1
|
Lu R, Li X, Hu J, Wang Y, Jin L. Expression of a single-chain monellin (MNEI) mutant with enhanced stability in transgenic mice milk. Transgenic Res 2024; 33:211-218. [PMID: 38858256 DOI: 10.1007/s11248-024-00389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Monellin is a sweet protein that may be used as a safe and healthy sweetener. However, due to its low stability, the application of monellin is currently very limited. Here, we describe a wild-type, a double-sites mutant (E2N/E23A) and a triple-sites mutant (N14A/E23Q/S76Y) of single-chain monellin (MNEI) expressed in transgenic mice milk. Based on enzyme-linked immunoassay (ELISA), Western blot, and sweetness intensity testing, their sweetness and stability were compared. After boiling for 2 min at different pH conditions (2.5, 5.1, 6.8, and 8.2), N14A/E23Q/S76Y-MNEI showed significantly higher sweetness and stability than the wild-type and E2N/E23A-MNEI. These results suggest that N14A/E23Q/S76Y-MNEI shows remarkable potential as a sweetener in the future.
Collapse
Affiliation(s)
- Rui Lu
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Xiaoming Li
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Jian Hu
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Yancui Wang
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China.
| | - Le Jin
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China.
| |
Collapse
|
2
|
Maia RT, Silva ISDS, Fernandes de Souza A, Frazão NF, de Lima RM, Campos MDA. Miraculin-based sweeteners in the protein-engineering era: an alternative for developing more efficient and safer products. J Biomol Struct Dyn 2023; 42:11342-11350. [PMID: 37753742 DOI: 10.1080/07391102.2023.2262589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023]
Abstract
The current sweeteners available are very efficient in providing sweet taste. However, they are associated with several chronic diseases. Some glycoproteins, such as miraculins, are extremely interesting from a biotechnological point of view because they perform the bitter into sweet taste modifying function excellently, in addition to being safer as food. In contrast, purifying and synthesizing these proteins represents a major challenge for the food industry, as these proteins are large and complex molecules, which would make the final product expensive and economically unviable. In this context, emerging techniques from computational biology and molecular modelling have been promoting a remarkable revolution in protein bioengineering. Bioinspired peptides can provide many possibilities in sweeteners development through rational design. Once these peptides are smaller molecules than an entire protein, its synthesis on a large scale tends to be much easier and more economical, besides presenting a potential for better bioavailability in the organism. The techniques discussed here allow, through sophisticated pipelines and algorithms, to perform the rational design of mimetic peptides and with smaller size, which can carry out the activation of sweet taste of miraculins and to be more viable for industrial production. In this review, the premises and tools for the elaboration of synthetic peptides bioinspired in proteins with sweetening activity that mimic this action will be emphasized.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rafael Trindade Maia
- Center for Sustainable Development of Semiarid, Federal University of Campina Grande, Sumé, Brazil
- Post-Graduation Program in Natural Science and Biotechnology, Center of Education and Health, Federal University of Campina Grande, Cuité, Brazil
| | - Ivânia Samara Dos Santos Silva
- Post-Graduation Program in Natural Science and Biotechnology, Center of Education and Health, Federal University of Campina Grande, Cuité, Brazil
| | - Adeilma Fernandes de Souza
- Post-Graduation Program in Natural Science and Biotechnology, Center of Education and Health, Federal University of Campina Grande, Cuité, Brazil
| | - Nilton Ferreira Frazão
- Post-Graduation Program in Natural Science and Biotechnology, Center of Education and Health, Federal University of Campina Grande, Cuité, Brazil
| | - Rafael Medeiros de Lima
- Post-Graduation Program in Natural Science and Biotechnology, Center of Education and Health, Federal University of Campina Grande, Cuité, Brazil
| | - Magnólia de Araújo Campos
- Post-Graduation Program in Natural Science and Biotechnology, Center of Education and Health, Federal University of Campina Grande, Cuité, Brazil
| |
Collapse
|
3
|
Delfi M, Leone S, Emendato A, Ami D, Borriello M, Natalello A, Iannuzzi C, Picone D. Understanding the self-assembly pathways of a single chain variant of monellin: A first step towards the design of sweet nanomaterials. Int J Biol Macromol 2020; 152:21-29. [PMID: 32088237 DOI: 10.1016/j.ijbiomac.2020.02.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Peptides and proteins possess an inherent tendency to self-assemble, prompting the formation of amyloid aggregates from their soluble and functional states. Amyloids are linked to many devastating diseases, but self-assembling proteins can also represent formidable tools to produce new and sustainable biomaterials for biomedical and biotechnological applications. The mechanism of fibrillar aggregation, which influences the morphology and the properties of the protein aggregates, depend on factors such as pH, ionic strength, temperature, agitation, and protein concentration. We have here used intensive mechanical agitation, with or without beads, to prompt the aggregation of the single-chain derivative of the plant protein monellin, named MNEI, which is a well characterized sweet protein. Transmission electron microscopy confirmed the formation of fibrils several micrometers long, morphologically different from the previously characterized fibers of MNEI. Changes in the protein secondary structures during the aggregation process were monitored by Fourier transform infrared spectroscopy, which detected differences in the conformation of the final aggregates obtained under mechanical agitation. Moreover, soluble oligomers could be detected in the early phases of aggregation by polyacrylamide gel-electrophoresis. These findings emphasize the existence of multiple pathways of fibrillar aggregation for MNEI, which could be exploited for the design of innovative protein-based biomaterials.
Collapse
Affiliation(s)
- Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Serena Leone
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Alessandro Emendato
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Clara Iannuzzi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Delia Picone
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy.
| |
Collapse
|
4
|
Jensen PE, Scharff LB. Engineering of plastids to optimize the production of high-value metabolites and proteins. Curr Opin Biotechnol 2019; 59:8-15. [DOI: 10.1016/j.copbio.2019.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/08/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
|
5
|
Wang Y, Wei Z, Xing S. Stable plastid transformation of rice, a monocot cereal crop. Biochem Biophys Res Commun 2018; 503:2376-2379. [DOI: 10.1016/j.bbrc.2018.06.164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022]
|
6
|
Boumaiza M, Colarusso A, Parrilli E, Garcia-Fruitós E, Casillo A, Arís A, Corsaro MM, Picone D, Leone S, Tutino ML. Getting value from the waste: recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey. Microb Cell Fact 2018; 17:126. [PMID: 30111331 PMCID: PMC6094915 DOI: 10.1186/s12934-018-0974-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Background Recent biotechnological advancements have allowed for the adoption of Lactococcus lactis, a typical component of starter cultures used in food industry, as the host for the production of food-grade recombinant targets. Among several advantages, L. lactis has the important feature of growing on lactose, the main carbohydrate in milk and a majoritarian component of dairy wastes, such as cheese whey. Results We have used recombinant L. lactis NZ9000 carrying the nisin inducible pNZ8148 vector to produce MNEI, a small sweet protein derived from monellin, with potential for food industry applications as a high intensity sweetener. We have been able to sustain this production using a medium based on the cheese whey from the production of ricotta cheese, with minimal pre-treatment of the waste. As a proof of concept, we have also tested these conditions for the production of MMP-9, a protein that had been previously successfully obtained from L. lactis cultures in standard growth conditions. Conclusions Other than presenting a new system for the recombinant production of MNEI, more compliant with its potential applications in food industry, our results introduce a strategy to valorize dairy effluents through the synthesis of high added value recombinant proteins. Interestingly, the possibility of using this whey-derived medium relied greatly on the choice of the appropriate codon usage for the target gene. In fact, when a gene optimized for L. lactis was used, the production of MNEI proceeded with good yields. On the other hand, when an E. coli optimized gene was employed, protein synthesis was greatly reduced, to the point of being completely abated in the cheese whey-based medium. The production of MMP-9 was comparable to what observed in the reference conditions. Electronic supplementary material The online version of this article (10.1186/s12934-018-0974-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohamed Boumaiza
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Andrea Colarusso
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Anna Arís
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Serena Leone
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy.
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy.
| |
Collapse
|