1
|
Nhat Nam N, Ngoc Trai N, Phuong Thuy N, Quoc Duy L, Nguyen Tuong Van P, Nguyen TT, Do HDK. The Complete Chloroplast Genome of Erythrina variegata L. (Papilionoideae, Fabaceae). Ecol Evol 2025; 15:e70838. [PMID: 39803188 PMCID: PMC11718322 DOI: 10.1002/ece3.70838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Erythrina variegata L. 1754, a thorny deciduous tree of Fabaceae, contains various chemical compounds such as alkaloids, flavonoids, and triterpenoids and exhibits anti-depressant, anti-inflammatory, and antidiabetic activities. However, genomic data of E. variegata are limited. In this study, the complete chloroplast genome of E. variegata was sequenced and characterized using Illumina sequencing platform. The chloroplast genome of E. variegata was 152,351 bp in length and consisted of a large single copy (82,907 bp), a small single copy (26,309 bp), and two inverted repeat regions (16,826 bp). There were 79 protein-coding genes, 30 transfer RNA genes, and four ribosomal RNA genes. Comparative analysis revealed high conservation of chloroplast genomes among Erythrina species regarding genome size, structure, and gene content. The phylogenetic study also indicated a close relationship between E. variagata and E. sanwicensis. This study provides initial plastome data for further genomic studies examining E. variegata and related species in Fabaceae.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- School of Agriculture and AquacultureTra Vinh UniversityTra Vinh CityVietnam
| | - Nguyen Ngoc Trai
- School of Agriculture and AquacultureTra Vinh UniversityTra Vinh CityVietnam
| | - Nguyen Phuong Thuy
- School of Agriculture and AquacultureTra Vinh UniversityTra Vinh CityVietnam
| | - Le Quoc Duy
- School of Agriculture and AquacultureTra Vinh UniversityTra Vinh CityVietnam
| | | | - Tan Tai Nguyen
- Biotechnology InstituteTra Vinh UniversityTra Vinh CityVietnam
| | - Hoang Dang Khoa Do
- Functional Genomics Research Center, NTT Hi‐Tech InstituteNguyen Tat Thanh UniversityHo Chi Minh CityVietnam
| |
Collapse
|
2
|
Zhu H, Li H. Comprehensive Analysis of the Complete Chloroplast Genome of Cinnamomum daphnoides (Lauraceae), An Endangered Island Endemic Plant. Mol Biotechnol 2024; 66:3514-3525. [PMID: 37934387 DOI: 10.1007/s12033-023-00950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
Cinnamomum daphnoides (Siebold & Zucc 1846) is a rare and endangered island species with a unique Sino-Japanese distribution pattern. However, inormation regarding the species' chloroplast (cp) genome, structural features, and the phylogenetic relationship is still lacking. We utilized high-throughput sequencing technology to assemble and annotate the first cp genome of C. daphnoides (GenBank OR654104), followed by genomic characterization and phylogenetic analysis to fill the gaps in this species' cp genome. Our analysis showed that the cp genome has a quadripartite structure spanning 152,765 bp with a GC content of 39.15%. The genome encodes 126 genes, which include 36 tRNA genes, 8 rRNA genes, and 82 mRNA genes. Specifically, 44 genes are related to photosynthesis, 59 are associated with self-replication, six are other genes, and four have unknown functionality. The Codon usage bias in the genome exhibits a preference for A/U bases. We identified 29 interspaced repeat sequences that belonging to three types of repeat sequences. A total of 217 cpSSR loci were detected with single nucleotide repeats (59.91%) being the most frequent loci, mainly composed of A/T repeats. Our selection pressure analysis revealed that the ycf2 gene experienced strong positive selection (Ka/Ks = 1.81, P > 0.844). Further, we identified three highly variable fragments (psbM, psbT, and ycf1) that can be utilized as specific DNA barcoding markers for species definition and population genetic studies. We conducted boundary analysis, which showed that the structure and gene sequence of the two species were highly conserved. Finally, our phylogenetic analysis supports that C. daphnoides is close to C. cassia in the Cinnamomum genes, indicating that the two species share a common ancestry. Overall, providing genomic information on C. daphnoides will be beneficial for the conservation and utilization of endangered plant genetic resources. It will also serve as a reference for the identification of species and the phylogenetic analysis of Cinnamomum. This information will be useful in future research.
Collapse
Affiliation(s)
- Hong Zhu
- Zhejiang Academy of Forestry, Hangzhou, 310023, China.
| | - Hepeng Li
- Zhejiang Academy of Forestry, Hangzhou, 310023, China
| |
Collapse
|
3
|
Tussipkan D, Shevtsov V, Ramazanova M, Rakhimzhanova A, Shevtsov A, Manabayeva S. Kazakhstan tulips: comparative analysis of complete chloroplast genomes of four local and endangered species of the genus Tulipa L. FRONTIERS IN PLANT SCIENCE 2024; 15:1433253. [PMID: 39600902 PMCID: PMC11588485 DOI: 10.3389/fpls.2024.1433253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
Species of Tulipa are important ornamental plants used for horticultural purposes in various countries, across Asia, Europe, and North Africa. The present study is the first report on typical features of the complete chloroplast genome sequence of four local and endangered species including T. alberti, T. kaufmanniana, T. greigii, and T. dubia from Kazakhstan using Illumina sequencing technology. The comparative analyses revealed that the complete genomes of four species were highly conserved in terms of total genome size (152. 006 bp - 152. 382 bp), including a pair of inverted repeat regions (26. 330 bp - 26. 371 bp), separated by a large single copy region (82.169 bp - 82,378 bp) and a small copy region (17.172 bp -17.260 bp). Total GC content (36.58-36.62 %), gene number (131), and intron length (540 bp - 2620 bp) of 28 genes. The complete genomes of four species showed nucleotide diversity (π =0,003257). The total number of SSR loci was 159 in T. alberti, 158 in T. kaufmanniana, 174 in T. greigii, and 163 in T. dubia. The result indicated that ten CDS genes, namely rpoC2, cemA, rbcL, rpl36, psbH, rps3, rpl22, ndhF, ycf1, and matK, with effective polymorphic simple sequence repeats (SSRs), high sequence variability (SV) ranging from 2.581 to 6.102, and high nucleotide diversity (Pi) of these loci ranging from 0,004 to 0,010. For all intergenic regions longer than 150 bp, twenty one most variable regions were found with high sequence variability (SV) ranging from 4,848 to 11,862 and high nucleotide diversity (Pi) ranging from 0,01599 to 0,01839. Relative synonymous codon usage (RSCU) analysis was used to identify overrepresented and underrepresented codons for each amino acid. Based on the phylogenic analysis, the sequences clustered into four major groups, reflecting distinct evolutionary lineages corresponding to the subgenera Eriostemons, Tulipa, and Orithyia. Notably, T. greigii was distinctively grouped with species from Orithyia and Eriostemons rather than with other Tulipa species, suggesting a unique evolutionary history potentially shaped by geographical isolation or specific ecological pressures. The complete chloroplast genome of the four Tulipa species provides fundamental information for future research studies, even for designing the high number of available molecular markers.
Collapse
Affiliation(s)
- Dilnur Tussipkan
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| | - Vladislav Shevtsov
- Plant Genomics and Bioinformatics Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| | - Malika Ramazanova
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| | - Aizhan Rakhimzhanova
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| | - Alexandr Shevtsov
- Applied Genetics Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| | - Shuga Manabayeva
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana, Kazakhstan
- General Biology and Genomics Department, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| |
Collapse
|
4
|
Cui X, Liu K, Li E, Zhang Z, Dong W. Chloroplast Genomes Evolution and Phylogenetic Relationships of Caragana species. Int J Mol Sci 2024; 25:6786. [PMID: 38928490 PMCID: PMC11203854 DOI: 10.3390/ijms25126786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Caragana sensu lato (s.l.) includes approximately 100 species that are mainly distributed in arid and semi-arid regions. Caragana species are ecologically valuable for their roles in windbreaking and sand fixation. However, the taxonomy and phylogenetic relationships of the genus Caragana are still unclear. In this study, we sequenced and assembled the chloroplast genomes of representative species of Caragana and reconstructed robust phylogenetic relationships at the section level. The Caragana chloroplast genome has lost the inverted repeat region and wascategorized in the inverted repeat loss clade (IRLC). The chloroplast genomes of the eight species ranged from 128,458 bp to 135,401 bp and contained 110 unique genes. All the Caragana chloroplast genomes have a highly conserved structure and gene order. The number of long repeats and simple sequence repeats (SSRs) showed significant variation among the eight species, indicating heterogeneous evolution in Caragana. Selective pressure analysis of the genes revealed that most of the protein-coding genes evolved under purifying selection. The phylogenetic analyses indicated that each section forms a clade, except the section Spinosae, which was divided into two clades. This study elucidated the evolution of the chloroplast genome within the widely distributed genus Caragana. The detailed information obtained from this study can serve as a valuable resource for understanding the molecular dynamics and phylogenetic relationships within Caragana.
Collapse
Affiliation(s)
| | | | | | - Zhixiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.C.); (K.L.); (E.L.)
| | - Wenpan Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.C.); (K.L.); (E.L.)
| |
Collapse
|
5
|
Wang L, Zhang S, Li H, Wang S. The complete plastome and phylogenetic analysis of Commelina benghalensis L.1753 (Commelinaceae). Mitochondrial DNA B Resour 2024; 9:610-615. [PMID: 38737392 PMCID: PMC11086016 DOI: 10.1080/23802359.2024.2347508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/19/2024] [Indexed: 05/14/2024] Open
Abstract
Commelina benghalensis L. 1753, a member of the Commelinaceae family, holds significant medicinal and culinary value. This study represents the first documentation of the sequencing and assembly of the entire plastome of C. benghalensis. The genome spans a total length of 160,663 bp, exhibiting a conventional quadripartite architecture that comprises a large single-copy (LSC) region (87,750 bp), a small single-copy (SSC) region (18,417 bp), and two inverted repeats (IR) regions (both 27,248 bp). In its entirety, the C. benghalensis plastome encompasses 129 genes (with 108 being unique), incorporating 77 individual protein-coding genes, 37 unique tRNA genes, and four unique rRNA genes. Phylogenetic analysis revealed a close resemblance between C. benghalensis and C. communis. The sequencing of this plastome stands to expedite the development of molecular markers and significantly contribute to genetic assays involving this distinctive plant.
Collapse
Affiliation(s)
- Liqiang Wang
- College of Pharmacy, Heze University, Heze, Shandong Province, P. R. China
| | - Shuming Zhang
- College of Pharmacy, Heze University, Heze, Shandong Province, P. R. China
| | - Hongqin Li
- College of Pharmacy, Heze University, Heze, Shandong Province, P. R. China
| | - Shu Wang
- College of Pharmacy, Heze University, Heze, Shandong Province, P. R. China
| |
Collapse
|
6
|
Mahapatra K, Mukherjee A, Suyal S, Dar MA, Bhagavatula L, Datta S. Regulation of chloroplast biogenesis, development, and signaling by endogenous and exogenous cues. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:167-183. [PMID: 38623168 PMCID: PMC11016055 DOI: 10.1007/s12298-024-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
Chloroplasts are one of the defining features in most plants, primarily known for their unique property to carry out photosynthesis. Besides this, chloroplasts are also associated with hormone and metabolite productions. For this, biogenesis and development of chloroplast are required to be synchronized with the seedling growth to corroborate the maximum rate of photosynthesis following the emergence of seedlings. Chloroplast biogenesis and development are dependent on the signaling to and from the chloroplast, which are in turn regulated by several endogenous and exogenous cues. Light and hormones play a crucial role in chloroplast maturation and development. Chloroplast signaling involves a coordinated two-way connection between the chloroplast and nucleus, termed retrograde and anterograde signaling, respectively. Anterograde and retrograde signaling are involved in regulation at the transcriptional level and downstream modifications and are modulated by several metabolic and external cues. The communication between chloroplast and nucleus is essential for plants to develop strategies to cope with various stresses including high light or high heat. In this review, we have summarized several aspects of chloroplast development and its regulation through the interplay of various external and internal factors. We have also discussed the involvement of chloroplasts as sensors of various external environment stress factors including high light and temperature, and communicate via a series of retrograde signals to the nucleus, thus playing an essential role in plants' abiotic stress response.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Arpan Mukherjee
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Shikha Suyal
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Mansoor Ali Dar
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | | | - Sourav Datta
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| |
Collapse
|
7
|
Xu N, Du X, Zhang XX, Yang HL. The complete chloroplast genome of Salix lindleyana (salicaceae), a plateau plant species. Mitochondrial DNA B Resour 2023; 8:877-881. [PMID: 37614527 PMCID: PMC10443960 DOI: 10.1080/23802359.2023.2246675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
Salix lindleyana Wallich ex Andersson 1851 is a species of genus Salix which mainly grows on mountains above 3000 m at sea level in Qinghai-Tibetan Plateau (including the Himalayas and Hengduan Mountains). To determine its phylogenetic position within Salix, we reconstructed S. lindleyana complete chloroplast (cp) genome sequence by de novo assembly using whole-genome sequencing data. The completed chloroplast genome was 155,304 bp, with a total GC content of 36.7%. It had a very typical tetrad structure, including a large single-copy (LSC) region of 84,539 bp, a small single-copy (SSC) region of 16,161 bp, and two inverted repeats (IR) regions of 27,302 bp. A total of 132 functional genes were distributed in the chloroplast genome, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis showed that S. lindleyana was clustered with Salix dasyclados Wimmer 1849 and Salix variegata Franchet 1887. The complete chloroplast genome of S. lindleyana provides potential genetic resources for further phylogenetic studies.
Collapse
Affiliation(s)
- Nan Xu
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration; Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xin Du
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration; Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiu-Xing Zhang
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration; Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hai-Ling Yang
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration; Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Hu K, Sun XQ, Chen M, Lu RS. Low-coverage whole genome sequencing of eleven species/subspecies in Dioscorea sect. Stenophora (Dioscoreaceae): comparative plastome analyses, molecular markers development and phylogenetic inference. FRONTIERS IN PLANT SCIENCE 2023; 14:1196176. [PMID: 37346115 PMCID: PMC10281252 DOI: 10.3389/fpls.2023.1196176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023]
Abstract
Dioscorea sect. Stenophora (Dioscoreaceae) comprises about 30 species that are distributed in the temperate and subtropical regions of the Northern Hemisphere. Despite being evolutionarily "primitive" and medically valuable, genomic resources and molecular studies of this section are still scarce. Here, we conducted low-coverage whole genome sequencing of 11 Stenophora species/subspecies to retrieve their plastome information (whole plastome characteristics, plastome-divergent hotspots, plastome-derived SSRs, etc.) and polymorphic nuclear SSRs, as well as performed comparative plastome and phylogenetic analyses within this section. The plastomes of Stenophora species/subspecies ranged from 153,691 bp (D. zingiberensis) to 154,149 bp (D. biformifolia) in length, and they all contained the same 114 unique genes. All these plastomes were highly conserved in gene structure, gene order and GC content, although variations at the IR/SC borders contributed to the whole length differences among them. The number of plastome-derived SSRs among Stenophora species/subspecies varied from 74 (D. futschauensis) to 93 (D. zingiberensis), with A/T found to be the most frequent one. Seven highly variable regions and 12 polymorphic nuclear SSRs were identified in this section, thereby providing important information for further taxonomical, phylogenetic and population genetic studies. Phylogenomic analyses based on whole plastome sequences and 80 common protein coding genes strongly supported D. biformifolia and D. banzhuana constituted the successive sister species to the remaining sampled species, which could be furtherly divided into three clades. Overall, this study provided a new perspective for plastome evolution of Stenophora, and proved the role of plastome phylogenomic in improving the phylogenetic resolution in this section. These results also provided an important reference for the protection and utilization of this economically important section.
Collapse
Affiliation(s)
- Ke Hu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing, China
| | - Xiao-Qin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing, China
| | - Min Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing, China
| | - Rui-Sen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing, China
| |
Collapse
|
9
|
Mu Z, Zhang Y, Zhang B, Cheng Y, Shang F, Wang H. Intraspecific Chloroplast Genome Variation and Domestication Origins of Major Cultivars of Styphnolobium japonicum. Genes (Basel) 2023; 14:1156. [PMID: 37372336 DOI: 10.3390/genes14061156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Styphnolobium japonicum is a significant resource of ornamental and medicinal plants. In this study, we employed high-throughput sequencing to assemble nine chloroplast genomes of S. japonicum. We compared and reconstructed the phylogenetic relationships of these genomes, along with three publicly available chloroplast genomes. Our results showed that the length of the 12 S. japonicum chloroplast genomes ranged from 158,613 bp to 158,837 bp, all containing 129 unique functional genes. The genetic diversity within S. japonicum chloroplast genomes was relatively low, with π = 0.00029, Theta-W = 0.00028, and an indel frequency of 0.62 indels/1 kb. Among the four regions, the SSC region exhibited the highest genetic diversity and indel frequency, while the IR region had the lowest. Non-coding regions displayed greater genetic variation compared to coding regions, with a few highly variable regions identified. The phylogenetic tree constructed revealed that the major cultivars of S. japonicum originated from two genetic 'sources. S. japonicum 'JinhuaiJ2' had an independent origin and showed close relatedness to S. japonicum var. violacea, S. japonicum var. japonicum, and S. japonicum f. oligophylla. On the other hand, other major cultivars shared a common genetic origin and were closely related to S. japonicum f. pendula. This study highlights the variability of chloroplast genomes within S. japonicum and provides insights into the genetic origins of major cultivars and their relationships with different varieties and forma.
Collapse
Affiliation(s)
- Zhiqiang Mu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yu Zhang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Bin Zhang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yueqin Cheng
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Fude Shang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongwei Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
10
|
Li Q, Chen X, Yang D, Xia P. Genetic relationship of Pleione based on the chloroplast genome. Gene 2023; 858:147203. [PMID: 36646186 DOI: 10.1016/j.gene.2023.147203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Pleione (Orchidaceae) is a very famous horticultural plant with a high international reputation for its unique flower shape and abundant color. The small difference in morphological characteristics among Pleione species caused by weak reproductive isolation and easy hybridization makes the taxonomic status of individual species very confusing. Chloroplast (cp) genome information is of great significance for the study of plant phylogeny and taxonomy. In this study, the cp genomes of Pleione were sequenced and the complete cp structure and sequence characteristics of 19 species were compared and analyzed. The cp genome of Pleione species exhibited a conserved tetrad structure and each species encoded 135 protein-coding genes, 38 tRNA and 8 RNA genes. The cp genome sizes of 19 Pleione were 157964-159269 bp and the length of LSC, SSC and IR were 85953-87172 bp, 18499-18712 bp, 26459-26756 bp, respectively. Palindromic and forward repeats accounted for a high proportion and the SSRs were mainly mononucleotide repeats in Pleione. Analysis of chloroplast sequence differences indicated that the differences in coding regions were smaller than those in non-coding regions, and the variation in LSC and SSC regions was greater than that in IR regions. Phylogenetic analysis showed that all Pleione species inferred from the cp genome were clustered together and received high support. However, the genetic relationship of Pleione plants is different from the current update system of this genus. Therefore, the demarcation of Pleione interspecific relationships still needs further investigation due to the lack of sufficient evidence. The cp genome serves as valuable information for the identification of Pleione species and the study of phylogenetic relationships.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiang Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China..
| |
Collapse
|
11
|
Li H, Tahir ul Qamar M, Yang L, Liang J, You J, Wang L. Current Progress, Applications and Challenges of Multi-Omics Approaches in Sesame Genetic Improvement. Int J Mol Sci 2023; 24:3105. [PMID: 36834516 PMCID: PMC9965044 DOI: 10.3390/ijms24043105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Sesame is one of the important traditional oil crops in the world, and has high economic and nutritional value. Recently, due to the novel high throughput sequencing techniques and bioinformatical methods, the study of the genomics, methylomics, transcriptomics, proteomics and metabonomics of sesame has developed rapidly. Thus far, the genomes of five sesame accessions have been released, including white and black seed sesame. The genome studies reveal the function and structure of the sesame genome, and facilitate the exploitation of molecular markers, the construction of genetic maps and the study of pan-genomes. Methylomics focus on the study of the molecular level changes under different environmental conditions. Transcriptomics provide a powerful tool to study abiotic/biotic stress, organ development, and noncoding RNAs, and proteomics and metabonomics also provide some support in studying abiotic stress and important traits. In addition, the opportunities and challenges of multi-omics in sesame genetics breeding were also described. This review summarizes the current research status of sesame from the perspectives of multi-omics and hopes to provide help for further in-depth research on sesame.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Muhammad Tahir ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Junchao Liang
- Jiangxi Province Key Laboratory of Oil Crops Biology, Crop Research Institute, Nanchang Branch of National Center of Oil Crops Improvement, Jiangxi Academy of Agricultural Sciences, Nanchang 330000, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
12
|
Zhang X, Yang H, Wu B, Chen H. The chloroplast genome of the Iris japonica Thunberg (Butterfly flower) reveals the genomic and evolutionary characteristics of Iris species. Mitochondrial DNA B Resour 2022; 7:1776-1782. [PMID: 36245810 PMCID: PMC9559474 DOI: 10.1080/23802359.2022.2118000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iris japonica Thunberg is one of the horticultural species belonging to the Iris genus and Iridaceae family. Previous studies have revealed its hepatoprotective activity and ornamental values. However, little genetic and genomic information about this species is available. Here, to decipher the chloroplast genome and reveal its evolutionary characteristics, we sequenced, de novo assembled, and comprehensively analyzed the chloroplast genome of I. japonica. The genome was 152,453 bp in length and displayed a circular structure with a large single-copy region, a small single-copy region, and two inverted repeat regions. It contained 131 genes, including 85 protein-coding genes, eight ribosomal RNA genes, and 38 transfer RNA genes. We also identified 23 microsatellite repeat sequences, 34 tandem repeat sequences, and 60 dispersed repeat sequences in the chloroplast genome of I. japonica. Sequence divergence analyses of the chloroplast genomes of 20 Iris species revealed that the top four most highly variable regions were ndhC-trnV-UAC, rpl22-rps19, rps16-trnQ-UUG, and trnG-UCC-trnR-UCU. Phylogenetic analysis showed that I. japonica was most closely related to I. tectorum. This study reported a new chloroplast genome of I. japonica and performed comparative analyses of 20 Iris chloroplast genomes. The results would facilitate the evolutionary research and development of molecular markers for Iris species.
Collapse
Affiliation(s)
- Xinyi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Heyu Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China,Bin Wu Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing100093, P.R. China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China,CONTACT Haimei Chen
| |
Collapse
|
13
|
Popov VN, Syromyatnikov MY, Franceschi C, Moskalev AA, Krutovsky KV, Krutovsky KV. Genetic mechanisms of aging in plants: What can we learn from them? Ageing Res Rev 2022; 77:101601. [PMID: 35278719 DOI: 10.1016/j.arr.2022.101601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 12/18/2022]
Abstract
Plants hold all records in longevity. Their aging is a complex process. In the presented review, we analyzed published data on various aspects of plant aging with focus on any inferences that could shed a light on aging in animals and help to fight it in human. Plant aging can be caused by many factors, such as telomere depletion, genomic instability, loss of proteostasis, changes in intercellular interaction, desynchronosis, autophagy misregulation, epigenetic changes and others. Plants have developed a number of mechanisms to increase lifespan. Among these mechanisms are gene duplication ("genetic backup"), the active work of telomerases, abundance of meristematic cells, capacity of maintaining the meristems permanently active and continuous activity of phytohormones. Plant aging usually occurs throughout the whole perennial life, but could be also seasonal senescence. Study of causes for seasonal aging can also help to uncover the mechanisms of plant longevity. The influence of different factors such as microbiome communities, glycation, alternative oxidase activity, mitochondrial dysfunction on plant longevity was also reviewed. Adaptive mechanisms of long-lived plants are considered. Further comparative study of the mechanisms underlying longevity of plants is necessary. This will allow us to reach a potentially new level of understanding of the aging process of plants.
Collapse
|
14
|
Chloroplast Genome Evolution and Species Identification of Styrax (Styracaceae). BIOMED RESEARCH INTERNATIONAL 2022; 2022:5364094. [PMID: 35252450 PMCID: PMC8893999 DOI: 10.1155/2022/5364094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/11/2022] [Indexed: 01/21/2023]
Abstract
The genus Styrax L. consists of approximately 130 species distributed in the Americas, eastern Asia, and the Mediterranean region. The phylogeny and evolutionary history of this genus are not clear. Knowledge of the phylogenetic relationships and the method for species identification will be critical for the evolution of this genus. In this study, we sequenced the chloroplast genome of 17 Styrax samples and added 17 additional chloroplast genome sequences from GenBank. The data were used to investigate chloroplast genome evolution, infer phylogenetic relationships, and access the species identification rate within Styrax. The Styrax chloroplast genome contains typical quadripartite structures, ranging from 157,641 bp to 159,333 bp. The chloroplast genome contains 114 unique genes. The P distance among the Styrax species ranged from 0.0003 to 0.00611. Seventeen small inversions and SSR sites were discovered in the Styrax chloroplast genome. By comparing with the chloroplast genome sequences, six mutation hotspots were identified, and the markers ycf1b and trnT-trnL were identified as the best Styrax-specific DNA barcodes. The specific barcodes and superbarcode exhibited higher discriminatory power than universal barcodes. Chloroplast phylogenomic results improved the resolution of the phylogenetic relationships of Styrax compared to previous analyses.
Collapse
|
15
|
Milovanov A, Savenkova D, Elisyutikova A, Khachumov V, Troshin L. Chloroplast genomes of Vitis sylvestris Gmel. samples from Damanskaya population of the Krasnodar region. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225302001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This article presents the structures of chloroplast genomes of three Vitis sylvestris Gmel. samples from Damanskaya population of the Krasnodar Territory. An expedition to the place where wild forest grapevine grows was made. After that, the selected leaves served as a source of chloroplasts. DNA was isolated from them and DNA libraries were prepared and sequenced. Genome assembly was carried out after selection of the most suitable reference sample at coverage of 35.0x. The genomes ranged in size from 159,900 to 160,887. Aligned chloroplast genomes were annotated with GeSeq and GeneMark.hmm. OGDRAW was used to visualize the structure of the genomes. GenBank search allowed to determine their belonging to V. sylvestris species. At the same time, a comparison of the genomes with each other showed the presence of minor differences in their structure.
Collapse
|
16
|
Zhou J, Du Q, Jiang M, Liu S, Wang L, Chen H, Wang B, Liu C. Characterization and comparative analysis of the plastome sequence from Justicia ventricosa (Lamiales: Acanthaceae). Mitochondrial DNA B Resour 2021; 6:2896-2902. [PMID: 34604529 PMCID: PMC8480419 DOI: 10.1080/23802359.2021.1922099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Justicia ventricosa is a characteristic ethnic herb commonly used to treat Orthopedic pains. Here, to confirm its phylogenetic position and to develop molecular markers that can distinguish different Justicia species, we obtained and analyzed the plastome of Justicia ventricosa. The plastome was sequenced using the Illumina HiSeq sequencing platform, assembled with NOVOPlasty, and annotated with CPGAVAS2. The genome has a circular structure of 149,700 bp, containing a large single-copy region of 82,324 bp, a small single-copy region of 17,260 bp, and two reverse repeat regions of 25,058 bp each. It encodes 112 unique genes, including 76 protein-coding genes, eight ribosomal RNA genes, and 28 transfer RNA genes. Twenty cis-splicing genes were found. In total, we predicted 19 microsatellite repeats and 13 tandem repeat sequences. For distributed repeats, four were palindrome repeats and five were direct repeats. To find the highly variable intergenic spacer (IGS) regions, we calculated the K2P distances for IGS regions from four Justicia species. The K2P values ranged from 6.11 to 57.82. The largest K2P distances were found for ccsA-ndhD, petB-petD, psbK-psbI, and ycf4-cemA. Phylogenetic analysis results showed that J. ventricosa was most closely related to J. leptostachya. To determine how Justicia species adapt to the environment, we performed selection pressure analysis. Nine genes were found to have undergone positive selection. Lastly, we performed a genome-wise DNA barcode prediction, seven pairs of primers were found. The results provide valuable information that can be used for molecular marker development and bioprospecting in Justicia species.
Collapse
Affiliation(s)
- Junchen Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,College of Pharmacy, Xiangnan University, Chenzhou, China
| | - Qing Du
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Key Laboratory for Qinghai-Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, China
| | - Mei Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shengyu Liu
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liqiang Wang
- College of Pharmacy, Heze University, Heze, PR China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bin Wang
- College of Pharmacy, Xiangnan University, Chenzhou, China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Wei Y, Li X. Characterization of the complete chloroplast genome of Salix gordejevii (Salicaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2510-2512. [PMID: 34377810 PMCID: PMC8330744 DOI: 10.1080/23802359.2021.1959438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Salix gordejevii is an endemic species in northern China. The analysis of the complete chloroplast genome of S. gordejevii can offer a referential basis for identifying and utilizing Salix germplasm resources. In this study, we obtained chloroplast DNA from S. gordejevii and characterized it. The complete chloroplast genome of S. gordejevii is 155,491 bp in length, comprising a pair of inverted repeats (IR, 27,408 bp), a large single-copy region (LSC, 84,367 bp), and a small single-copy region (SSC, 16,309 bp). We annotated 117 genes in total, including 80 protein-coding genes, 32 tRNA genes, four rRNA genes, and one pseudogene (ycf1). A maximum-likelihood phylogenetic tree was built with MEGA-X and showed that the chloroplast of S. gordejevii has the closest relationship with that of S. magnifica compared to the other reported Salix genomes.
Collapse
Affiliation(s)
- Yinghao Wei
- Key Laboratory of Forest Tree Genetics and Breeding and High-Efficiency Cultivating in Jiangsu Province, Nanjing, China.,College of Forestry of Nanjing Forestry University, Nanjing, China
| | - Xiaoping Li
- Key Laboratory of Forest Tree Genetics and Breeding and High-Efficiency Cultivating in Jiangsu Province, Nanjing, China.,College of Forestry of Nanjing Forestry University, Nanjing, China.,Poplar Germplasm Resource Nursery in Jiangsu Province, Nanjing, China
| |
Collapse
|
18
|
Kumar M, Kumari N, Thakur N, Bhatia SK, Saratale GD, Ghodake G, Mistry BM, Alavilli H, Kishor DS, Du X, Chung SM. A Comprehensive Overview on the Production of Vaccines in Plant-Based Expression Systems and the Scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics. PLANTS (BASEL, SWITZERLAND) 2021; 10:1213. [PMID: 34203729 PMCID: PMC8232254 DOI: 10.3390/plants10061213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 12/23/2022]
Abstract
Many pathogenic viral pandemics have caused threats to global health; the COVID-19 pandemic is the latest. Its transmission is growing exponentially all around the globe, putting constraints on the health system worldwide. A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causes this pandemic. Many candidate vaccines are available at this time for COVID-19, and there is a massive international race underway to procure as many vaccines as possible for each country. However, due to heavy global demand, there are strains in global vaccine production. The use of a plant biotechnology-based expression system for vaccine production also represents one part of this international effort, which is to develop plant-based heterologous expression systems, virus-like particles (VLPs)-vaccines, antiviral drugs, and a rapid supply of antigen-antibodies for detecting kits and plant origin bioactive compounds that boost the immunity and provide tolerance to fight against the virus infection. This review will look at the plant biotechnology platform that can provide the best fight against this global pandemic.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Nisha Kumari
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Nishant Thakur
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea;
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea;
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (G.D.S.); (B.M.M.)
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, Dongguk University, Seoul 10326, Korea;
| | - Bhupendra M. Mistry
- Department of Food Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (G.D.S.); (B.M.M.)
| | - Hemasundar Alavilli
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea;
| | - D. S. Kishor
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Xueshi Du
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| |
Collapse
|
19
|
Wu JY, Ma XC, Ma L, Fang Y, Zhang YH, Liu LJ, Li XC, Zeng R, Sun WC. Complete chloroplast genome sequence and phylogenetic analysis of winter oil rapeseed ( Brassica rapa L.). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:723-731. [PMID: 33763561 PMCID: PMC7954489 DOI: 10.1080/23802359.2020.1860697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Winter oil rapeseed ‘18 R-1’ (Brassica rapa L.) is a new variety that can survive in northern China where the extreme low temperature is −20 °C to −32 °C. It is different from traditional B. rapa and Brassica napus. In this study, the complete chloroplast (cp) genome of ‘18 R-1’ was sequenced and analyzed to assess the genetic relationship. The size of cp genome is 153,494 bp, including one large single copy (LSC) region of 83,280 bp and one small single copy (SSC) region of 17,776 bp, separated by two inverted repeat (IR) regions of 26,219 bp. The GC content of the whole genome is 36.35%, while those of LSC, SSC, and IR are 34.12%, 29.20%, and 42.32%, respectively. The cp genome encodes 132 genes, including 87 protein-coding genes, eight rRNA genes, and 37 tRNA genes. In repeat structure analysis, 288 simple sequence repeats (SSRs) were identified. Cp genome of ‘18 R-1’ was closely related to Brassica chinensis, B. rapa and Brassica pekinesis.
Collapse
Affiliation(s)
- Jun Yan Wu
- College of Agronomy, Gansu Agricultural University/Rapeseed Engineering Research Center of Gansu Province, Lanzhou, China
| | - Xue Cai Ma
- College of Agronomy, Gansu Agricultural University/Rapeseed Engineering Research Center of Gansu Province, Lanzhou, China
| | - Li Ma
- College of Agronomy, Gansu Agricultural University/Rapeseed Engineering Research Center of Gansu Province, Lanzhou, China
| | - Yan Fang
- College of Agronomy, Gansu Agricultural University/Rapeseed Engineering Research Center of Gansu Province, Lanzhou, China
| | - Ya Hong Zhang
- Tianshui Institute of Agricultural Sciences, Tianshui Gansu, China
| | - Li Jun Liu
- College of Agronomy, Gansu Agricultural University/Rapeseed Engineering Research Center of Gansu Province, Lanzhou, China
| | - Xue Cai Li
- College of Agronomy, Gansu Agricultural University/Rapeseed Engineering Research Center of Gansu Province, Lanzhou, China
| | - Rui Zeng
- College of Agronomy, Gansu Agricultural University/Rapeseed Engineering Research Center of Gansu Province, Lanzhou, China
| | - Wan Cang Sun
- College of Agronomy, Gansu Agricultural University/Rapeseed Engineering Research Center of Gansu Province, Lanzhou, China
| |
Collapse
|
20
|
Sun J, Wang Y, Liu Y, Xu C, Yuan Q, Guo L, Huang L. Evolutionary and phylogenetic aspects of the chloroplast genome of Chaenomeles species. Sci Rep 2020; 10:11466. [PMID: 32651417 PMCID: PMC7351712 DOI: 10.1038/s41598-020-67943-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/10/2020] [Indexed: 01/23/2023] Open
Abstract
Chaenomeles (family Rosaceae) is a genus of five diploid species of deciduous spiny shrubs that are native to Central Asia and Japan. It is an important horticultural crop (commonly known as flowering quinces) in Europe and Asia for its high yield in fruits that are rich in juice, aroma, and dietary fiber. Therefore, the development of effective genetic markers of Chaenomeles species is advantageous for crop improvement through breeding and selection. In this study, we successfully assembled and analyzed the chloroplast genome of five Chaenomeles species. The chloroplast genomes of the five Chaenomeles species were very similar with no structural or content rearrangements among them. The chloroplast genomes ranged from 159,436 to 160,040 bp in length and contained a total of 112 unique genes, including 78 protein-coding genes, 30 tRNAs, and 4 rRNAs. Three highly variable regions, including trnR-atpA, trnL-F, and rpl32-ccsA, were identified. Phylogenetic analysis based on the complete chloroplast genome showed that Chaenomeles forms a monophyletic clade and had a close relationship with the genera Docynia and Malus. Analyses for phylogenetic relationships and the development of available genetic markers in future could provide valuable information regarding genetics and breeding mechanisms of the Chaenomeles species.
Collapse
Affiliation(s)
- Jiahui Sun
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yiheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanlei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qingjun Yuan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
21
|
Rosales-Mendoza S, Márquez-Escobar VA, González-Ortega O, Nieto-Gómez R, Arévalo-Villalobos JI. What Does Plant-Based Vaccine Technology Offer to the Fight against COVID-19? Vaccines (Basel) 2020; 8:E183. [PMID: 32295153 PMCID: PMC7349371 DOI: 10.3390/vaccines8020183] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
The emergence of new pathogenic viral strains is a constant threat to global health, with the new coronavirus strain COVID-19 as the latest example. COVID-19, caused by the SARS-CoV-2 virus has quickly spread around the globe. This pandemic demands rapid development of drugs and vaccines. Plant-based vaccines are a technology with proven viability, which have led to promising results for candidates evaluated at the clinical level, meaning this technology could contribute towards the fight against COVID-19. Herein, a perspective in how plant-based vaccines can be developed against COVID-19 is presented. Injectable vaccines could be generated by using transient expression systems, which offer the highest protein yields and are already adopted at the industrial level to produce VLPs-vaccines and other biopharmaceuticals under GMPC-processes. Stably-transformed plants are another option, but this approach requires more time for the development of antigen-producing lines. Nonetheless, this approach offers the possibility of developing oral vaccines in which the plant cell could act as the antigen delivery agent. Therefore, this is the most attractive approach in terms of cost, easy delivery, and mucosal immunity induction. The development of multiepitope, rationally-designed vaccines is also discussed regarding the experience gained in expression of chimeric immunogenic proteins in plant systems.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (V.A.M.-E.); (O.G.-O.); (R.N.-G.); (J.I.A.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª Sección, San Luis Potosí 78210, Mexico
| | - Verónica A. Márquez-Escobar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (V.A.M.-E.); (O.G.-O.); (R.N.-G.); (J.I.A.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª Sección, San Luis Potosí 78210, Mexico
| | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (V.A.M.-E.); (O.G.-O.); (R.N.-G.); (J.I.A.-V.)
| | - Ricardo Nieto-Gómez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (V.A.M.-E.); (O.G.-O.); (R.N.-G.); (J.I.A.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª Sección, San Luis Potosí 78210, Mexico
| | - Jaime I. Arévalo-Villalobos
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (V.A.M.-E.); (O.G.-O.); (R.N.-G.); (J.I.A.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª Sección, San Luis Potosí 78210, Mexico
| |
Collapse
|
22
|
Comparative Analysis of the Complete Chloroplast Genomes in Allium Subgenus Cyathophora (Amaryllidaceae): Phylogenetic Relationship and Adaptive Evolution. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1732586. [PMID: 32420321 PMCID: PMC7201574 DOI: 10.1155/2020/1732586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/07/2019] [Indexed: 11/22/2022]
Abstract
Recent advances in molecular phylogenetics provide us with information of Allium L. taxonomy and evolution, such as the subgenus Cyathophora, which is monophyletic and contains five species. However, previous studies detected distinct incongruence between the nrDNA and cpDNA phylogenies, and the interspecies relationships of this subgenus need to be furtherly resolved. In our study, we newly assembled the whole chloroplast genome of four species in subgenus Cyathophora and two allied Allium species. The complete cp genomes were found to possess a quadripartite structure, and the genome size ranged from 152,913 to 154,174 bp. Among these cp genomes, there were subtle differences in the gene order, gene content, and GC content. Seven hotspot regions (infA, rps16, rps15, ndhF, trnG-UCC, trnC-GCA, and trnK-UUU) with nucleotide diversity greater than 0.02 were discovered. The selection analysis showed that some genes have elevated Ka/Ks ratios. Phylogenetic analysis depended on the complete chloroplast genome (CCG), and the intergenic spacer regions (IGS) and coding DNA sequences (CDS) showed same topologies with high support, which revealed that subgenus Cyathophora was a monophyletic group, containing four species, and A. cyathophorum var. farreri was sister to A. spicatum with 100% bootstrap value. Our study revealed selective pressure may exert effect on several genes of the six Allium species, which may be useful for them to adapt to their specific living environment. We have well resolved the phylogenetic relationship of species in the subgenus Cyathophora, which will contribute to future evolutionary studies or phylogeographic analysis of Allium.
Collapse
|
23
|
Siddiqui A, Wei Z, Boehm M, Ahmad N. Engineering microalgae through chloroplast transformation to produce high‐value industrial products. Biotechnol Appl Biochem 2020; 67:30-40. [DOI: 10.1002/bab.1823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Ayesha Siddiqui
- Agricultural Biotechnology DivisionNational Institute for Biotechnology & Genetic Engineering (NIBGE) Faisalabad Pakistan
| | - Zhengyi Wei
- Institute of Agricultural BiotechnologyJilin Academy of Agricultural Sciences Changchun Jilin Province People's Republic of China
| | - Marko Boehm
- Botanical InstituteChristian‐Albrechts‐University Kiel Germany
| | - Niaz Ahmad
- Agricultural Biotechnology DivisionNational Institute for Biotechnology & Genetic Engineering (NIBGE) Faisalabad Pakistan
| |
Collapse
|
24
|
Song Y, Zhang Y, Xu J, Li W, Li M. Characterization of the complete chloroplast genome sequence of Dalbergia species and its phylogenetic implications. Sci Rep 2019; 9:20401. [PMID: 31892714 PMCID: PMC6938520 DOI: 10.1038/s41598-019-56727-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/13/2019] [Indexed: 11/09/2022] Open
Abstract
The pantropical plant genus Dalbergia comprises approximately 250 species, most of which have a high economic and ecological value. However, these species are among the most threatened due to illegal logging and the timber trade. To enforce protective legislation and ensure effective conservation of Dalbergia species, the identity of wood being traded must be accurately validated. For the rapid and accurate identification of Dalbergia species and assessment of phylogenetic relationships, it would be highly desirable to develop more effective DNA barcodes for these species. In this study, we sequenced and compared the chloroplast genomes of nine species of Dalbergia. We found that these chloroplast genomes were conserved with respect to genome size, structure, and gene content and showed low sequence divergence. We identified eight mutation hotspots, namely, six intergenic spacer regions (trnL-trnT, atpA-trnG, rps16-accD, petG-psaJ, ndhF-trnL, and ndhG-ndhI) and two coding regions (ycf1a and ycf1b), as candidate DNA barcodes for Dalbergia. Phylogenetic analyses based on whole chloroplast genome data provided the best resolution of Dalbergia, and phylogenetic analysis of the Fabaceae showed that Dalbergia was sister to Arachis. Based on comparison of chloroplast genomes, we identified a set of highly variable markers that can be developed as specific DNA barcodes.
Collapse
Affiliation(s)
- Yun Song
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yongjiang Zhang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Jin Xu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Weimin Li
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - MingFu Li
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
25
|
Muthamilselvan T, Kim JS, Cheong G, Hwang I. Production of recombinant proteins through sequestration in chloroplasts: a strategy based on nuclear transformation and post-translational protein import. PLANT CELL REPORTS 2019; 38:825-833. [PMID: 31139894 DOI: 10.1007/s00299-019-02431-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/06/2019] [Accepted: 05/21/2019] [Indexed: 05/17/2023]
Abstract
Recently, plants have emerged as a lucrative alternative system for the production of recombinant proteins, as recombinant proteins produced in plants are safer and cheaper than those produced in bacteria and animal cell-based production systems. To obtain high yields in plants, recombinant proteins are produced in chloroplasts using different strategies. The first strategy is based on chloroplast transformation, followed by gene expression and translation in chloroplasts. This has proven to be a powerful approach for the production of proteins at high levels. The second approach is based on nuclear transformation, followed by post-translational import of proteins from the cytosol into chloroplasts. In the nuclear transformation approach, foreign genes are stably integrated into the nuclear genome or transiently expressed in the nucleus by non-integrating T-DNA. Although this approach also has great potential for protein production at high levels, it has not been thoroughly investigated. In this review, we focus on nuclear transformation-based protein expression and its subsequent sequestration in chloroplasts, and summarize the different strategies used for high-level production of recombinant proteins. We also discuss future directions for further improvements in protein production in chloroplasts through nuclear transformation-based gene expression.
Collapse
Affiliation(s)
- Thangarasu Muthamilselvan
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Jung Sun Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, South Korea
| | - Gangwon Cheong
- Department of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea.
| |
Collapse
|
26
|
Do HDK, Jung J, Hyun J, Yoon SJ, Lim C, Park K, Kim JH. The newly developed single nucleotide polymorphism (SNP) markers for a potentially medicinal plant, Crepidiastrum denticulatum (Asteraceae), inferred from complete chloroplast genome data. Mol Biol Rep 2019; 46:3287-3297. [PMID: 30980269 DOI: 10.1007/s11033-019-04789-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/28/2019] [Indexed: 01/09/2023]
Abstract
Medicinal effects of Crepidiastrum denticulatum have been previously reported. However, the genomic resources of this species and its applications have not been studied. In this study, based on the next generation sequencing method (Miseq sequencing system), we characterize the chloroplast genome of C. denticulatum which contains a large single copy (84,112 bp) and a small single copy (18,519 bp), separated by two inverted repeat regions (25,074 bp). This genome consists of 80 protein-coding gene, 30 tRNAs, and four rRNAs. Notably, the trnT_GGU is pseudogenized because of a small insertion within the coding region. Comparative genomic analysis reveals a high similarity among Asteraceae taxa. However, the junctions between LSC, SSC, and IRs locate in different positions within rps19 and ycf1 among examined species. Also, we describe a newly developed single nucleotide polymorphism (SNP) marker for C. denticulatum based on amplification-refractory mutation system (ARMS) technique. The markers, inferred from SNP in rbcL and matK genes, show effectiveness to recognize C. denticulatum from other related taxa through simple PCR protocol. The chloroplast genome-based molecular markers are effective to distinguish a potentially medicinal species, C. denticulatum, from other related taxa. Additionally, the complete chloroplast genome of C. denticulatum provides initial genomic data for further studies on phylogenomics, population genetics, and evolutionary history of Crepidiastrum as well as other taxa in Asteraceae.
Collapse
Affiliation(s)
- Hoang Dang Khoa Do
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - Joonhyung Jung
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - JongYoung Hyun
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - Seok Jeong Yoon
- Incospharm Corp, 328 Techno-2-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Chaejin Lim
- Incospharm Corp, 328 Techno-2-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Keedon Park
- Incospharm Corp, 328 Techno-2-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
27
|
Pérez Di Giorgio JA, Lepage É, Tremblay-Belzile S, Truche S, Loubert-Hudon A, Brisson N. Transcription is a major driving force for plastid genome instability in Arabidopsis. PLoS One 2019; 14:e0214552. [PMID: 30943245 PMCID: PMC6447228 DOI: 10.1371/journal.pone.0214552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Though it is an essential process, transcription can be a source of genomic instability. For instance, it may generate RNA:DNA hybrids as the nascent transcript hybridizes with the complementary DNA template. These hybrids, called R-loops, act as a major cause of replication fork stalling and DNA breaks. In this study, we show that lowering transcription and R-loop levels in plastids of Arabidopsis thaliana reduces DNA rearrangements and mitigates plastid genome instability phenotypes. This effect can be observed on a genome-wide scale, as the loss of the plastid sigma transcription factor SIG6 prevents DNA rearrangements by favoring conservative repair in the presence of ciprofloxacin-induced DNA damage or in the absence of plastid genome maintenance actors such as WHY1/WHY3, RECA1 and POLIB. Additionally, resolving R-loops by the expression of a plastid-targeted exogenous RNAse H1 produces similar results. We also show that highly-transcribed genes are more susceptible to DNA rearrangements, as increased transcription of the psbD operon by SIG5 correlates with more locus-specific rearrangements. The effect of transcription is not specific to Sigma factors, as decreased global transcription levels by mutation of heat-stress-induced factor HSP21, mutation of nuclear-encoded polymerase RPOTp, or treatment with transcription-inhibitor rifampicin all prevent the formation of plastid genome rearrangements, especially under induced DNA damage conditions.
Collapse
Affiliation(s)
| | - Étienne Lepage
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Samuel Tremblay-Belzile
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sébastien Truche
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Audrey Loubert-Hudon
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Normand Brisson
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
28
|
Richter LV, Yang H, Yazdani M, Hanson MR, Ahner BA. A downstream box fusion allows stable accumulation of a bacterial cellulase in Chlamydomonas reinhardtii chloroplasts. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:133. [PMID: 29760775 PMCID: PMC5944112 DOI: 10.1186/s13068-018-1127-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/23/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND We investigated strategies to improve foreign protein accumulation in the chloroplasts of the model algae Chlamydomonas reinhardtii and tested the outcome in both standard culture conditions as well as one pertinent to algal biofuel production. The downstream box (DB) of the TetC or NPTII genes, the first 15 codons following the start codon, was N-terminally fused to the coding region of cel6A, an endoglucanase from Thermobifida fusca. We also employed a chimeric regulatory element, consisting of the 16S rRNA promoter and the atpA 5'UTR, previously reported to enhance protein expression, to regulate the expression of the TetC-cel6A gene. We further investigated the accumulation of TetC-Cel6A under N-deplete growth conditions. RESULTS Both of the DB fusions improved intracellular accumulation of Cel6A in transplastomic C. reinhardtii strains though the TetC DB was much more effective than the NPTII DB. Furthermore, using the chimeric regulatory element, the TetC-Cel6A protein accumulation displayed a significant increase to 0.3% total soluble protein (TSP), whereas NPTII-Cel6A remained too low to quantify. Comparable levels of TetC- and NPTII-cel6A transcripts were observed, which suggests that factors other than transcript abundance mediate the greater TetC-Cel6A accumulation. The TetC-Cel6A accumulation was stable regardless of the growth stage, and the transplastomic strain growth rate was not altered. When transplastomic cells were suspended in N-deplete medium, cellular levels of TetC-Cel6A increased over time along with TSP, and were greater than those in cells suspended in N-replete medium. CONCLUSIONS The DB fusion holds great value as a tool to enhance foreign protein accumulation in C. reinhardtii chloroplasts and its influence is related to translation or other post-transcriptional processes. Our results also suggest that transplastomic protein production can be compatible with algal biofuel production strategies. Cells displayed a consistent accumulation of recombinant protein throughout the growth phase and nitrogen starvation, a strategy used to induce lipid production in algae, led to higher cellular heterologous protein content. The latter result is contrary to what might have been expected a priori and is an important result for the development of future algal biofuel systems, which will likely require co-products for economic sustainability.
Collapse
Affiliation(s)
- Lubna V. Richter
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY USA
| | - Huijun Yang
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY USA
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY USA
| | - Mohammad Yazdani
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY USA
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY USA
| | - Beth A. Ahner
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY USA
| |
Collapse
|
29
|
Takamatsu T, Baslam M, Inomata T, Oikawa K, Itoh K, Ohnishi T, Kinoshita T, Mitsui T. Optimized Method of Extracting Rice Chloroplast DNA for High-Quality Plastome Resequencing and de Novo Assembly. FRONTIERS IN PLANT SCIENCE 2018; 9:266. [PMID: 29541088 PMCID: PMC5835797 DOI: 10.3389/fpls.2018.00266] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chloroplasts, which perform photosynthesis, are one of the most important organelles in green plants and algae. Chloroplasts maintain an independent genome that includes important genes encoding their photosynthetic machinery and various housekeeping functions. Owing to its non-recombinant nature, low mutation rates, and uniparental inheritance, the chloroplast genome (plastome) can give insights into plant evolution and ecology and in the development of biotechnological and breeding applications. However, efficient methods to obtain high-quality chloroplast DNA (cpDNA) are currently not available, impeding powerful sequencing and further functional genomics research. To investigate effects on rice chloroplast genome quality, we compared cpDNA extraction by three extraction protocols: liquid nitrogen coupled with sucrose density gradient centrifugation, high-salt buffer, and Percoll gradient centrifugation. The liquid nitrogen-sucrose gradient method gave a high yield of high-quality cpDNA with reliable purity. The cpDNA isolated by this technique was evaluated, resequenced, and assembled de novo to build a robust framework for genomic and genetic studies. Comparison of this high-purity cpDNA with total DNAs revealed the read coverage of the sequenced regions; next-generation sequencing data showed that the high-quality cpDNA eliminated noise derived from contamination by nuclear and mitochondrial DNA, which frequently occurs in total DNA. The assembly process produced highly accurate, long contigs. We summarize the extent to which this improved method of isolating cpDNA from rice can provide practical progress in overcoming challenges related to chloroplast genomes and in further exploring the development of new sequencing technologies.
Collapse
Affiliation(s)
- Takeshi Takamatsu
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Takuya Inomata
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kazusato Oikawa
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Kimiko Itoh
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Takayuki Ohnishi
- Center for Education and Research of Community Collaboration, Utsunomiya University, Utsunomiya, Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Toshiaki Mitsui
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
- *Correspondence: Toshiaki Mitsui,
| |
Collapse
|
30
|
Piot A, Hackel J, Christin PA, Besnard G. One-third of the plastid genes evolved under positive selection in PACMAD grasses. PLANTA 2018; 247:255-266. [PMID: 28956160 DOI: 10.1007/s00425-017-2781-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/18/2017] [Indexed: 05/10/2023]
Abstract
We demonstrate that rbcL underwent strong positive selection during the C 3 -C 4 photosynthetic transitions in PACMAD grasses, in particular the 3' end of the gene. In contrast, selective pressures on other plastid genes vary widely and environmental drivers remain to be identified. Plastid genomes have been widely used to infer phylogenetic relationships among plants, but the selective pressures driving their evolution have not been systematically investigated. In our study, we analyse all protein-coding plastid genes from 113 species of PACMAD grasses (Poaceae) to evaluate the selective pressures driving their evolution. Our analyses confirm that the gene encoding the large subunit of RubisCO (rbcL) evolved under strong positive selection after C3-C4 photosynthetic transitions. We highlight new codons in rbcL that underwent parallel changes, in particular those encoding the C-terminal part of the protein. C3-C4 photosynthetic shifts did not significantly affect the evolutionary dynamics of other plastid genes. Instead, while two-third of the plastid genes evolved under purifying selection or neutrality, 25 evolved under positive selection across the PACMAD clade. This set of genes encode for proteins involved in diverse functions, including self-replication of plastids and photosynthesis. Our results suggest that plastid genes widely adapt to changing ecological conditions, but factors driving this evolution largely remain to be identified.
Collapse
Affiliation(s)
- Anthony Piot
- Laboratoire Evolution and Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France.
| | - Jan Hackel
- Laboratoire Evolution and Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Guillaume Besnard
- Laboratoire Evolution and Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France.
| |
Collapse
|
31
|
Logacheva MD, Krinitsina AA, Belenikin MS, Khafizov K, Konorov EA, Kuptsov SV, Speranskaya AS. Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions. BMC PLANT BIOLOGY 2017; 17:255. [PMID: 29297348 PMCID: PMC5751766 DOI: 10.1186/s12870-017-1195-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Ferns are large and underexplored group of vascular plants (~ 11 thousands species). The genomic data available by now include low coverage nuclear genomes sequences and partial sequences of mitochondrial genomes for six species and several plastid genomes. RESULTS We characterized plastid genomes of three species of Dryopteris, which is one of the largest fern genera, using sequencing of chloroplast DNA enriched samples and performed comparative analysis with available plastomes of Polypodiales, the most species-rich group of ferns. We also sequenced the plastome of Adianthum hispidulum (Pteridaceae). Unexpectedly, we found high variability in the IR region, including duplication of rrn16 in D. blanfordii, complete loss of trnI-GAU in D. filix-mas, its pseudogenization due to the loss of an exon in D. blanfordii. Analysis of previously reported plastomes of Polypodiales demonstrated that Woodwardia unigemmata and Lepisorus clathratus have unusual insertions in the IR region. The sequence of these inserted regions has high similarity to several LSC fragments of ferns outside of Polypodiales and to spacer between tRNA-CGA and tRNA-TTT genes of mitochondrial genome of Asplenium nidus. We suggest that this reflects the ancient DNA transfer from mitochondrial to plastid genome occurred in a common ancestor of ferns. We determined the marked conservation of gene content and relative evolution rate of genes and intergenic spacers in the IRs of Polypodiales. Faster evolution of the four intergenic regions had been demonstrated (trnA- orf42, rrn16-rps12, rps7-psbA and ycf2-trnN). CONCLUSIONS IRs of Polypodiales plastomes are dynamic, driven by such events as gene loss, duplication and putative lateral transfer from mitochondria.
Collapse
Affiliation(s)
| | | | - Maxim S Belenikin
- M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Moscow Region, Russia
| | - Kamil Khafizov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Moscow Region, Russia
- Federal Budget Institution of Science Central Research Institute of Epidemiology of The Federal Service on Customers, 111123, Moscow, Russia
| | - Evgenii A Konorov
- M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
| | | | - Anna S Speranskaya
- M.V. Lomonosov Moscow State University, 119991, Moscow, Russia.
- Federal Budget Institution of Science Central Research Institute of Epidemiology of The Federal Service on Customers, 111123, Moscow, Russia.
| |
Collapse
|