. Int J Biol Macromol 2017; 103:316-326. [DOI: 10.1016/j.ijbiomac.2017.05.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/20/2017] [Accepted: 05/13/2017] [Indexed: 01/20/2023]
|
7
|
Xu X, Dees D, Huang XF, Visser RG, Trindade LM. Heterologous expression of two Arabidopsis
starch dikinases in potato. STARCH-STARKE 2017. [DOI: 10.1002/star.201600324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xuan Xu
- Wageningen UR Plant Breeding; Wageningen University and Research; Wageningen The Netherlands
- Key Laboratory of Horticultural Plant Biology, National Centre for Vegetable Improvement (Central China), Ministry of Education; Huazhong Agricultural University; Wuhan P.R. China
| | - Dianka Dees
- Wageningen UR Plant Breeding; Wageningen University and Research; Wageningen The Netherlands
| | - Xing-Feng Huang
- Wageningen UR Plant Breeding; Wageningen University and Research; Wageningen The Netherlands
| | - Richard G.F. Visser
- Wageningen UR Plant Breeding; Wageningen University and Research; Wageningen The Netherlands
| | - Luisa M. Trindade
- Wageningen UR Plant Breeding; Wageningen University and Research; Wageningen The Netherlands
| |
Collapse
|
8
|
Engineering Potato Starch with a Higher Phosphate Content. PLoS One 2017; 12:e0169610. [PMID: 28056069 PMCID: PMC5215930 DOI: 10.1371/journal.pone.0169610] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/17/2016] [Indexed: 11/19/2022] Open
Abstract
Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (de)phosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal). Interestingly, expression of an (engineered) laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf). Modified starches exhibited altered granule morphology and size compared to the control. About 20–30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself.
Collapse
|
9
|
Xu X, Dechesne A, Visser RGF, Trindade LM. Expression of an (Engineered) 4,6-α-Glucanotransferase in Potato Results in Changes in Starch Characteristics. PLoS One 2016; 11:e0166981. [PMID: 27911907 PMCID: PMC5135068 DOI: 10.1371/journal.pone.0166981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022] Open
Abstract
Starch structure strongly influences starch physicochemical properties, determining the end uses of starch in various applications. To produce starches with novel structure and exploit the mechanism of starch granule formation, an (engineered) 4, 6-α-glucanotransferase (GTFB) from Lactobacillus reuteri 121 was introduced into two potato genetic backgrounds: amylose-containing line Kardal and amylose-free mutant amf. The resulting starches showed severe changes in granule morphology regardless of genetic backgrounds. Modified starches from amf background exhibited a significant increase in granule size and starch phosphate content relative to the control, while starches from Kardal background displayed a higher digestibility, but did not show changes in granule size and phosphate content. Transcriptome analysis revealed the existence of a mechanism to restore the regular packing of double helices in starch granules, which possibly resulted in the removal of novel glucose chains potentially introduced by the (engineered) GTFB. This amendment mechanics would also explain the difficulties to detect alterations in starch fine structure in the transgenic lines.
Collapse
Affiliation(s)
- Xuan Xu
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700, AJ, Wageningen. The Netherlands
- National Centre for Vegetable Improvement (Central China), Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Annemarie Dechesne
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700, AJ, Wageningen. The Netherlands
| | - Richard G. F. Visser
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700, AJ, Wageningen. The Netherlands
| | - Luisa M. Trindade
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700, AJ, Wageningen. The Netherlands
- * E-mail:
| |
Collapse
|