1
|
Kim ED, Torii KU. Stomatal cell fate commitment via transcriptional and epigenetic control: Timing is crucial. PLANT, CELL & ENVIRONMENT 2024; 47:3288-3298. [PMID: 37996970 DOI: 10.1111/pce.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023]
Abstract
The formation of stomata presents a compelling model system for comprehending the initiation, proliferation, commitment and differentiation of de novo lineage-specific stem cells. Precise, timely and robust cell fate and identity decisions are crucial for the proper progression and differentiation of functional stomata. Deviations from this precise specification result in developmental abnormalities and nonfunctional stomata. However, the molecular underpinnings of timely cell fate commitment have just begun to be unravelled. In this review, we explore the key regulatory strategies governing cell fate commitment, emphasizing the distinctions between embryonic and postembryonic stomatal development. Furthermore, the interplay of transcription factors and cell cycle machineries is pivotal in specifying the transition into differentiation. We aim to synthesize recent studies utilizing single-cell as well as cell-type-specific transcriptomics, epigenomics and chromatin accessibility profiling to shed light on how master-regulatory transcription factors and epigenetic machineries mutually influence each other to drive fate commitment and maintenance.
Collapse
Affiliation(s)
- Eun-Deok Kim
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute of Transformative Biomolecules, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Zuch DT, Herrmann A, Kim ED, Torii KU. Cell Cycle Dynamics during Stomatal Development: Window of MUTE Action and Ramification of Its Loss-of-Function on an Uncommitted Precursor. PLANT & CELL PHYSIOLOGY 2023; 64:325-335. [PMID: 36609867 PMCID: PMC10016323 DOI: 10.1093/pcp/pcad002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Plants develop in the absence of cell migration. As such, cell division and differentiation need to be coordinated for functional tissue formation. Cellular valves on the plant epidermis, stomata, are generated through a stereotypical sequence of cell division and differentiation events. In Arabidopsis, three master regulatory transcription factors, SPEECHLESS (SPCH), MUTE and FAMA, sequentially drive initiation, proliferation and differentiation of stomata. Among them, MUTE switches the cell cycle mode from proliferative asymmetric division to terminal symmetric division and orchestrates the execution of the single symmetric division event. However, it remains unclear to what extent MUTE regulates the expression of cell cycle genes through the symmetric division and whether MUTE accumulation itself is gated by the cell cycle. Here, we show that MUTE directly upregulates the expression of cell cycle components throughout the terminal cell cycle phases of a stomatal precursor, not only core cell cycle engines but also check-point regulators. Time-lapse live imaging using the multicolor Plant Cell Cycle Indicator revealed that MUTE accumulates up to the early G2 phase, whereas its successor and direct target, FAMA, accumulate at late G2 through terminal mitosis. In the absence of MUTE, meristemoids fail to differentiate and their G1 phase elongates as they reiterate asymmetric divisions. Together, our work provides the framework of cell cycle and master regulatory transcription factors to coordinate a single symmetric cell division and suggests a mechanism for the eventual cell cycle arrest of an uncommitted stem-cell-like precursor at the G1 phase.
Collapse
Affiliation(s)
| | | | - Eun-Deok Kim
- Department of Molecular Biosciences, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
- Howard Hughes Medical Institute, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | | |
Collapse
|
3
|
Kim ED, Dorrity MW, Fitzgerald BA, Seo H, Sepuru KM, Queitsch C, Mitsuda N, Han SK, Torii KU. Dynamic chromatin accessibility deploys heterotypic cis/trans-acting factors driving stomatal cell-fate commitment. NATURE PLANTS 2022; 8:1453-1466. [PMID: 36522450 PMCID: PMC9788986 DOI: 10.1038/s41477-022-01304-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/28/2022] [Indexed: 05/12/2023]
Abstract
Chromatin architecture and transcription factor (TF) binding underpin cell-fate specification during development, but their mutual regulatory relationships remain unclear. Here we report an atlas of dynamic chromatin landscapes during stomatal cell-lineage progression, in which sequential cell-state transitions are governed by lineage-specific bHLH TFs. Major reprogramming of chromatin accessibility occurs at the proliferation-to-differentiation transition. We discover novel co-cis regulatory elements (CREs) signifying the early precursor stage, BBR/BPC (GAGA) and bHLH (E-box) motifs, where master-regulatory bHLH TFs, SPEECHLESS and MUTE, consecutively bind to initiate and terminate the proliferative state, respectively. BPC TFs complex with MUTE to repress SPEECHLESS expression through a local deposition of repressive histone marks. We elucidate the mechanism by which cell-state-specific heterotypic TF complexes facilitate cell-fate commitment by recruiting chromatin modifiers via key co-CREs.
Collapse
Affiliation(s)
- Eun-Deok Kim
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Bridget A Fitzgerald
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hyemin Seo
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Krishna Mohan Sepuru
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Soon-Ki Han
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Keiko U Torii
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
4
|
The diversity of stomatal development regulation in Callitriche is related to the intrageneric diversity in lifestyles. Proc Natl Acad Sci U S A 2021; 118:2026351118. [PMID: 33782136 PMCID: PMC8040647 DOI: 10.1073/pnas.2026351118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Plant stomata are produced through divisions and differentiation of stem cells, termed meristemoids. During stomatal development, we see diverse patterns of meristemoid behavior among land plant lineages. However, both the ecological significance and the diversification processes of this diversity remain mostly unknown. Here we report that the ecologically diverse genus Callitriche shows unprecedented intrageneric diversity in meristemoid behavior. While meristemoids in terrestrial species of Callitriche undergo a series of asymmetric divisions before differentiation, those in amphibious species skip the divisions and directly differentiate into stomata. The simple shift in the expression times of two key transcription factors underlies these different patterns. This study provides important insights into the evolution and ecological significance of stomatal patterning. Stomata, the gas exchange structures of plants, are formed by the division and differentiation of stem cells, or meristemoids. Although diverse patterns of meristemoid behavior have been observed among different lineages of land plants, the ecological significance and diversification processes of these different patterns are not well understood. Here we describe an intrageneric diversity in the patterns of meristemoid division within the ecologically diverse genus Callitriche (Plantaginaceae). Meristemoids underwent a series of divisions before differentiating into stomata in the terrestrial species of Callitriche, but these divisions did not occur in amphibious species, which can grow in both air and water, in which meristemoids differentiated directly into stomata. These findings imply the adaptive significance of diversity in meristemoid division. Molecular genetic analyses showed that the different expression times of the stomatal key transcription factors SPEECHLESS and MUTE, which maintain and terminate the meristemoid division, respectively, underlie the different division patterns of meristemoids. Unlike terrestrial species, amphibious species prematurely expressed MUTE immediately after expressing SPEECHLESS, which corresponded to their early termination of stomatal division. By linking morphological, ecological, and genetic elements of stomatal development, this study provides significant insight that should aid ecological evolutionary developmental biology investigations of stomata.
Collapse
|
5
|
Ram C, Annamalai M, Koramutla MK, Kansal R, Arora A, Jain PK, Bhattacharya R. Characterization of STP4 promoter in Indian mustard Brassica juncea for use as an aphid responsive promoter. Biotechnol Lett 2020; 42:2013-2033. [PMID: 32676799 DOI: 10.1007/s10529-020-02961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Brassica juncea, a major oilseed crop, suffers substantial yield losses due to infestation by mustard aphids (Lipaphis erysimi). Unavailability of resistance genes within the accessible gene pool underpins significance of the transgenic strategy in developing aphid resistance. In this study, we aimed for the identification of an aphid-responsive promoter from B. juncea, based on the available genomic resources. RESULTS A monosaccharide transporter gene, STP4 in B. juncea was activated by aphids and sustained increased expression as the aphids colonized the plants. We cloned the upstream intergenic region of STP4 and validated its stand-alone aphid-responsive promoter activity. Further, deletion analysis identified the putative cis-elements important for the aphid responsive promoter activity. CONCLUSION The identified STP4 promoter can potentially be used for driving high level aphid-inducible expression of transgenes in plants. Use of aphid-responsive promoter instead of constitutive promoters can potentially reduce the metabolic burden of transgene-expression on the host plant.
Collapse
Affiliation(s)
- Chet Ram
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Muthuganeshan Annamalai
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Murali Krishna Koramutla
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Rekha Kansal
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Pradeep K Jain
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Ramcharan Bhattacharya
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India.
| |
Collapse
|
6
|
Putarjunan A, Torii KU. Stomagenesis versus myogenesis: Parallels in intrinsic and extrinsic regulation of transcription factor mediated specialized cell-type differentiation in plants and animals. Dev Growth Differ 2016; 58:341-54. [PMID: 27125444 PMCID: PMC11520973 DOI: 10.1111/dgd.12282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 11/01/2024]
Abstract
Although the last common unicellular ancestor of plants and animals diverged several billion years ago, and while having developed unique developmental programs that facilitate differentiation and proliferation specific to plant and animal systems, there still exists a high degree of conservation in the logic regulating these developmental processes within these two seemingly diverse kingdoms. Stomatal differentiation in plants involves a series of orchestrated cell division events mediated by a family of closely related bHLH transcription factors (TFs) to create a pair of mature guard cells. These TFs are in turn regulated by a number of upstream signaling components that ultimately function to achieve lineage specific differentiation and organized tissue patterning on the plant epidermis. The logic involved in the specification of the myogenic differentiation program in animals is intriguingly similar to stomatal differentiation in plants: Closely-related myogenic bHLHs, known as MRFs (Myogenic Regulatory Factors) provide lineage specificity essential for cell-fate determination. These MRFs, similar to the bHLHs in plants, are regulated by several upstream signaling cascades that succinctly regulate each differentiation step, leading to the production of mature muscle fibers. This review aims at providing a perspective on the emerging parallels in the logic employed by key bHLH transcription factors and their upstream signaling components that function to precisely regulate key cell-state transition events in the stomatal as well as myogenic cell lineages.
Collapse
Affiliation(s)
- Aarthi Putarjunan
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Keiko U Torii
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|