1
|
Wu M, Li Y, Liu Z, Xia L, Xiang Y, Zhao L, Yang X, Li Z, Xie X, Wang L, Wang R, Xu S, Yang J. Genome-wide identification of the CAD gene family and functional analysis of putative bona fide CAD genes in tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1400213. [PMID: 39040505 PMCID: PMC11261167 DOI: 10.3389/fpls.2024.1400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Abstract
Cinnamyl alcohol dehydrogenase (CAD) plays a crucial role in lignin biosynthesis, and the gene family encoding various CAD isozymes has been cloned and characterized in numerous plant species. However, limited information regarding the CAD gene family in tobacco is currently available. In this study, we identified 10 CAD genes in Nicotiana tabacum, four in N. tomentosiformis, and six in N. sylvestris. The nucleotide and amino acid sequences of these tobacco CADs demonstrate high levels of similarity, whereas the putative protein sequences conservatively possessed two Zn2+ binding motifs and an NADP(H) cofactor binding motif. Both NtCAD1 and NtCAD2 had conservative substrate binding sites, similar to those possessed by bona fide CADs, and evidence from phylogenetic analysis as well as expression profiling supported their role as bona fide CADs involved in lignin biosynthesis. NtCAD1 has two paralogous genes, NtCAD1-1 and NtCAD1-2. Enzyme activity analysis revealed that NtCAD1-1 and NtCAD1-2 had a high affinity to coniferyl aldehyde, p-coumaryl aldehyde, and sinapyl aldehyde, whereas NtCAD2 preferred coniferyl aldehyde and p-coumaryl aldehyde as substrates. The kinetic parameter assay revealed that NtCAD1-2 functions as the most efficient enzyme. Downregulation of both NtCAD1-1 and NtCAD1-2 resulted in reddish-brown stems without significant changes in lignin content. Furthermore, NtCAD1-1, NtCAD1-2, and NtCAD2 showed distinct expression patterns in response to biotic and abiotic stresses, as well as different phytohormones. Our findings suggest that NtCAD1-1 and NtCAD1-2 are involved in lignin biosynthesis, with NtCAD1-2 also participating in both biological and abiotic stresses, whereas NtCAD2 plays a distinct role mainly in responding to biological and abiotic stresses in tobacco.
Collapse
Affiliation(s)
- Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yijun Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Zhengtai Liu
- Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Lin Xia
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yiyu Xiang
- Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Lijie Zhao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaobei Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Lin Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Ren Wang
- Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Sheng Xu
- Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
2
|
Wang Z, Wu J, Kong W, Zhou Y, Ye C, Yuan Q, Zhang Y, Li P. The Integration of Transcriptome and Metabolome Analyses Provides Insights into the Determinants of the Wood Properties in Toona ciliata. Int J Mol Sci 2024; 25:4541. [PMID: 38674126 PMCID: PMC11050501 DOI: 10.3390/ijms25084541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Toona ciliata, also known as Chinese mahogany, is a high-quality and fast-growing wood species with a high economic value. The wood properties of T. ciliata of different provenances vary significantly. In this study, we conducted comprehensive transcriptome and metabolome analyses of red and non-red T. ciliata wood cores of different provenances to compare their wood properties and explore the differential metabolites and genes that govern the variation in their wood properties. Through combined analyses, three differential genes and two metabolites were identified that are possibly related to lignin synthesis. The lignin content in wood cores from T. ciliata of different provenances shows significant variation following systematic measurement and comparisons. The gene Tci09G002190, one of the three differential genes, was identified as a member of the CAD (Cinnamyl alcohol dehydrogenase) gene family of T. ciliata, which is associated with lignin synthesis. Our data provide insights into the determinants of the wood properties in T. ciliata, providing a solid foundation for research into the subsequent mechanisms of the formation of T. ciliata wood.
Collapse
Affiliation(s)
- Zhi Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.W.); (W.K.); (Y.Z.); (C.Y.); (Q.Y.); (Y.Z.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
| | - Jinsong Wu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.W.); (W.K.); (Y.Z.); (C.Y.); (Q.Y.); (Y.Z.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
| | - Weijia Kong
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.W.); (W.K.); (Y.Z.); (C.Y.); (Q.Y.); (Y.Z.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
| | - Yu Zhou
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.W.); (W.K.); (Y.Z.); (C.Y.); (Q.Y.); (Y.Z.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
| | - Chunyi Ye
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.W.); (W.K.); (Y.Z.); (C.Y.); (Q.Y.); (Y.Z.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
| | - Qianyun Yuan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.W.); (W.K.); (Y.Z.); (C.Y.); (Q.Y.); (Y.Z.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
| | - Yongjia Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.W.); (W.K.); (Y.Z.); (C.Y.); (Q.Y.); (Y.Z.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
| | - Pei Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.W.); (W.K.); (Y.Z.); (C.Y.); (Q.Y.); (Y.Z.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642, China
| |
Collapse
|
3
|
Li D, Li X, Wang Z, Wang H, Gao J, Liu X, Zhang Z. Transcription factors RhbZIP17 and RhWRKY30 enhance resistance to Botrytis cinerea by increasing lignin content in rose petals. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1633-1646. [PMID: 38180121 DOI: 10.1093/jxb/erad473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
The petals of ornamental plants such as roses (Rosa spp.) are the most economically important organs. This delicate, short-lived plant tissue is highly susceptible to pathogens, in large part because the walls of petal cells are typically thinner and more flexible compared with leaf cells, allowing the petals to fold and bend without breaking. The cell wall is a dynamic structure that rapidly alters its composition in response to pathogen infection, thereby reinforcing its stability and boosting plant resistance against diseases. However, little is known about how dynamic changes in the cell wall contribute to resistance to Botrytis cinerea in rose petals. Here, we show that the B. cinerea-induced transcription factor RhbZIP17 is required for the defense response of rose petals. RhbZIP17 is associated with phenylpropanoid biosynthesis and binds to the promoter of the lignin biosynthesis gene RhCAD1, activating its expression. Lignin content showed a significant increase under gray mold infection compared with the control. RhCAD1 functions in the metabolic regulation of lignin production and, consequently, disease resistance, as revealed by transient silencing and overexpression in rose petals. The WRKY transcription factor RhWRKY30 is also required to activate RhCAD1 expression and enhance resistance against B. cinerea. We propose that RhbZIP17 and RhWRKY30 increase lignin biosynthesis, improve the resistance of rose petals to B. cinerea, and regulate RhCAD1 expression.
Collapse
Affiliation(s)
- Dandan Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xiaomei Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Zicheng Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Haochen Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Junzhao Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Shafiei R, Hooper M, McClellan C, Oakey H, Stephens J, Lapierre C, Tsuji Y, Goeminne G, Vanholme R, Boerjan W, Ralph J, Halpin C. Downregulation of barley ferulate 5-hydroxylase dramatically alters straw lignin structure without impact on mechanical properties. FRONTIERS IN PLANT SCIENCE 2023; 13:1125003. [PMID: 36726680 PMCID: PMC9886061 DOI: 10.3389/fpls.2022.1125003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Barley is a major cereal crop for temperate climates, and a diploid genetic model for polyploid wheat. Cereal straw biomass is an attractive source of feedstock for green technologies but lignin, a key determinant of feedstock recalcitrance, complicates bio-conversion processes. However, manipulating lignin content to improve the conversion process could negatively affect agronomic traits. An alternative approach is to manipulate lignin composition which influences the physical and chemical properties of straw. This study validates the function of a barley ferulate 5-hydroxylase gene and demonstrates that its downregulation using the RNA-interference approach substantially impacts lignin composition. We identified five barley genes having putative ferulate 5-hydroxylase activity. Downregulation of HvF5H1 substantially reduced the lignin syringyl/guaiacyl (S/G) ratio in straw while the lignin content, straw mechanical properties, plant growth habit, and grain characteristics all remained unaffected. Metabolic profiling revealed significant changes in the abundance of 173 features in the HvF5H1-RNAi lines. The drastic changes in the lignin polymer of transgenic lines highlight the plasticity of barley lignification processes and the associated potential for manipulating and improving lignocellulosic biomass as a feedstock for green technologies. On the other hand, our results highlight some differences between the lignin biosynthetic pathway in barley, a temperate climate grass, and the warm climate grass, rice, and underscore potential diversity in the lignin biosynthetic pathways in grasses.
Collapse
Affiliation(s)
- Reza Shafiei
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, United Kingdom
| | - Matthew Hooper
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, United Kingdom
| | - Christopher McClellan
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, United Kingdom
| | - Helena Oakey
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, United Kingdom
- Faculty of Sciences, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Jennifer Stephens
- Cell And Molecular Sciences, James Hutton Institute, Dundee, United Kingdom
| | | | - Yukiko Tsuji
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
- Department of Energy’s Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent, Center for Plant Systems Biology, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent, Center for Plant Systems Biology, Ghent, Belgium
| | - John Ralph
- Department of Energy’s Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Claire Halpin
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
5
|
Ménard D, Blaschek L, Kriechbaum K, Lee CC, Serk H, Zhu C, Lyubartsev A, Nuoendagula , Bacsik Z, Bergström L, Mathew A, Kajita S, Pesquet E. Plant biomechanics and resilience to environmental changes are controlled by specific lignin chemistries in each vascular cell type and morphotype. THE PLANT CELL 2022; 34:koac284. [PMID: 36215679 PMCID: PMC9709985 DOI: 10.1093/plcell/koac284] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/11/2022] [Indexed: 05/12/2023]
Abstract
The biopolymer lignin is deposited in the cell walls of vascular cells and is essential for long-distance water conduction and structural support in plants. Different vascular cell types contain distinct and conserved lignin chemistries, each with specific aromatic and aliphatic substitutions. Yet, the biological role of this conserved and specific lignin chemistry in each cell type remains unclear. Here, we investigated the roles of this lignin biochemical specificity for cellular functions by producing single cell analyses for three cell morphotypes of tracheary elements, which all allow sap conduction but differ in their morphology. We determined that specific lignin chemistries accumulate in each cell type. Moreover, lignin accumulated dynamically, increasing in quantity and changing in composition, to alter the cell wall biomechanics during cell maturation. For similar aromatic substitutions, residues with alcohol aliphatic functions increased stiffness whereas aldehydes increased flexibility of the cell wall. Modifying this lignin biochemical specificity and the sequence of its formation impaired the cell wall biomechanics of each morphotype and consequently hindered sap conduction and drought recovery. Together, our results demonstrate that each sap-conducting vascular cell type distinctly controls their lignin biochemistry to adjust their biomechanics and hydraulic properties to face developmental and environmental constraints.
Collapse
Affiliation(s)
- Delphine Ménard
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Leonard Blaschek
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Konstantin Kriechbaum
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Cheng Choo Lee
- Umeå Core Facility for Electron Microscopy (UCEM), Umeå University, 901 87 Umeå, Sweden
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Chuantao Zhu
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Alexander Lyubartsev
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Nuoendagula
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Zoltán Bacsik
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Aji Mathew
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Edouard Pesquet
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Chao N, Huang S, Kang X, Yidilisi K, Dai M, Liu L. Systematic functional characterization of cinnamyl alcohol dehydrogenase family members revealed their functional divergence in lignin biosynthesis and stress responses in mulberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:145-156. [PMID: 35849944 DOI: 10.1016/j.plaphy.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Mulberry (Morus) is used as a feed additive and biofuel materials. Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.95) catalyzes the final step of monolignol biosynthesis and is responsible for various monolignols. Five MaCADs from Morus alba were cloned and functionally characterized in the present study. These MaCADs encoded proteins with 357-364 amino acids, and the putative protein sequences conservatively possessed two Zn2+ binding motifs and an NADP(H) cofactor binding motif. However, MaCAD1, 2, and 5 shared similar amino acids at substrate binding positions that differed from those possessed by bona fide CADs. MaCAD3 and 4 had conservative substrate binding sites, and both phylogenetic and expression profile analysis indicated they were bona fide CADs involved in lignin biosynthesis. The enzymatic assay showed that MaCAD1 and 5 had a high affinity to p-coumaryl aldehyde. MaCAD4 preferentially used coniferyl aldehyde and sinapyl aldehyde as substrates. His-72 and Tyr-124 in MaCAD1 stabilized p-coumaryl aldehyde, and may have resulted in the substrate preference for p-coumaryl aldehyde. Down-regulation of MaCADs in mulberry showed that MaCAD3/4 were dominant CADs that functioned in monolignol biosynthesis, and decreased MaCAD3/4 resulted in significant decreases of lignin content in both stems and leaves. MaCADs exhibited different expression patterns in response to various stresses, indicating their possible diverse roles. MaCAD2 and MaCAD5 may play positive roles in response to drought and cold stresses, respectively. These results provide a systematic functional analysis of MaCADs in mulberry and an important foundation for the genetic modification of the monolignol pathway in mulberry.
Collapse
Affiliation(s)
- Nan Chao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Shuai Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Xiaoru Kang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Keermula Yidilisi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Mingjie Dai
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
7
|
Povkhova LV, Melnikova NV, Rozhmina TA, Novakovskiy RO, Pushkova EN, Dvorianinova EM, Zhuchenko AA, Kamionskaya AM, Krasnov GS, Dmitriev AA. Genes Associated with the Flax Plant Type (Oil or Fiber) Identified Based on Genome and Transcriptome Sequencing Data. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122616. [PMID: 34961087 PMCID: PMC8707629 DOI: 10.3390/plants10122616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
As a result of the breeding process, there are two main types of flax (Linum usitatissimum L.) plants. Linseed is used for obtaining seeds, while fiber flax is used for fiber production. We aimed to identify the genes associated with the flax plant type, which could be important for the formation of agronomically valuable traits. A search for polymorphisms was performed in genes involved in the biosynthesis of cell wall components, lignans, fatty acids, and ion transport based on genome sequencing data for 191 flax varieties. For 143 of the 424 studied genes (4CL, C3'H, C4H, CAD, CCR, CCoAOMT, COMT, F5H, HCT, PAL, CTL, BGAL, ABC, HMA, DIR, PLR, UGT, TUB, CESA, RGL, FAD, SAD, and ACT families), one or more polymorphisms had a strong correlation with the flax type. Based on the transcriptome sequencing data, we evaluated the expression levels for each flax type-associated gene in a wide range of tissues and suggested genes that are important for the formation of linseed or fiber flax traits. Such genes were probably subjected to the selection press and can determine not only the traits of seeds and stems but also the characteristics of the root system or resistance to stresses at a particular stage of development, which indirectly affects the ability of flax plants to produce seeds or fiber.
Collapse
Affiliation(s)
- Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Tatiana A. Rozhmina
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, 115598 Moscow, Russia
| | - Anastasia M. Kamionskaya
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| |
Collapse
|
8
|
Pająk M, Vítek P, Urban O, Klem K, Wąsik R, Michalec K, Pietrzykowski M. Genotype and soil substrate effects on the wood quality of poplar grown in a reclaimed lignite-mining area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112146. [PMID: 33601261 DOI: 10.1016/j.jenvman.2021.112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
An understanding of the structural organisation and chemistry of the cell walls in woody tissues is crucial from the perspective of plant mechanical strength, water transportability, as well as subsequent commercial utilisation of the wood. Poplar trees (Populus sp.), grown on two reclamation substrates ("Humus" and "Sand") under the extreme soil conditions of an external coal mining spoil heap of the lignite mine in Bełchatów (Central Poland), were examined. Conventional parameters - tree-ring width (TRW) and wood density (WD) resolved annually (years 2008-2017) were corroborated by a novel approach of Raman spectroscopic analysis. Annually resolved Raman spectroscopic data representing the lignin-to-cellulose ratio (Li/Ce) enabled to estimate trends of lignification. The above traits were obtained for the three poplar genotypes: H-275, Grandis, and Androscoggin to assess the suitability of their plantation on the reclaimed heap. Our results show a significant effect of genotype on TRW, WD, and the Raman Li/Ce, while the effect of the soil substrate was less pronounced. The highest Li/Ce was identified in the H-275 genotype grown on a substrate with hummus. H-275 also showed higher TRW values compared to the other genotypes. WD was significantly higher in Grandis and Androscoggin genotypes grown on the "Sand" substrate. Associations between tree-ring parameters and climatic variables (temperature and precipitation) were mostly low and not statistically significant. Our findings from individual tree rings indicate that the genotype is the crucial factor influencing the lignification of poplar trees grown on post-mining lands.
Collapse
Affiliation(s)
- M Pająk
- Department of Forest Ecology and Silviculture, University of Agriculture in Krakow, Al 29 Listopada 46, Krakow, PL, 31425, Poland
| | - P Vítek
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, Brno, CZ, 60300, Czech Republic.
| | - O Urban
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, Brno, CZ, 60300, Czech Republic
| | - K Klem
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, Brno, CZ, 60300, Czech Republic
| | - R Wąsik
- Department of Forest Utilization, Engineering and Forest Techniques, University of Agriculture in Krakow, Al 29 Listopada 46, Krakow, PL, 31425, Poland
| | - K Michalec
- Department of Forest Utilization, Engineering and Forest Techniques, University of Agriculture in Krakow, Al 29 Listopada 46, Krakow, PL, 31425, Poland
| | - M Pietrzykowski
- Department of Forest Ecology and Silviculture, University of Agriculture in Krakow, Al 29 Listopada 46, Krakow, PL, 31425, Poland
| |
Collapse
|
9
|
Lautenschläger T, Rüggeberg M, Noack N, Bunk K, Mawunu M, Speck T, Neinhuis C. Functional principles of baobab fruit pedicels - anatomy and biomechanics. ANNALS OF BOTANY 2020; 126:1215-1223. [PMID: 32808645 PMCID: PMC7684697 DOI: 10.1093/aob/mcaa149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Fruit pedicels have to deal with increasing loads after pollination due to continuous growth of the fruits. Thus, they represent interesting tissues from a mechanical as well as a developmental point of view. However, only a few studies exist on fruit pedicels. In this study, we unravel the anatomy and structural-mechanical relationships of the pedicel of Adansonia digitata, reaching up to 90 cm in length. METHODS Morphological and anatomical analyses included examination of stained cross-sections from various positions along the stalk as well as X-ray microtomography and scanning electron microscopy. For mechanical testing, fibre bundles derived from the mature pedicels were examined via tension tests. For establishing the structural-mechanical relationships, the density of the fibre bundles as well as their cellulose microfibril distribution and chemical composition were analysed. KEY RESULTS While in the peduncle the vascular tissue and the fibres are arranged in a concentric ring-like way, this organization shifts to the polystelic structure of separate fibre bundles in the pedicel. The polystelic pedicel possesses five vascular strands that consist of strong bast fibre bundles. The fibre bundles have a Young's modulus of up to 5 GPa, a tensile strength of up to 400 MPa, a high density (>1 g cm-3) and a high microfibril angle of around 20°. CONCLUSIONS The structural arrangement as well as the combination of high density and high microfibril angle of the bast fibre bundles are probably optimized for bearing considerable strain in torsion and bending while at the same time allowing for carrying high-tension loads.
Collapse
Affiliation(s)
- Thea Lautenschläger
- Department of Biology, Institute of Botany, Faculty of Science, Technische Universität Dresden, Germany
| | | | - Niclas Noack
- Department of Biology, Institute of Botany, Faculty of Science, Technische Universität Dresden, Germany
| | - Katharina Bunk
- Plant Biomechanics Group & Botanic Garden, University of Freiburg, Germany
- Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte Technologien, Germany
| | - Monizi Mawunu
- Department of Agronomy, Kimpa Vita University, Uíge, Angola
| | - Thomas Speck
- Plant Biomechanics Group & Botanic Garden, University of Freiburg, Germany
- Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte Technologien, Germany
| | - Christoph Neinhuis
- Department of Biology, Institute of Botany, Faculty of Science, Technische Universität Dresden, Germany
| |
Collapse
|
10
|
Yamamoto M, Blaschek L, Subbotina E, Kajita S, Pesquet E. Importance of Lignin Coniferaldehyde Residues for Plant Properties and Sustainable Uses. CHEMSUSCHEM 2020; 13:4400-4408. [PMID: 32692480 PMCID: PMC7539997 DOI: 10.1002/cssc.202001242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/15/2020] [Indexed: 05/26/2023]
Abstract
Increases in coniferaldehyde content, a minor lignin residue, significantly improves the sustainable use of plant biomass for feed, pulping, and biorefinery without affecting plant growth and yields. Herein, different analytical methods are compared and validated to distinguish coniferaldehyde from other lignin residues. It is shown that specific genetic pathways regulate amount, linkage, and position of coniferaldehyde within the lignin polymer for each cell type. This specific cellular regulation offers new possibilities for designing plant lignin for novel and targeted industrial uses.
Collapse
Affiliation(s)
- Masanobu Yamamoto
- Graduate School of Bio-Applications and Systems EngineeringTokyo University of Agriculture and TechnologyTokyo184-8588Japan
| | - Leonard Blaschek
- Arrhenius laboratories Department of Ecology, Environment and Plant SciencesStockholm University106 91StockholmSweden
| | - Elena Subbotina
- Arrhenius laboratories, Department of Organic ChemistryStockholm University106 91StockholmSweden
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems EngineeringTokyo University of Agriculture and TechnologyTokyo184-8588Japan
| | - Edouard Pesquet
- Arrhenius laboratories Department of Ecology, Environment and Plant SciencesStockholm University106 91StockholmSweden
| |
Collapse
|
11
|
Bryant ND, Pu Y, Tschaplinski TJ, Tuskan GA, Muchero W, Kalluri UC, Yoo CG, Ragauskas AJ. Transgenic Poplar Designed for Biofuels. TRENDS IN PLANT SCIENCE 2020; 25:881-896. [PMID: 32482346 DOI: 10.1016/j.tplants.2020.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 05/12/2023]
Abstract
Members of the genus Populus (i.e., cottonwood, hybrid poplar) represent a promising source of lignocellulosic biomass for biofuels. However, one of the major factors negatively affecting poplar's efficient conversion to biofuel is the inherent recalcitrance to enzymatic saccharification due to cell wall components such as lignin. To this effect, there have been efforts to modify gene expression to reduce biomass recalcitrance by changing cell wall properties. Here, we review recent genetic modifications of poplar that led to change cell wall properties and the resulting effects on subsequent pretreatment efficacy and saccharification. Although genetic engineering's impacts on cell wall properties are not fully predictable, recent studies have shown promising improvement in the biological conversion of transgenic poplar to biofuels.
Collapse
Affiliation(s)
- Nathan D Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Yunqiao Pu
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J Tschaplinski
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A Tuskan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C Kalluri
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chang Geun Yoo
- Department of Paper and Bioprocess Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA.
| |
Collapse
|
12
|
Ye X, Chen XF, Cai LY, Lai NW, Deng CL, Guo JX, Yang LT, Chen LS. Molecular and physiological mechanisms underlying magnesium-deficiency-induced enlargement, cracking and lignification of Citrus sinensis leaf veins. TREE PHYSIOLOGY 2020; 40:1277-1291. [PMID: 32348504 DOI: 10.1093/treephys/tpaa059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Little is known about the physiological and molecular mechanisms underlying magnesium (Mg)-deficiency-induced enlargement, cracking and lignification of midribs and main lateral veins of Citrus leaves. Citrus sinensis (L.) Osbeck seedlings were irrigated with nutrient solution at a concentration of 0 (Mg-deficiency) or 2 (Mg-sufficiency) mM Mg(NO3)2 for 16 weeks. Enlargement, cracking and lignification of veins occurred only in lower leaves, but not in upper leaves. Total soluble sugars (glucose + fructose + sucrose), starch and cellulose concentrations were less in Mg-deficiency veins of lower leaves (MDVLL) than those in Mg-sufficiency veins of lower leaves (MSVLL), but lignin concentration was higher in MDVLL than that in MSVLL. However, all four parameters were similar between Mg-deficiency veins of upper leaves (MDVUL) and Mg-sufficiency veins of upper leaves (MSVUL). Using label-free, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we identified 1229 and 492 differentially abundant proteins (DAPs) in MDVLL vs MSVLL and MDVUL vs MSVUL, respectively. Magnesium-deficiency-induced alterations of Mg, nonstructural carbohydrates, cell wall components, and protein profiles were greater in veins of lower leaves than those in veins of upper leaves. The increased concentration of lignin in MDVLL vs MSVLL might be caused by the following factors: (i) repression of cellulose and starch accumulation promoted lignin biosynthesis; (ii) abundances of proteins involved in phenylpropanoid biosynthesis pathway, hormone biosynthesis and glutathione metabolism were increased; and (iii) the abundances of the other DAPs [viz., copper/zinc-superoxide dismutase, ascorbate oxidase (AO) and ABC transporters] involved in lignin biosynthesis were elevated. Also, the abundances of several proteins involved in cell wall metabolism (viz., expansins, Rho GTPase-activating protein gacA, AO, monocopper oxidase-like protein and xyloglucan endotransglucosylase/hydrolase) were increased in MDVLL vs MSVLL, which might be responsible for the enlargement and cracking of leaf veins.
Collapse
Affiliation(s)
- Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Xu-Feng Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Li-Ya Cai
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Ning-Wei Lai
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Chong-Ling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, 40 Putuo Road, Qixing District, Guilin 541004, China
| | - Jiu-Xin Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
- The Higher Education Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, FAFU, 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
13
|
Bock P, Nousiainen P, Elder T, Blaukopf M, Amer H, Zirbs R, Potthast A, Gierlinger N. Infrared and Raman spectra of lignin substructures: Dibenzodioxocin. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2020; 51:422-431. [PMID: 32214622 PMCID: PMC7079546 DOI: 10.1002/jrs.5808] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 05/05/2023]
Abstract
Vibrational spectroscopy is a very suitable tool for investigating the plant cell wall in situ with almost no sample preparation. The structural information of all different constituents is contained in a single spectrum. Interpretation therefore heavily relies on reference spectra and understanding of the vibrational behavior of the components under study. For the first time, we show infrared (IR) and Raman spectra of dibenzodioxocin (DBDO), an important lignin substructure. A detailed vibrational assignment of the molecule, based on quantum chemical computations, is given in the Supporting Information; the main results are found in the paper. Furthermore, we show IR and Raman spectra of synthetic guaiacyl lignin (dehydrogenation polymer-G-DHP). Raman spectra of DBDO and G-DHP both differ with respect to the excitation wavelength and therefore reveal different features of the substructure/polymer. This study confirms the idea previously put forward that Raman at 532 nm selectively probes end groups of lignin, whereas Raman at 785 nm and IR seem to represent the majority of lignin substructures.
Collapse
Affiliation(s)
- Peter Bock
- Institute of BiophysicsUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Thomas Elder
- USDA Forest ServiceSouthern Research StationAuburnAlabama
| | - Markus Blaukopf
- Institute of Organic ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Hassan Amer
- Institute of Chemistry of Renewable ResourcesUniversity of Natural Resources and Life SciencesViennaAustria
- Department of Natural and Microbial Products ChemistryNational Research CentreGizaEgypt
| | - Ronald Zirbs
- Institute of Biologically Inspired MaterialsUniversity of Natural Resources and Life SciencesViennaAustria
| | - Antje Potthast
- Institute of Chemistry of Renewable ResourcesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Notburga Gierlinger
- Institute of BiophysicsUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
14
|
Wightman R, Busse-Wicher M, Dupree P. Correlative FLIM-confocal-Raman mapping applied to plant lignin composition and autofluorescence. Micron 2019; 126:102733. [PMID: 31479919 DOI: 10.1016/j.micron.2019.102733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/26/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a useful tool for discriminating fluorescent moieties, based on photon lifetimes, that cannot be otherwise resolved by looking solely at their excitation/emission characteristics. We present a method for correlative FLIM-confocal-Raman imaging and its application to lignin composition studies in the woody stems of the plant model Arabidopsis thaliana. Lignin is autofluorescent and exhibits characteristic fluorescence lifetimes attributed to its composition. Its composition can be further resolved by Raman microscopy to multiple peaks that represent different components. A lignin biosynthetic mutant is found to have a marked difference in fluorescence lifetime and corresponds to a change in composition as demonstrated by the Raman output.
Collapse
Affiliation(s)
- Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK.
| | - Marta Busse-Wicher
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| |
Collapse
|
15
|
Özparpucu M, Gierlinger N, Cesarino I, Burgert I, Boerjan W, Rüggeberg M. Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4039-4047. [PMID: 31187131 PMCID: PMC6685656 DOI: 10.1093/jxb/erz180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/02/2019] [Indexed: 05/20/2023]
Abstract
Wood is extensively used as a construction material. Despite increasing knowledge of its mechanical properties, the contribution of the cell-wall matrix polymers to wood mechanics is still not well understood. Previous studies have shown that axial stiffness correlates with lignin content only for cellulose microfibril angles larger than around 20°, while no influence is found for smaller angles. Here, by analysing the wood of poplar with reduced lignin content due to down-regulation of CAFFEOYL SHIKIMATE ESTERASE, we show that lignin content also influences axial stiffness at smaller angles. Micro-tensile tests of the xylem revealed that axial stiffness was strongly reduced in the low-lignin transgenic lines. Strikingly, microfibril angles were around 15° for both wild-type and transgenic poplars, suggesting that cellulose orientation is not responsible for the observed changes in mechanical behavior. Multiple linear regression analysis showed that the decrease in stiffness was almost completely related to the variation in both density and lignin content. We suggest that the influence of lignin content on axial stiffness may gradually increase as a function of the microfibril angle. Our results may help in building up comprehensive models of the cell wall that can unravel the individual roles of the matrix polymers.
Collapse
Affiliation(s)
- Merve Özparpucu
- Institute for Building Materials (IfB), ETH Zurich, Zurich, Switzerland
- School of Life Sciences Weihenstephan, Wood Research Munich, Technical University of Munich (TUM), Munich, Germany
| | - Notburga Gierlinger
- Institute for Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), Wien, Austria
| | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo – SP, Brazil
| | - Ingo Burgert
- Institute for Building Materials (IfB), ETH Zurich, Zurich, Switzerland
- Laboratory of Cellulose and Wood Materials, EMPA, Dübendorf, Switzerland
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Markus Rüggeberg
- Institute for Building Materials (IfB), ETH Zurich, Zurich, Switzerland
- Laboratory of Cellulose and Wood Materials, EMPA, Dübendorf, Switzerland
- Correspondence:
| |
Collapse
|
16
|
Lu N, Ma W, Han D, Liu Y, Wang Z, Wang N, Yang G, Qu G, Wang Q, Zhao K, Wang J. Genome-wide analysis of the Catalpa bungei caffeic acid O-methyltransferase (COMT) gene family: identification and expression profiles in normal, tension, and opposite wood. PeerJ 2019; 7:e6520. [PMID: 30886769 PMCID: PMC6421059 DOI: 10.7717/peerj.6520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/22/2019] [Indexed: 01/12/2023] Open
Abstract
Caffeic acid O-methyltransferase (COMT) is an important protein that participates in lignin synthesis and is associated with the ratio of G-/S-type lignin in plants. COMTs are associated with the wood properties of forest trees; however, little known about the COMT family in Catalpa bungei, a valuable timber tree species in China . We performed a comprehensive analysis of COMT genes in the C. bungei genome by describing the gene structure and phylogenetic relationships of each family member using bioinformatics-based methods. A total of 23 putative COMT genes were identified using the conserved domain sequences and amino acid sequences of COMTs from Arabidopsis thaliana and Populus trichocarpa as probes. Phylogenetic analysis showed that 23 CbuCOMTs can be divided into three groups based on their structural characteristics; five conserved domains were found in the COMT family. Promoter analysis indicated that the CbuCOMT promoters included various cis-acting elements related to growth and development. Real-time quantitative polymerase chain reaction (PCR) analysis showed differential expression among CbuCOMTs. CbuCOMT2, 7, 8, 9, 10, 12, 13, 14, 21, and 23 were mainly expressed in xylem. Only CbuCOMT23 was significantly downregulated in tension wood and upregulated in opposite wood compared to normal wood. Our study provides new information about the CbuCOMT gene family and will facilitate functional characterisation in further research.
Collapse
Affiliation(s)
- Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Donghua Han
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, China
| | - Ying Liu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhi Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Nan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guijuan Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qiuxia Wang
- Nanyang Research Institute of Forestry, Nanyang, China
| | - Kun Zhao
- Luoyang Academy of Agriculture and Forestry, Luoyang, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
17
|
Dinant S, Wolff N, De Marco F, Vilaine F, Gissot L, Aubry E, Sandt C, Bellini C, Le Hir R. Synchrotron FTIR and Raman spectroscopy provide unique spectral fingerprints for Arabidopsis floral stem vascular tissues. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:871-884. [PMID: 30407539 DOI: 10.1093/jxb/ery396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/30/2018] [Indexed: 05/22/2023]
Abstract
Cell walls are highly complex structures that are modified during plant growth and development. For example, the development of phloem and xylem vascular cells, which participate in the transport of sugars and water as well as providing support, can be influenced by cell-specific wall composition. Here, we used synchrotron radiation-based Fourier-transform infrared (SR-FTIR) and Raman spectroscopy to analyse the cell wall composition of floral stem vascular tissues of wild-type Arabidopsis and the double-mutant sweet11-1 sweet12-1, which has impaired sugar transport. The SR-FTIR spectra showed that in addition to modified xylem cell wall composition, phloem cell walls in the double-mutant line were characterized by modified hemicellulose composition. Combining Raman spectroscopy with a classification and regression tree (CART) method identified combinations of Raman shifts that could distinguish xylem vessels and fibers. In addition, the disruption of the SWEET11 and SWEET12 genes impacted on xylem wall composition in a cell-specific manner, with changes in hemicelluloses and cellulose observed at the xylem vessel interface. These results suggest that the facilitated transport of sugars by transporters that exist between vascular parenchyma cells and conducting cells is important in ensuring correct phloem and xylem cell wall composition.
Collapse
Affiliation(s)
- S Dinant
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
| | - N Wolff
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
| | - F De Marco
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
| | - F Vilaine
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
| | - L Gissot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
| | - E Aubry
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
| | - C Sandt
- Synchrotron SOLEIL, Ligne SMIS, L'Orme des Merisiers, Gif sur Yvette, France
| | - C Bellini
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - R Le Hir
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
| |
Collapse
|
18
|
Segmehl JS, Keplinger T, Krasnobaev A, Berg JK, Willa C, Burgert I. Facilitated delignification in CAD deficient transgenic poplar studied by confocal Raman spectroscopy imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:177-184. [PMID: 30099316 DOI: 10.1016/j.saa.2018.07.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/25/2018] [Accepted: 07/28/2018] [Indexed: 05/15/2023]
Abstract
Lignocellulosic biomass represents the only renewable carbon resource which is available in sufficient amounts to be considered as an alternative for our fossil-based carbon economy. However, an efficient biochemical conversion of lignocellulosic feedstocks is hindered by the natural recalcitrance of the biomass as a result of a dense network of cellulose, hemicelluloses, and lignin. These polymeric interconnections make a pretreatment of the biomass necessary in order to enhance the susceptibility of the polysaccharides. Here, we report on a detailed analysis of the favourable influence of genetic engineering for two common delignification protocols for lignocellulosic biomass, namely acidic bleaching and soda pulping, on the example of CAD deficient poplar. The altered lignin structure of the transgenic poplar results in a significantly accelerated and more complete lignin removal at lower temperatures and shorter reaction times compared to wildtype poplar. To monitor the induced chemical and structural alterations at the tissue level, confocal Raman spectroscopy imaging, FT-IR spectroscopy, and X-ray diffraction were used.
Collapse
Affiliation(s)
- Jana S Segmehl
- Wood Materials Science, Institute for Building Materials (IfB), ETH Zürich, Stefano Franscini-Platz 3, 8093 Zürich, Switzerland; Applied Wood Materials Laboratory, EMPA - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Tobias Keplinger
- Wood Materials Science, Institute for Building Materials (IfB), ETH Zürich, Stefano Franscini-Platz 3, 8093 Zürich, Switzerland; Applied Wood Materials Laboratory, EMPA - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Artem Krasnobaev
- Department of Toxicology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - John K Berg
- Wood Materials Science, Institute for Building Materials (IfB), ETH Zürich, Stefano Franscini-Platz 3, 8093 Zürich, Switzerland; Applied Wood Materials Laboratory, EMPA - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Christoph Willa
- Laboratory for Multifunctional Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland; Center for Hybrid Nanostructures and Institute of Nanostructure and Solid State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials (IfB), ETH Zürich, Stefano Franscini-Platz 3, 8093 Zürich, Switzerland; Applied Wood Materials Laboratory, EMPA - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
19
|
Le Bris P, Wang Y, Barbereau C, Antelme S, Cézard L, Legée F, D’Orlando A, Dalmais M, Bendahmane A, Schuetz M, Samuels L, Lapierre C, Sibout R. Inactivation of LACCASE8 and LACCASE5 genes in Brachypodium distachyon leads to severe decrease in lignin content and high increase in saccharification yield without impacting plant integrity. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:181. [PMID: 31338123 PMCID: PMC6628504 DOI: 10.1186/s13068-019-1525-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/07/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Dedicated lignocellulosic feedstock from grass crops for biofuel production is extensively increasing. However, the access to fermentable cell wall sugars by carbohydrate degrading enzymes is impeded by lignins. These complex polymers are made from reactive oxidized monolignols in the cell wall. Little is known about the laccase-mediated oxidation of monolignols in grasses, and inactivation of the monolignol polymerization mechanism might be a strategy to increase the yield of fermentable sugars. RESULTS LACCASE5 and LACCASE8 are inactivated in a Brachypodium double mutant. Relative to the wild type, the lignin content of extract-free mature culms is decreased by 20-30% and the saccharification yield is increased by 140%. Release of ferulic acid by mild alkaline hydrolysis is also 2.5-fold higher. Interfascicular fibers are mainly affected while integrity of vascular bundles is not impaired. Interestingly, there is no drastic impact of the double mutation on plant growth. CONCLUSION This work shows that two Brachypodium laccases with clearly identified orthologs in crops are involved in lignification of this model plant. Lignification in interfascicular fibers and metaxylem cells is partly uncoupled in Brachypodium. Orthologs of these laccases are promising targets for improving grass feedstock for cellulosic biofuel production.
Collapse
Affiliation(s)
- Philippe Le Bris
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Yin Wang
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Clément Barbereau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Sébastien Antelme
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Laurent Cézard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Frédéric Legée
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Angelina D’Orlando
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300 Nantes, France
| | - Marion Dalmais
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Mathias Schuetz
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Catherine Lapierre
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Richard Sibout
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300 Nantes, France
| |
Collapse
|
20
|
Liu J, Xu C, Zhang H, Liu F, Ma D, Liu Z. Comparative Transcriptomics Analysis for Gene Mining and Identification of a Cinnamyl Alcohol Dehydrogenase Involved in Methyleugenol Biosynthesis from Asarum sieboldii Miq. Molecules 2018; 23:E3184. [PMID: 30513938 PMCID: PMC6321292 DOI: 10.3390/molecules23123184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 01/09/2023] Open
Abstract
Asarum sieboldii Miq., one of the three original plants of TCM ASARI RADIX ET RHIZOMA, is a perennial herb distributed in central and eastern China, the Korean Peninsula, and Japan. Methyleugenol has been considered as the most important constituent of Asarum volatile oil, meanwhile asarinin is also employed as the quality control standard of ASARI RADIX ET RHIZOMA in Chinese Pharmacopeia. They both have shown wide range of biological activities. However, little was known about genes involved in biosynthesis pathways of either methyleugenol or asarinin in Asarum plants. In the present study, we performed de novo transcriptome analysis of plant tissues (e.g., roots, rhizomes, and leaves) at different developmental stages. The sequence assembly resulted in 311,597 transcripts from these plant materials, among which 925 transcripts participated in 'secondary metabolism' with particularly up to 20.22% of them falling into phenylpropanoid biosynthesis pathway. The corresponding enzymes belong to seven families potentially encoding phenylalanine ammonia-lyase (PAL), trans-cinnamate 4-monooxygenase (C4H), p-coumarate 3-hydroxylase (C3H), caffeoyl-CoA O-methyltransferase (CCoAOMT), cinnamoyl-CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD), and eugenol synthase (EGS). Moreover, 5 unigenes of DIR (dirigent protein) and 11 unigenes of CYP719A (719A subfamily of cytochrome P450 oxygenases) were speculated to be involved in asarinin pathway. Of the 15 candidate CADs, four unigenes that possessed high FPKM (fragments per transcript kilobase per million fragments mapped) value in roots were cloned and characterized. Only the recombinant AsCAD5 protein efficiently converted p-coumaryl, coniferyl, and sinapyl aldehydes to their corresponding alcohols, which are key intermediates employed not only in biosynthesis of lignin but also in that of methyleugenol and asarinin. qRT-PCR revealed that AsCAD5 had a high expression level in roots at three developmental stages. Our study will provide insight into the potential application of molecular breeding and metabolic engineering for improving the quality of TCM ASARI RADIX ET RHIZOMA.
Collapse
Affiliation(s)
- Jinjie Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chong Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Honglei Zhang
- Jiusan administration of Heilongjiang farms & land reclamation, Harbin 161441, China.
| | - Fawang Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Dongming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhong Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|