1
|
Zheng C, Liu S, Wang J, Lu Y, Ma L, Jiao L, Guo J, Yin Y, He T. Opening the black box: explainable deep-learning classification of wood microscopic image of endangered tree species. PLANT METHODS 2024; 20:56. [PMID: 38659006 PMCID: PMC11044446 DOI: 10.1186/s13007-024-01191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Traditional method of wood species identification involves the use of hand lens by wood anatomists, which is a time-consuming method that usually identifies only at the genetic level. Computer vision method can achieve "species" level identification but cannot provide an explanation on what features are used for the identification. Thus, in this study, we used computer vision methods coupled with deep learning to reveal interspecific differences between closely related tree species. RESULT A total of 850 images were collected from the cross and tangential sections of 15 wood species. These images were used to construct a deep-learning model to discriminate wood species, and a classification accuracy of 99.3% was obtained. The key features between species in machine identification were targeted by feature visualization methods, mainly the axial parenchyma arrangements and vessel in cross section and the wood ray in tangential section. Moreover, the degree of importance of the vessels of different tree species in the cross-section images was determined by the manual feature labeling method. The results showed that vessels play an important role in the identification of Dalbergia, Pterocarpus, Swartzia, Carapa, and Cedrela, but exhibited limited resolutions on discriminating Swietenia species. CONCLUSION The research results provide a computer-assisted tool for identifying endangered tree species in laboratory scenarios, which can be used to combat illegal logging and related trade and contribute to the implementation of CITES convention and the conservation of global biodiversity.
Collapse
Affiliation(s)
- Chang Zheng
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shoujia Liu
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jiajun Wang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections, Chinese Academy of Forestry, Beijing, 100091, China
- National Centre for Archaeology, Beijing, 100013, China
| | - Yang Lu
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lingyu Ma
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lichao Jiao
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections, Chinese Academy of Forestry, Beijing, 100091, China
| | - Juan Guo
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yafang Yin
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections, Chinese Academy of Forestry, Beijing, 100091, China
| | - Tuo He
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China.
- Wood Collections, Chinese Academy of Forestry, Beijing, 100091, China.
- Wildlife Conservation Monitoring Center, National Forestry and Grassland Administration, Beijing, 100714, China.
| |
Collapse
|
2
|
Lin C, Lu Y, Liu S, Wang Z, Yao L, Yin Y, Jiao L. Retrieving complete plastid genomes of endangered Guibourtia timber using hybridization capture for forensic identification and phylogenetic analysis. Forensic Sci Int Genet 2024; 69:103006. [PMID: 38171223 DOI: 10.1016/j.fsigen.2023.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/25/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The high economic value and increased demand for timber have led to illegal logging and overexploitation, threatening wild populations. In this context, there is an urgent need to develop effective and accurate forensic tools for identifying endangered Guibourtia timber species to protect forest ecosystem resources and regulate their trade. In this study, a hybridization capture method was developed and applied to explore the feasibility of retrieving complete plastid genomes from Guibourtia sapwood and heartwood specimens stored in a xylarium (wood collection). We then carried out forensic identification and phylogenetic analyses of Guibourtia within the subfamily Detarioideae. This study is the first to successfully retrieve high-quality plastid genomes from xylarium specimens, with 76.95-99.97% coverage. The enrichment efficiency, sequence depth, and coverage of plastid genomes from sapwood were 16.73 times, 70.47 times and 1.14 times higher, respectively, than those from heartwood. Although the DNA capture efficiency of heartwood was lower than that of sapwood, the hybridization capture method used in this study is still suitable for heartwood DNA analysis. Based on the complete plastid genome, we identified six endangered or commonly traded Guibourtia woods at the species level. This technique also has the potential for geographical traceability, especially for Guibourtia demeusei and Guibourtia ehie. Meanwhile, Bayesian phylogenetic analysis suggested that these six Guibourtia species diverged from closely related species within the subfamily Detarioideae ca. 18 Ma during the Miocene. The DNA reference database established based on the xylarium specimens provides admissible evidence for diversity conservation and evolutionary analyses of endangered Guibourtia species.
Collapse
Affiliation(s)
- Chuanyang Lin
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yang Lu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Collection of Chinese Academy of Forestry, Beijing 100091, China
| | - Shoujia Liu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Collection of Chinese Academy of Forestry, Beijing 100091, China
| | - Zhaoshan Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lihong Yao
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Yafang Yin
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Collection of Chinese Academy of Forestry, Beijing 100091, China
| | - Lichao Jiao
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Collection of Chinese Academy of Forestry, Beijing 100091, China; China-Central Asia "the Belt and Road" Joint Laboratory on Human and Environment Research, Key Laboratory of Cultural Heritage Research and Conservation, Collaborative Research Centre for Archaeology of the Silk Roads, School of Culture Heritage, Northwest University, Xi'an 710127, China.
| |
Collapse
|
3
|
Wang W, Chen B, Ma R, Qiao M, Fu Y. The DNA barcode identification of Dalbergia odorifera T. Chen and Dalbergia tonkinensis Prain. BMC PLANT BIOLOGY 2023; 23:546. [PMID: 37936056 PMCID: PMC10629101 DOI: 10.1186/s12870-023-04513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Dalbergia odorifera is a precious tree species with unique economic and medicinal values, which is difficult to distinguish from Dalbergia tonkinensis by traditional identification methods such as morphological characteristics and wood structure characteristics. It has been demonstrated that the identification of tree species can be effectively achieved using DNA barcoding, but there is a lack of study of the combined sequences used as DNA barcodes in the two tree species. In this study, 10 single sequences and 4 combined sequences were selected for analysis, and the identification effect of each sequence was evaluated by the distance-based method, BLAST-based search, character-based method, and tree-based method. RESULTS Among the single sequences and the combined sequences, the interspecies distance of trnH-psbA and ITS2 + trnH-psbA was greater than the intraspecies distance, and there was no overlap in their frequency distribution plots. The results of the Wilcoxon signed-rank test for the interspecies distance of each sequence showed that the interspecies differences of the single sequences except trnL-trnF, trnH-psbA, and ycf3 were significantly smaller than those of the combined sequences. The results of BLAST analysis showed that trnH-psbA could accurately identify D. odorifera and D. tonkinensis at the species level. In the character-based method, single sequences of trnL-trnF, trnH-psbA with all the combined sequences can be used for the identification of D. odorifera and D. tonkinensis. In addition, the neighbor-joining (NJ) trees constructed based on trnH-psbA and ITS2 + trnH-psbA were able to cluster D. odorifera and D. tonkinensis on two clades. CONCLUSIONS The results showed that the character-based method with the BLOG algorithm was the most effective among all the evaluation methods, and the combined sequences can improve the ability to identify tree species compared with single sequences. Finally, the trnH-psbA and ITS2 + trnH-psbA were proposed as DNA barcodes to identify D. odorifera and D. tonkinensis.
Collapse
Affiliation(s)
- Weijie Wang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Baixu Chen
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Ruoke Ma
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Mengji Qiao
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China.
| | - Yunlin Fu
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
4
|
Liu B, Chen Q, Tang L, Zhu L, Zou X, Li B, Fan W, Fu Y, Lu Y. Screening of potential chemical marker with interspecific differences in Pterocarpus wood and a spatially-resolved approach to visualize the distribution of the characteristic markers. FRONTIERS IN PLANT SCIENCE 2023; 14:1133848. [PMID: 36866375 PMCID: PMC9971912 DOI: 10.3389/fpls.2023.1133848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Profiling the spatial distributions and tissue changes of characteristic compounds with interspecific differences is critical to elucidate the complex species identification during tree species traceability, wood anti-counterfeiting verification and timber trade control. In this research, in order to visualize the spatial position of characteristic compounds in two species with similar morphology (Pterocarpus santalinus and Pterocarpus tinctorius), a high coverage MALDI-TOF-MS imaging method was used to found the mass spectra fingerprints of different wood species. 2-Mercaptobenzothiazole matrix was used to spray wood tissue section to enhance the detection effect of metabolic molecules, and the mass spectrometry imaging data were obtained. Based on this technology, the spatial location of fifteen potential chemical markers with remarkable interspecific differences in 2 Pterocarpus timber species were successfully obtained. Distinct chemical signatures obtained from this method can promote rapid identification at the wood species level. Thus, matrix-assisted laser desorption/time-of-flight/ionization mass spectrometry imaging (MALDI-TOF-MSI) provides a spatial-resolved way for traditional wood morphological classification and breaking through the limitations of traditional wood identification technology.
Collapse
Affiliation(s)
- Bo Liu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Qian Chen
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Lina Tang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Liming Zhu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Xianwu Zou
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Botao Li
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Wei Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Yuejin Fu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Yun Lu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
5
|
Comparison of DNA extraction methods on CITES-listed timber species and application in species authentication of commercial products using DNA barcoding. Sci Rep 2023; 13:151. [PMID: 36599919 DOI: 10.1038/s41598-022-27195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Quality and quantity of DNA extracted from wood is important for molecular identification of wood species, which can serve for conservation of wood species and law enforcement to combat illegal wood trading. Rosewood (Dalbergia and Pterocarpus) and agarwood (Aquilaria) are the most commonly found hardwood in timber seizure incidents. To monitor international trade of timber and commercial wood products and to protect these endangered wood species from further population decline, in this study, we have compared three extraction protocols for DNA extraction from 12 samples of rosewood and agarwood timber logs, and later applied the best DNA extraction protocol on 10 commercial wood products claimed to be rosewood and agarwood. We also demonstrated the applicability of DNA mini-barcoding with multi-loci combination with reference library for identifying the species of timber and commercial wood products. We found that a silica column-based method with guanidine thiocyanate-containing binding buffer served the best in DNA extraction from different parts of wood in all three genera with good quality and quantity. Single barcode region ITS2 or multi-loci combinations including ITS2 barcode region generally provide better discriminatory power for species identification for both rosewood and agarwood. All 10 products were identified to species-level using multi-loci combination. In terms of accuracy in labelling, 80% of them were labelled correctly. Our work has shown the feasibility of extracting good quality of DNA from authentic wood samples and processed wood products and identifying them to species level based on DNA barcoding technology.
Collapse
|
6
|
Rapid Identification for the Pterocarpus Bracelet by Three-Step Infrared Spectrum Method. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154793. [PMID: 35897969 PMCID: PMC9332845 DOI: 10.3390/molecules27154793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
In order to explore a rapid identification method for the anti-counterfeit of commercial high value collections, a three-step infrared spectrum method was used for the pterocarpus collection identification to confirm whether a commercial pterocarpus bracelet (PB) was made from the precious species of Pterocarpus santalinus (P. santalinus). In the first step, undertaken by Fourier transform infrared spectroscopy (FTIR) spectrum, the absorption peaks intensity of PB was slightly higher than that of P. santalinus only at 1594 cm−1, 1205 cm−1, 1155 cm−1 and 836 cm−1. In the next step of second derivative IR spectra (SDIR), the FTIR features of the tested samples were further amplified, and the peaks at 1600 cm−1, 1171 cm−1 and 1152 cm−1 become clearly defined in PB. Finally, by means of two-dimensional correlation infrared (2DIR) spectrum, it revealed that the response of holocellulose to thermal perturbation was stronger in P. santalinus than that in PB mainly at 977 cm−1, 1008 cm−1, 1100 cm−1, 1057 cm−1, 1190 cm−1 and 1214 cm−1, while the aromatic functional groups of PB were much more sensitive to the thermal perturbation than those of P. santalinus mainly at 1456 cm−1, 1467 cm−1, 1518 cm−1, 1558 cm−1, 1576 cm−1 and 1605 cm−1. In addition, fluorescence microscopy was used to verify the effectiveness of the above method for wood identification and the results showed good consistency. This study demonstrated that the three-step IR method could provide a rapid and effective way for the anti-counterfeit of pterocarpus collections.
Collapse
|
7
|
Soudier P, Rodriguez Pinzon D, Reif-Trauttmansdorff T, Hijazi H, Cherrière M, Goncalves Pereira C, Blaise D, Pispisa M, Saint-Julien A, Hamlet W, Nguevo M, Gomes E, Belkhelfa S, Niarakis A, Kushwaha M, Grigoras I. Toehold switch based biosensors for sensing the highly trafficked rosewood Dalbergia maritima. Synth Syst Biotechnol 2022; 7:791-801. [PMID: 35415278 PMCID: PMC8976095 DOI: 10.1016/j.synbio.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 01/05/2023] Open
Abstract
Nucleic acid sensing is a 3 decades old but still challenging area of application for different biological sub-domains, from pathogen detection to single cell transcriptomics analysis. The many applications of nucleic acid detection and identification are mostly carried out by PCR techniques, sequencing, and their derivatives used at large scale. However, these methods’ limitations on speed, cost, complexity and specificity have motivated the development of innovative detection methods among which nucleic acid biosensing technologies seem promising. Toehold switches are a particular class of RNA sensing devices relying on a conformational switch of secondary structure induced by the pairing of the detected trigger RNA with a de novo designed synthetic sensing mRNA molecule. Here we describe a streamlined methodology enabling the development of such a sensor for the RNA-mediated detection of an endangered plant species in a cell-free reaction system. We applied this methodology to help identify the rosewood Dalbergia maritima, a highly trafficked wood, whose protection is limited by the capacity of the authorities to distinguish protected logs from other unprotected but related species. The streamlined pipeline presented in this work is a versatile framework enabling cheap and rapid development of new sensors for custom RNA detection.
Collapse
|
8
|
Wu HY, Wong KH, Kong BLH, Siu TY, But GWC, Tsang SSK, Lau DTW, Shaw PC. Comparative Analysis of Chloroplast Genomes of Dalbergia Species for Identification and Phylogenetic Analysis. PLANTS 2022; 11:plants11091109. [PMID: 35567110 PMCID: PMC9104903 DOI: 10.3390/plants11091109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Dalbergia L.f. is a pantropical genus consisting of 269 species of trees, shrubs, and woody lianas. This genus is listed in CITES Appendices because of illegal logging and trafficking driven by the high economic value of its heartwood. Some species are also used medicinally. Species identification of Dalbergia timber and herbs is challenging but essential for CITES implementation. Molecular methods had been developed for some timber species, mostly from Madagascar and Southeast Asia, but medicinal species in south China were usually not included in those studies. Here, we sequenced and assembled the chloroplast genomes of five Dalbergia species native to Hong Kong, four of which are medicinal plants. Our aim is to find potential genetic markers for the identification of medicinal Dalbergia species based on divergence hotspots detected in chloroplast genomes after comparative and phylogenetic analysis. Dalbergia chloroplast genomes displayed the typical quadripartite structure, with the 50 kb inversion found in most Papilionoideae lineages. Their sizes and gene content are well conserved. Phylogenetic tree of Dalbergia chloroplast genomes showed an overall topology similar to that of ITS sequences. Four divergence hotspots (trnL(UAA)-trnT(UGU), ndhG-ndhI, ycf1a and ycf1b) were identified and candidate markers for identification of several Dalbergia species were suggested.
Collapse
Affiliation(s)
- Hoi-Yan Wu
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (H.-Y.W.); (B.L.-H.K.)
| | - Kwan-Ho Wong
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (K.-H.W.); (T.-Y.S.); (D.T.-W.L.)
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (G.W.-C.B.); (S.S.-K.T.)
| | - Bobby Lim-Ho Kong
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (H.-Y.W.); (B.L.-H.K.)
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (G.W.-C.B.); (S.S.-K.T.)
| | - Tin-Yan Siu
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (K.-H.W.); (T.-Y.S.); (D.T.-W.L.)
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Grace Wing-Chiu But
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (G.W.-C.B.); (S.S.-K.T.)
| | - Stacey Shun-Kei Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (G.W.-C.B.); (S.S.-K.T.)
| | - David Tai-Wai Lau
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (K.-H.W.); (T.-Y.S.); (D.T.-W.L.)
| | - Pang-Chui Shaw
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (H.-Y.W.); (B.L.-H.K.)
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (G.W.-C.B.); (S.S.-K.T.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (The Chinese University of Hong Kong) and Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Correspondence:
| |
Collapse
|
9
|
Hu JL, Ci XQ, Liu ZF, Dormontt EE, Conran JG, Lowe AJ, Li J. Assessing candidate DNA barcodes for Chinese and internationally traded timber species. Mol Ecol Resour 2021; 22:1478-1492. [PMID: 34752673 DOI: 10.1111/1755-0998.13546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
Accurate identification of species from timber is an essential step to help control illegal logging and forest loss. However, current approaches to timber identification based on morphological and anatomical characteristics have limited species resolution. DNA barcoding is a proven tool for plant species identification, but there is a need to build reliable reference data across broad taxonomic and spatial scales. Here, we construct a species barcoding library consisting of 1550 taxonomically diverse timber species from 656 genera and 124 families, representing a comprehensive genetic reference data set for Chinese timber species and international commercial traded timber species, using four barcodes (rbcL, matK, trnH-psbA, and ITS2). The ITS2 fragment was found to be the most efficient locus for Chinese timber species identification among the four barcodes tested, both at the species and genus level, despite its low recovery rate. Nevertheless, the barcode combination matK+trnH-psbA+ITS2 was required as a complementary barcode to distinguish closely related species in complex data sets involving internationally traded timber species. Comparative analyses of family-level discrimination and species/genus ratios indicated that the inclusion of closely related species is an important factor affecting the resolution ability of barcodes for timber species verification. Our study indicates that although nuclear ITS2 is the most efficient single barcode for timber species authentication in China, complementary combinations like matK+trnH-psbA+ITS2 are required to provide broader discrimination power. These newly-generated sequences enrich the existing publicly available databases, especially for tropical and subtropical evergreen timber trees and this current timber species barcode reference library can serve as an important genetic resource for forestry monitoring, illegal logging prosecution and biodiversity projects.
Collapse
Affiliation(s)
- Jian-Lin Hu
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Qin Ci
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| | - Zhi-Fang Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Eleanor E Dormontt
- Advanced DNA, Identification and Forensic Facility, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - John G Conran
- Australian Centre for Evolutionary Biology and Biodiversity (ACEBB) and Sprigg Geobiology Centre (SGC), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew J Lowe
- Advanced DNA, Identification and Forensic Facility, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jie Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
10
|
Negi RK, Nautiyal P, Bhatia R, Verma R. rbcL, a potential candidate DNA barcode loci for aconites: conservation of himalayan aconites. Mol Biol Rep 2021; 48:6769-6777. [PMID: 34476739 DOI: 10.1007/s11033-021-06675-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Aconitum heterophyllum Wall. ex Royle and Aconitum balfourii Stapf, are two highly important, threatened medicinal plants of the Indian Himalayan Region. Root-tubers of Aconites have occupied an important place in Indian pharmacopoeia from very ancient times. India is a hub of the wild-collected medicinal herbs industry in Asia and these two aconites are known to have been heavily traded from the region in illicit manner. Prosecution of these illegal trading crimes is hampered by lack of pharma-forensic expertise and tools. METHODS AND RESULTS Present study was conducted to evaluate the discriminatory potential of rbcL, a Chloroplast based DNA barcode marker for the authentication of these two Himalayan Aconites. Fresh plant samples were collected from their natural distributional range as well as raw materials were procured from herbal market and a total of 32 sequences were generated for the rbcL region. Analysis demonstrated that rbcL region can successfully be used for authentication and importantly, both the aconites, were successfully discriminated by rbcL locus with high bootstrap support (> 50%). CONCLUSION Molecular markers could certainly be relied upon morphological and chemical markers being tissue specific, having a higher discriminatory power and not age dependent. Phylogenetic analysis using Maximum Likelihood Method revealed that the rbcL gene could successfully discriminate Himalayan Aconites to species level and have potential to be used in pharma-forensic applications as well as to curb illicit trade of these invaluable medicinal plants.
Collapse
Affiliation(s)
- Ranjana K Negi
- Systematic Botany Discipline, Forest Botany Division, Forest Research Institute, Dehradun, India.
| | - Pooja Nautiyal
- Systematic Botany Discipline, Forest Botany Division, Forest Research Institute, Dehradun, India
| | - Rajneesh Bhatia
- Systematic Botany Discipline, Forest Botany Division, Forest Research Institute, Dehradun, India
| | - Rakesh Verma
- Systematic Botany Discipline, Forest Botany Division, Forest Research Institute, Dehradun, India
| |
Collapse
|
11
|
Traditional System Versus DNA Barcoding in Identification of Bamboo Species: A Systematic Review. Mol Biotechnol 2021; 63:651-675. [PMID: 34002354 DOI: 10.1007/s12033-021-00337-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Bamboo, a gramineous plant belonging to the family Poaceae, comprises of 1575 species from 116 genera across the globe. It has the ability to grow and evolve on degraded land and hence, can be utilized in the various applications as an alternative for plastic and wood. DNA barcoding, a long genomic sequence, identifies barcode region which shows species-specific nucleotide differences. This technology is considered as advanced molecular technique utilized for characterization and classification of the various species by applying distinctive molecular markers. Recent investigations revealed the potential application of various barcode regions such as matK, rbcL, rpoB, rpoC1, psbA-trnH, and ITS2, in identification of many bamboo species from different genus. In this review we comprehensively discussed the relevance of DNA barcoding as a tool in classification/identification of various bamboo species. We highlighted the methodology, how this advance technology overcomes the challenges associated with traditional methods along with prospects for future research.
Collapse
|
12
|
Brown SD. Classification of tropical hardwood samples by species and geographical origin. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
A computer-aided method for identifying the presence of softwood growth ring boundaries. PLoS One 2020; 15:e0235727. [PMID: 32946443 PMCID: PMC7500654 DOI: 10.1371/journal.pone.0235727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/31/2020] [Indexed: 11/19/2022] Open
Abstract
The objective of this study was to develop a computer-aided method to quantify the obvious degree of growth ring boundaries of softwood species, based on data analysis with some image processing technologies. For this purpose, a 5× magnified cross-section color micro-image of softwood was cropped into 20 sub-images, and then every image was binarized as a gray image according to an automatic threshold value. After that, the number of black pixels in the gray image was counted row by row and the number of black pixels was binarized to 0 or 100. Finally, a transition band from earlywood to latewood on the sub-image was identified. If everything goes as planned, the growth ring boundaries of the sub-image would be distinct. Otherwise would be indistinct or absent. If more than 50% sub-images are distinct, with the majority voting method, the growth ring boundaries of softwood would be distinct, otherwise would be indistinct or absent. The proposed method has been visualized as a growth-ring-boundary detecting system based on the .NET Framework. A sample of 100 micro-images (see S1 Fig via https://github.com/senly2019/Lin-Qizhao/) of softwood cross-sections were selected for evaluation purposes. In short, this detecting system computes the obvious degree of growth ring boundaries of softwood species by image processing involving image importing, image cropping, image reading, image grayscale, image binarization, data analysis. The results showed that the method used avoided mistakes made by the manual comparison method of identifying the presence of growth ring boundaries, and it has a high accuracy of 98%.
Collapse
|
14
|
Cui Z, Li X, Xu D, Yang Z. Changes in Non-Structural Carbohydrates, Wood Properties and Essential Oil During Chemically-Induced Heartwood Formation in Dalbergia odorifera. FRONTIERS IN PLANT SCIENCE 2020; 11:1161. [PMID: 32903589 PMCID: PMC7438546 DOI: 10.3389/fpls.2020.01161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
The highly valuable heartwood of Dalbergia odorifera T. Chen, known as Jiang Xiang in traditional Chinese medicine, is formed very slowly, and there is a need to better understand the process and promote heartwood formation. Chemical induction is considered to be one of the promising methods to induce heartwood formation. However, to date no method has been proved effective for D. odorifera as little is known about biochemical and physiological changes during heartwood development. Three potential heartwood induction substances viz. acetic acid, sodium chloride, and hydrogen peroxide solutions were injected into the trunk of D. odorifera to determine the effect on heartwood formation and physiological activity. Non-structural carbohydrates, lipids, wood properties, and essential oil were assessed in the post-treatment period. As also observed in the formation of natural heartwood, chemical-induced Jiang Xiang production was accompanied by sapwood dehydration, non-structural carbohydrates consumption, and synthesis of heartwood substances. As the heartwood substances accumulated, basic density and essential oil content increased gradually, thereby Jiang Xiang was finally produced. In this process, physiological parameters of discolored sapwood gradually evolved to resemble those of natural heartwood. Hydrogen peroxide-induced Jiang Xiang was closest to natural heartwood, and the essential oil components met the standards for high-quality Jiang Xiang, while the induction effects of acetic acid and sodium chloride were unsatisfactory. Thus, this study indicates that hydrogen peroxide has the potential to induce Jiang Xiang production in Dalbergia odorifera.
Collapse
|
15
|
Predicting the geographic origin of Spanish Cedar (Cedrela odorata L.) based on DNA variation. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01282-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Shang D, Brunswick P, Yan J, Bruno J, Duchesne I, Isabel N, VanAggelen G, Kim M, Evans PD. Chemotyping and identification of protected Dalbergiatimber using gas chromatography quadrupole time of flight mass spectrometry. J Chromatogr A 2020; 1615:460775. [DOI: 10.1016/j.chroma.2019.460775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 11/26/2022]
|
17
|
Wang X, Xue J, Zhang Y, Xie H, Wang Y, Weng W, Kang Y, Huang J. DNA barcodes for the identification of Stephania (Menispermaceae) species. Mol Biol Rep 2020; 47:2197-2203. [PMID: 32078092 DOI: 10.1007/s11033-020-05325-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/13/2020] [Indexed: 11/29/2022]
Abstract
Stephania is a medicinal plants-rich genus of Menispermaceae. However, the identification of morphologically-similar species in Stephania is difficult using the currently reported methods. The indiscriminate overexploitation of Stephania plants has resulted in clinical misuse and endangerment of many species, which necessitates the development of an efficient and reliable method for species authentication. Therefore, six candidate DNA barcode sequences (ITS, ITS2, psbA-trnH, matK, rbcL, and trnL-F) were tested for their capacity to identify Stephania species. The barcodes were analyzed either as a single region or in combination by tree-based [neighbor-joining (NJ) and Bayesian inference (BI)], distance-based (PWG-distance), and sequence similarity-based (TaxonDNA) methods. Amplification and sequencing success rates were 100% for all six candidate barcodes. A comparison of six barcode regions showed that ITS exhibited the highest number of variable and informative sites (182/179), followed by psbA-trnH (173/162). DNA barcoding gap assessment showed that interspecific distances of the six barcodes were greater than intraspecific distances. The identification results showed that species discrimination rates of combination barcodes were higher than those of single-region barcodes. Based on best match and best close match methods, the ITS+psbA-trnH combination exhibited the highest discrimination power (93.93%). Further, all Stephania species could be resolved in the phylogenetic trees based on ITS+psbA-trnH (NJ, BI). This study demonstrates that DNA barcoding is an efficient method to identify Stephania species and recommends that the ITS+psbA-trnH combination is the best DNA barcode for the identification of Stephania species.
Collapse
Affiliation(s)
- Xieli Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, China.,School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiayun Xue
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yangyang Zhang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hui Xie
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yaqin Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Weiyu Weng
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Kang
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Jianming Huang
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
18
|
Song Y, Zhang Y, Xu J, Li W, Li M. Characterization of the complete chloroplast genome sequence of Dalbergia species and its phylogenetic implications. Sci Rep 2019; 9:20401. [PMID: 31892714 PMCID: PMC6938520 DOI: 10.1038/s41598-019-56727-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/13/2019] [Indexed: 11/09/2022] Open
Abstract
The pantropical plant genus Dalbergia comprises approximately 250 species, most of which have a high economic and ecological value. However, these species are among the most threatened due to illegal logging and the timber trade. To enforce protective legislation and ensure effective conservation of Dalbergia species, the identity of wood being traded must be accurately validated. For the rapid and accurate identification of Dalbergia species and assessment of phylogenetic relationships, it would be highly desirable to develop more effective DNA barcodes for these species. In this study, we sequenced and compared the chloroplast genomes of nine species of Dalbergia. We found that these chloroplast genomes were conserved with respect to genome size, structure, and gene content and showed low sequence divergence. We identified eight mutation hotspots, namely, six intergenic spacer regions (trnL-trnT, atpA-trnG, rps16-accD, petG-psaJ, ndhF-trnL, and ndhG-ndhI) and two coding regions (ycf1a and ycf1b), as candidate DNA barcodes for Dalbergia. Phylogenetic analyses based on whole chloroplast genome data provided the best resolution of Dalbergia, and phylogenetic analysis of the Fabaceae showed that Dalbergia was sister to Arachis. Based on comparison of chloroplast genomes, we identified a set of highly variable markers that can be developed as specific DNA barcodes.
Collapse
Affiliation(s)
- Yun Song
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yongjiang Zhang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Jin Xu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Weimin Li
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - MingFu Li
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
19
|
Machine Learning Models with Quantitative Wood Anatomy Data Can Discriminate between Swietenia macrophylla and Swietenia mahagoni. FORESTS 2019. [DOI: 10.3390/f11010036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Illegal logging and associated trade aggravate the over-exploitation of Swietenia species, of which S. macrophylla King, S. mahagoni (L.) Jacq, and S. humilis Zucc. have been listed in Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) Appendix Ⅱ. Implementation of CITES necessitates the development of efficient forensic tools to identify wood species accurately, and ideally ones readily deployable in wood anatomy laboratories across the world. Herein, a method using quantitative wood anatomy data in combination with machine learning models to discriminate between three Swietenia species is presented, in addition to a second model focusing only on the two historically more important species S. mahagoni and S. macrophylla. The intra- and inter-specific variations in nine quantitative wood anatomical characters were measured and calculated based on 278 wood specimens, and four machine learning classifiers—Decision Tree C5.0, Naïve Bayes (NB), Support Vector Machine (SVM), and Artificial Neural Network (ANN)—were used to discriminate between the species. Among these species, S. macrophylla exhibited the largest intraspecific variation, and all three species showed at least partly overlapping values for all nine characters. SVM performed the best of all the classifiers, with an overall accuracy of 91.4% and a per-species correct identification rate of 66.7%, 95.0%, and 80.0% for S. humilis, S. macrophylla, and S. mahagoni, respectively. The two-species model discriminated between S. macrophylla and S. mahagoni with accuracies of over 90.0% using SVM. These accuracies are lower than perfect forensic certainty but nonetheless demonstrate that quantitative wood anatomy data in combination with machine learning models can be applied as an efficient tool to discriminate anatomically between similar species in the wood anatomy laboratory. It is probable that a range of previously anatomically inseparable species may become identifiable by incorporating in-depth analysis of quantitative characters and appropriate statistical classifiers.
Collapse
|
20
|
Wiedenhoeft AC, Simeone J, Smith A, Parker-Forney M, Soares R, Fishman A. Fraud and misrepresentation in retail forest products exceeds U.S. forensic wood science capacity. PLoS One 2019; 14:e0219917. [PMID: 31344141 PMCID: PMC6657862 DOI: 10.1371/journal.pone.0219917] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022] Open
Abstract
Fraud and misrepresentation in forest products supply chains is often associated with illegal logging, but the extent of fraud in the U.S. forest products market, and the availability of forensic expertise to detect it, is unknown. We used forensic wood anatomy to test 183 specimens from 73 consumer products acquired from major U.S. retailers, surveyed U.S. experts regarding their forensic wood anatomy capacity, and conducted a proficiency-testing program of those experts. 62% of tested products (45 of 73) had one or more type of fraudulent or misrepresented claim. Survey respondents reported a total capacity of 830 wood specimens per year, and participants' identification accuracy ranged from 6% to 92%. Given the extent of fraud and misrepresentation, U.S. wood forensic wood anatomy capacity does not scale with the need for such expertise. We call for increased training in forensic wood anatomy and its broader application in forest products supply chains to eliminate fraud and combat illegal logging.
Collapse
Affiliation(s)
- Alex C. Wiedenhoeft
- Center for Wood Anatomy Research, Forest Products Laboratory, Madison, WI, United States of America
- Department of Botany, University of Wisconsin, Madison, WI, United States of America
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States of America
- Ciências Biológicas (Botânica), Universidade Estadual Paulista–Botucatu, São Paulo, Brasil
- * E-mail:
| | - John Simeone
- Simeone Consulting, LLC, Anchorage, AK, United States of America
- World Wildlife Fund, Washington, DC, United States of America
| | - Amy Smith
- World Wildlife Fund, Washington, DC, United States of America
| | | | - Richard Soares
- Center for Wood Anatomy Research, Forest Products Laboratory, Madison, WI, United States of America
- Department of Botany, University of Wisconsin, Madison, WI, United States of America
| | - Akiva Fishman
- World Wildlife Fund, Washington, DC, United States of America
| |
Collapse
|
21
|
Jiao L, Lu Y, He T, Li J, Yin Y. A strategy for developing high-resolution DNA barcodes for species discrimination of wood specimens using the complete chloroplast genome of three Pterocarpus species. PLANTA 2019; 250:95-104. [PMID: 30923906 DOI: 10.1007/s00425-019-03150-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/23/2019] [Indexed: 05/25/2023]
Abstract
A method for extraction of wood DNA and a strategy for designing high-resolution barcodes for wood were developed. Ycf1b was the prioritized barcode to resolve the Pterocarpus wood species studied. DNA barcoding, an effective tool for wood species identification, mainly focuses on universal barcodes and often lacks high resolution to differentiate species, especially for closely related taxa within the same genus. Therefore, more highly informative DNA barcodes need to be identified. This study is the first to report a strategy for developing specific DNA barcodes of wood tissues. The complete chloroplast genomes of leaf samples of three Pterocarpus species, i.e., P. indicus, P. santalinus, and P. tinctorius, were sequenced, and thereafter, the most variable DNA regions were identified on the scale of the complete chloroplast genomes. Finally, wood DNA was extracted from 30 wood specimens of the three Pterocarpus species, and DNA recovery rates of the selected regions were tested for applicability to verification on the wood specimens studied. The seven regions with the most variation (rpl32-ccsA, rpl20-clpP, trnC-rpoB, ycf1b, accD-ycf4, ycf1a, and psbK-accD) were identified from the chloroplast genome by quantifying nucleotide diversity (Pi > 0.02), which was remarkably higher than that of the plant universal barcodes (rbcL, matK, and trnH-psbA) and the previously reported barcodes (ndhF-rpl32 and trnL-F) used for phylogenetic analysis in Pterocarpus. After comprehensive evaluation of species discrimination ability and applicability, the ycf1b region performed well in terms of the recovery success rate (76.7%) and species identification (100%) for wood specimens of the three Pterocarpus species, and was identified as the preferred high-resolution chloroplast barcode for selected Pterocarpus species. It will offer technical support for curbing illegal timber harvesting activities and for conserving endangered and valuable wood species.
Collapse
Affiliation(s)
- Lichao Jiao
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China
| | - Yang Lu
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China
| | - Tuo He
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China
| | - Jianing Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Hainan, 571737, China
| | - Yafang Yin
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China.
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
22
|
He T, Jiao L, Wiedenhoeft AC, Yin Y. Machine learning approaches outperform distance- and tree-based methods for DNA barcoding of Pterocarpus wood. PLANTA 2019; 249:1617-1625. [PMID: 30825008 DOI: 10.1007/s00425-019-03116-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/20/2019] [Indexed: 05/10/2023]
Abstract
Machine-learning approaches (MLAs) for DNA barcoding outperform distance- and tree-based methods on identification accuracy and cost-effectiveness to arrive at species-level identification of wood. DNA barcoding is a promising tool to combat illegal logging and associated trade, and the development of reliable and efficient analytical methods is essential for its extensive application in the trade of wood and in the forensics of natural materials more broadly. In this study, 120 DNA sequences of four barcodes (ITS2, matK, ndhF-rpl32, and rbcL) generated in our previous study and 85 downloaded from National Center for Biotechnology Information (NCBI) were collected to establish a reference data set for six commercial Pterocarpus woods. MLAs (BLOG, BP-neural network, SMO and J48) were compared with distance- (TaxonDNA) and tree-based (NJ tree) methods based on identification accuracy and cost-effectiveness across these six species, and also were applied to discriminate the CITES-listed species Pterocarpus santalinus from its anatomically similar species P. tinctorius for forensic identification. MLAs provided higher identification accuracy (30.8-100%) than distance- (15.1-97.4%) and tree-based methods (11.1-87.5%), with SMO performing the best among the machine learning classifiers. The two-locus combination ITS2 + matK when using SMO classifier exhibited the highest resolution (100%) with the fewest barcodes for discriminating the six Pterocarpus species. The CITES-listed species P. santalinus was discriminated successfully from P. tinctorius using MLAs with a single barcode, ndhF-rpl32. This study shows that MLAs provided higher identification accuracy and cost-effectiveness for forensic application over other analytical methods in DNA barcoding of Pterocarpus wood.
Collapse
Affiliation(s)
- Tuo He
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China
- Forest Products Laboratory, Center for Wood Anatomy Research, USDA Forest Service, Madison, WI, 53726, USA
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Lichao Jiao
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China
| | - Alex C Wiedenhoeft
- Forest Products Laboratory, Center for Wood Anatomy Research, USDA Forest Service, Madison, WI, 53726, USA
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
- Department of Forestry and National Resources, Purdue University, West Lafayette, IN, 47907, USA
- Ciências Biológicas (Botânica), Univesidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Yafang Yin
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China.
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
23
|
Do HDK, Jung J, Hyun J, Yoon SJ, Lim C, Park K, Kim JH. The newly developed single nucleotide polymorphism (SNP) markers for a potentially medicinal plant, Crepidiastrum denticulatum (Asteraceae), inferred from complete chloroplast genome data. Mol Biol Rep 2019; 46:3287-3297. [PMID: 30980269 DOI: 10.1007/s11033-019-04789-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/28/2019] [Indexed: 01/09/2023]
Abstract
Medicinal effects of Crepidiastrum denticulatum have been previously reported. However, the genomic resources of this species and its applications have not been studied. In this study, based on the next generation sequencing method (Miseq sequencing system), we characterize the chloroplast genome of C. denticulatum which contains a large single copy (84,112 bp) and a small single copy (18,519 bp), separated by two inverted repeat regions (25,074 bp). This genome consists of 80 protein-coding gene, 30 tRNAs, and four rRNAs. Notably, the trnT_GGU is pseudogenized because of a small insertion within the coding region. Comparative genomic analysis reveals a high similarity among Asteraceae taxa. However, the junctions between LSC, SSC, and IRs locate in different positions within rps19 and ycf1 among examined species. Also, we describe a newly developed single nucleotide polymorphism (SNP) marker for C. denticulatum based on amplification-refractory mutation system (ARMS) technique. The markers, inferred from SNP in rbcL and matK genes, show effectiveness to recognize C. denticulatum from other related taxa through simple PCR protocol. The chloroplast genome-based molecular markers are effective to distinguish a potentially medicinal species, C. denticulatum, from other related taxa. Additionally, the complete chloroplast genome of C. denticulatum provides initial genomic data for further studies on phylogenomics, population genetics, and evolutionary history of Crepidiastrum as well as other taxa in Asteraceae.
Collapse
Affiliation(s)
- Hoang Dang Khoa Do
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - Joonhyung Jung
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - JongYoung Hyun
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - Seok Jeong Yoon
- Incospharm Corp, 328 Techno-2-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Chaejin Lim
- Incospharm Corp, 328 Techno-2-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Keedon Park
- Incospharm Corp, 328 Techno-2-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
24
|
A GC-MS Protocol for Separating Endangered and Non-endangered Pterocarpus Wood Species. Molecules 2019; 24:molecules24040799. [PMID: 30813336 PMCID: PMC6413215 DOI: 10.3390/molecules24040799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 11/23/2022] Open
Abstract
Pterocarpus santalinus and Pterocarpus tincorius are commonly used traded timber species of the genus Pterocarpus. P. santalinus has been listed in Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). As a non-CITES species, P. tincorius is also indiscriminately labeled as P. santalinus due to the similar macroscopic and microscopic features with P. santalinus. In order to understand the molecular discrimination between these easily confused species, xylarium heartwoods of these two species were extracted by three different kinds of solvents and analyzed using gas chromatography–mass spectrometry (GC-MS). Multivariate analyses were also applied for the selection of marker compounds that are distinctive between P. santalinus and P. tincorius. A total of twenty volatile compounds were detected and tentatively identified in three kinds of extracts, and these compounds included alcohols, stilbenoids, esters, aromatic hydrocarbons, ketones, miscellaneous, phenols, and flavonoids. GC-MS analyses also revealed that extraction solvents including ethanol and water (EW), ethyl acetate (EA), and benzene–ethanol (BE) gave the best chemotaxonomical discrimination in the chemical components and relative contents of the two Pterocarpus species. After chemometric analyses, EW displayed higher predictive accuracy (100%) than those of EA extract (83.33%) and BE extract (83.33%). Furthermore, spathulenol (17.58 min) and pterostilbene (23.65 min) were elucidated as the critical compounds for the separation of the EW extracts of P. santalinus and P. tinctorius. Thus, a protocol of GC-MS and multivariate analyses was developed to use for successfully distinguishing P. santalinus from P. tinctorius.
Collapse
|
25
|
Tang K, Ren J, Cronn R, Erickson DL, Milligan BG, Parker-Forney M, Spouge JL, Sun F. Alignment-free genome comparison enables accurate geographic sourcing of white oak DNA. BMC Genomics 2018; 19:896. [PMID: 30526482 PMCID: PMC6288960 DOI: 10.1186/s12864-018-5253-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/15/2018] [Indexed: 01/14/2023] Open
Abstract
Background The application of genomic data and bioinformatics for the identification of restricted or illegally-sourced natural products is urgently needed. The taxonomic identity and geographic provenance of raw and processed materials have implications in sustainable-use commercial practices, and relevance to the enforcement of laws that regulate or restrict illegally harvested materials, such as timber. Improvements in genomics make it possible to capture and sequence partial-to-complete genomes from challenging tissues, such as wood and wood products. Results In this paper, we report the success of an alignment-free genome comparison method, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {d}_2^{\ast }, $$\end{document}d2∗, that differentiates different geographic sources of white oak (Quercus) species with a high level of accuracy with very small amount of genomic data. The method is robust to sequencing errors, different sequencing laboratories and sequencing platforms. Conclusions This method offers an approach based on genome-scale data, rather than panels of pre-selected markers for specific taxa. The method provides a generalizable platform for the identification and sourcing of materials using a unified next generation sequencing and analysis framework. Electronic supplementary material The online version of this article (10.1186/s12864-018-5253-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kujin Tang
- Quantitative and Computational Biology Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jie Ren
- Quantitative and Computational Biology Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Richard Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, 97331, USA.
| | - David L Erickson
- DNA4 Technologies LLC, bwtech@UMBC Research & Technology Park, Baltimore, MD, 21227, USA
| | - Brook G Milligan
- Conservation Genomics Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - John L Spouge
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Fengzhu Sun
- Quantitative and Computational Biology Program, University of Southern California, Los Angeles, CA, 90089, USA. .,Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|