1
|
Aversano R, Iovene M, Esposito S, L'Abbate A, Villano C, Di Serio E, Cardone MF, Bergamini C, Cigliano RA, D'Amelia V, Frusciante L, Carputo D. Distinct structural variants and repeat landscape shape the genomes of the ancient grapes Aglianico and Falanghina. BMC PLANT BIOLOGY 2024; 24:88. [PMID: 38317087 PMCID: PMC10845522 DOI: 10.1186/s12870-024-04778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Mounting evidence recognizes structural variations (SVs) and repetitive DNA sequences as crucial players in shaping the existing grape phenotypic diversity at intra- and inter-species levels. To deepen our understanding on the abundance, diversity, and distribution of SVs and repetitive DNAs, including transposable elements (TEs) and tandemly repeated satellite DNA (satDNAs), we re-sequenced the genomes of the ancient grapes Aglianico and Falanghina. The analysis of large copy number variants (CNVs) detected candidate polymorphic genes that are involved in the enological features of these varieties. In a comparative analysis of Aglianico and Falanghina sequences with 21 publicly available genomes of cultivated grapes, we provided a genome-wide annotation of grape TEs at the lineage level. We disclosed that at least two main clusters of grape cultivars could be identified based on the TEs content. Multiple TEs families appeared either significantly enriched or depleted. In addition, in silico and cytological analyses provided evidence for a diverse chromosomal distribution of several satellite repeats between Aglianico, Falanghina, and other grapes. Overall, our data further improved our understanding of the intricate grape diversity held by two Italian traditional varieties, unveiling a pool of unique candidate genes never so far exploited in breeding for improved fruit quality.
Collapse
Affiliation(s)
- Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
| | - Marina Iovene
- Institute of Biosciences and Bioresources, National Research Council of Italy (CNR-IBBR), Portici, Italy.
| | - Salvatore Esposito
- Institute of Biosciences and Bioresources, National Research Council of Italy (CNR-IBBR), Portici, Italy
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA-CI), Foggia, Italy
| | - Alberto L'Abbate
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, National Research Council (IBIOM-CNR), Bari, Italy
| | - Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Ermanno Di Serio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Maria Francesca Cardone
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Turi, Italy
| | - Carlo Bergamini
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Turi, Italy
| | | | - Vincenzo D'Amelia
- Institute of Biosciences and Bioresources, National Research Council of Italy (CNR-IBBR), Portici, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
2
|
Li Y, Ma E, Yang K, Zhao B, Li Y, Wan P. Genome-wide analysis of key gene families in RNA silencing and their responses to biotic and drought stresses in adzuki bean. BMC Genomics 2023; 24:195. [PMID: 37046231 PMCID: PMC10091639 DOI: 10.1186/s12864-023-09274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/25/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND In plants, RNA silencing is an important conserved mechanism to regulate gene expression and combat against abiotic and biotic stresses. Dicer-like (DCL) and Argonaute (AGO) proteins and RNA-dependent RNA polymerase (RDR) are the core elements involved in gene silencing and their gene families have been explored in many plants. However, these genes and their responses to stresses have not yet been well characterized in adzuki bean. RESULTS A total of 11 AGO, 7 DCL and 6 RDR proteins were identified, and phylogenetic analyses of these proteins showed that they clustered into six, four and four clades respectively. The expression patterns of these genes in susceptible or resistant adzuki bean cultivars challenged with drought, bean common mosaic virus and Podosphaera xanthii infections were further validated by quantitative RT-PCR. The different responses of these proteins under abiotic and biotic stresses indicated their specialized regulatory mechanisms. CONCLUSIONS In this study, 24 genes of the DCL, AGO and RDR gene families in adzuki bean were identified, and the sequence characterization, structure of the encoded proteins, evolutionary relationship with orthologues in other legumes and gene expression patterns under drought and biotic stresses were primarily explored, which enriched our understanding of these genes in adzuki bean. Our findings provide a foundation for the comparative genomic analyses of RNA silencing elements in legume plants and further new insights into the functional complexity of RNA silencing in the response to various stresses in adzuki bean.
Collapse
Affiliation(s)
- Yongqiang Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture Rural Affairs, College of Biological Science and Resources Environment, Beijing University of Agriculture, HuilongguanBeinonglu 7, Changping District, Beijing, 102206, China.
| | - Enze Ma
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, HuilongguanBeinonglu 7, Changping District, Beijing, 102206, China
| | - Kai Yang
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, HuilongguanBeinonglu 7, Changping District, Beijing, 102206, China
| | - Bo Zhao
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, HuilongguanBeinonglu 7, Changping District, Beijing, 102206, China
| | - Yisong Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture Rural Affairs, College of Biological Science and Resources Environment, Beijing University of Agriculture, HuilongguanBeinonglu 7, Changping District, Beijing, 102206, China
| | - Ping Wan
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, HuilongguanBeinonglu 7, Changping District, Beijing, 102206, China.
| |
Collapse
|
3
|
Song Q, Wang X, Liu Y, Brestic M, Yang X. StLTO1, a lumen thiol oxidoreductase in Solanum tuberosum L., enhances the cold resistance of potato plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111481. [PMID: 36181944 DOI: 10.1016/j.plantsci.2022.111481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cold stress reduces plant photosynthesis and increases the accumulation of reactive oxygen species (ROS) in plants, thereby dramatically affecting plant growth, crop productivity and quality. Here, we report that lumen thiol oxidoreductase 1 (StLTO1), a vitamin K epoxide reductase (VKOR)-like protein in the thylakoid membrane of Solanum tuberosum L., enhances the cold tolerance of potato plants. Under normal conditions, overexpression of StLTO1 in plants promoted plant growth. In addition, potato plants overexpressing StLTO1 displayed enhanced photosynthetic capacity and increased capacity for scavenging ROS compared to StLTO1 knockdown and wild-type potato plants under cold conditions. Overexpression of StLTO1 in potato plants also improved cold-regulated (COR) gene expression after cold stress. Our results suggest that StLTO1 acts as a positive regulator of cold resistance in potato plants.
Collapse
Affiliation(s)
- Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Xipan Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
4
|
Belal MA, Ezzat M, Zhang Y, Xu Z, Cao Y, Han Y. Integrative Analysis of the DICER-like (DCL) Genes From Peach (Prunus persica): A Critical Role in Response to Drought Stress. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.923166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DICER-likes (DCLs) proteins are the core component for non-coding RNA (ncRNA) biogenesis, playing essential roles in some biological processes. The DCL family has been characterized in model plants, such as Arabidopsis, rice, and poplar. However, the evolutionary aspect and the expression mechanism under drought stress were scarce and have never been reported and characterized in one of the most important worldwide cultivated fruit trees, peach (Prunus persica). Eight DCLs genes in the Prunus persica genome were detected, in addition to 51 DCLs in the other seven Rosaceae genomes. The phylogenetic analysis with Arabidopsis thaliana and RTL1 gene as outgroups suggested that DCL members are divided into four clades: DCL1, DCL2, DCL3, and DCL4 with several gene gain/loss events of DCL gene copies through the evolutionary tract of the Rosacea family. The number of homologous DCL copies within each clade, along with the chromosomal location indicated gene duplication event of the DCL2 gene occurred once for the subfamily Amygdaloideae and twice for Pyrus communis and Prunus dulics and trice for the P. persica on Chromosome number 7 genes. Another duplication event was found for the DCL3 gene that occurred once for all the eight Rosaceae species with no match in A. thaliana. The DCL genetic similarity and activity was evaluated using BLASTp and previously published RNA-seq data among different tissues and over different time points of peach trees exposed to drought conditions. Finally, the expression pattern of PrupeDCLs in response to drought stress was identified, and two of these members, Prupe.7G047900 and Prupe.6G363600, were found as main candidate genes for response to drought stress. Our data presented here provide useful information for a better understanding of the molecular evolution of DCL genes in Rosaceae genomes, and the function of DCLs in P. persica.
Collapse
|
5
|
Baldrich P, Bélanger S, Kong S, Pokhrel S, Tamim S, Teng C, Schiebout C, Gurazada SGR, Gupta P, Patel P, Razifard H, Nakano M, Dusia A, Meyers BC, Frank MH. The evolutionary history of small RNAs in Solanaceae. PLANT PHYSIOLOGY 2022; 189:644-665. [PMID: 35642548 PMCID: PMC9157080 DOI: 10.1093/plphys/kiac089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/07/2022] [Indexed: 06/01/2023]
Abstract
The Solanaceae or "nightshade" family is an economically important group with remarkable diversity. To gain a better understanding of how the unique biology of the Solanaceae relates to the family's small RNA (sRNA) genomic landscape, we downloaded over 255 publicly available sRNA data sets that comprise over 2.6 billion reads of sequence data. We applied a suite of computational tools to predict and annotate two major sRNA classes: (1) microRNAs (miRNAs), typically 20- to 22-nucleotide (nt) RNAs generated from a hairpin precursor and functioning in gene silencing and (2) short interfering RNAs (siRNAs), including 24-nt heterochromatic siRNAs typically functioning to repress repetitive regions of the genome via RNA-directed DNA methylation, as well as secondary phased siRNAs and trans-acting siRNAs generated via miRNA-directed cleavage of a polymerase II-derived RNA precursor. Our analyses described thousands of sRNA loci, including poorly understood clusters of 22-nt siRNAs that accumulate during viral infection. The birth, death, expansion, and contraction of these sRNA loci are dynamic evolutionary processes that characterize the Solanaceae family. These analyses indicate that individuals within the same genus share similar sRNA landscapes, whereas comparisons between distinct genera within the Solanaceae reveal relatively few commonalities.
Collapse
Affiliation(s)
- Patricia Baldrich
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | - Shuyao Kong
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Suresh Pokhrel
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri 65211, USA
| | - Saleh Tamim
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711, USA
| | - Chong Teng
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | - Sai Guna Ranjan Gurazada
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711, USA
- Corteva Agriscience, Wilmington, Delaware 19805, USA
| | - Pallavi Gupta
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- Institute for Data Science & Informatics, University of Missouri, Columbia, Missouri 65211, USA
| | - Parth Patel
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711, USA
| | - Hamid Razifard
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Mayumi Nakano
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Ayush Dusia
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri 65211, USA
| | - Margaret H Frank
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| |
Collapse
|
6
|
Esposito S, Aversano R, Tripodi P, Carputo D. Whole-Genome Doubling Affects Pre-miRNA Expression in Plants. PLANTS 2021; 10:plants10051004. [PMID: 34069771 PMCID: PMC8157229 DOI: 10.3390/plants10051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Whole-genome doubling (polyploidy) is common in angiosperms. Several studies have indicated that it is often associated with molecular, physiological, and phenotypic changes. Mounting evidence has pointed out that micro-RNAs (miRNAs) may have an important role in whole-genome doubling. However, an integrative approach that compares miRNA expression in polyploids is still lacking. Here, a re-analysis of already published RNAseq datasets was performed to identify microRNAs’ precursors (pre-miRNAs) in diploids (2x) and tetraploids (4x) of five species (Arabidopsis thaliana L., Morus alba L., Brassica rapa L., Isatis indigotica Fort., and Solanum commersonii Dun). We found 3568 pre-miRNAs, three of which (pre-miR414, pre-miR5538, and pre-miR5141) were abundant in all 2x, and were absent/low in their 4x counterparts. They are predicted to target more than one mRNA transcript, many belonging to transcription factors (TFs), DNA repair mechanisms, and related to stress. Sixteen pre-miRNAs were found in common in all 2x and 4x. Among them, pre-miRNA482, pre-miRNA2916, and pre-miRNA167 changed their expression after polyploidization, being induced or repressed in 4x plants. Based on our results, a common ploidy-dependent response was triggered in all species under investigation, which involves DNA repair, ATP-synthesis, terpenoid biosynthesis, and several stress-responsive transcripts. In addition, an ad hoc pre-miRNA expression analysis carried out solely on 2x vs. 4x samples of S. commersonii indicated that ploidy-dependent pre-miRNAs seem to actively regulate the nucleotide metabolism, probably to cope with the increased requirement for DNA building blocks caused by the augmented DNA content. Overall, the results outline the critical role of microRNA-mediated responses following autopolyploidization in plants.
Collapse
Affiliation(s)
- Salvatore Esposito
- CREA Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano, Italy;
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Correspondence: ; Tel.: +39-08-1252-9225
| |
Collapse
|
7
|
Persson Hodén K, Hu X, Martinez G, Dixelius C. smartPARE: An R Package for Efficient Identification of True mRNA Cleavage Sites. Int J Mol Sci 2021; 22:4267. [PMID: 33924042 PMCID: PMC8073297 DOI: 10.3390/ijms22084267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 11/30/2022] Open
Abstract
Degradome sequencing is commonly used to generate high-throughput information on mRNA cleavage sites mediated by small RNAs (sRNA). In our datasets of potato (Solanum tuberosum, St) and Phytophthora infestans (Pi), initial predictions generated high numbers of cleavage site predictions, which highlighted the need of improved analytic tools. Here, we present an R package based on a deep learning convolutional neural network (CNN) in a machine learning environment to optimize discrimination of false from true cleavage sites. When applying smartPARE to our datasets on potato during the infection process by the late blight pathogen, 7.3% of all cleavage windows represented true cleavages distributed on 214 sites in P. infestans and 444 sites in potato. The sRNA landscape of the two organisms is complex with uneven sRNA production and cleavage regions widespread in the two genomes. Multiple targets and several cases of complex regulatory cascades, particularly in potato, was revealed. We conclude that our new analytic approach is useful for anyone working on complex biological systems and with the interest of identifying cleavage sites particularly inferred by sRNA classes beyond miRNAs.
Collapse
Affiliation(s)
| | | | | | - Christina Dixelius
- The Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden; (K.P.H.); (X.H.); (G.M.)
| |
Collapse
|
8
|
Datir SS. Invertase inhibitors in potato: towards a biochemical and molecular understanding of cold-induced sweetening. Crit Rev Food Sci Nutr 2020; 61:3804-3818. [PMID: 32838549 DOI: 10.1080/10408398.2020.1808876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Invertase inhibitors classified as cell wall/apoplastic and vacuolar belonging to the pectin methylesterase family, play a major role in cold-induced sweetening (CIS) process of potato tubers. The CIS process is controlled at the post-translational level via an interaction between invertase (cell wall/apoplastic and vacuolar) by their compartment-specific inhibitors (cell wall/apoplastic and vacuolar). Invertase inhibitors have been cloned, sequenced and functionally characterized from potato cultivars differing in their CIS ability. The secondary structure of the invertase inhibitors consisted of seven alpha-helices and four conserved cysteine residues. The well-conserved three amino acids i.e. Pro-Lys-Phe are known to interact with invertase. Location of the genes encoding cell wall/apoplastic and vacuolar invertase inhibitors on potato chromosome number twelve in a tandem orientation without any intervening genes suggest their divergence into the cell wall and vacuole forms following the event of gene duplication. Under cold storage conditions, the vacuolar invertase inhibitor gene showed developmentally regulated alternative splicing and produce hybrid mRNAs which were the result of mRNA splicing of an upstream region of vacuolar invertase inhibitor gene to a downstream region of the apoplastic invertase inhibitor gene. Transgenic potato tubers overexpressing invertase inhibitors resulted in decreased invertase activity, low reducing sugars and improved processing quality making invertase inhibitors highly potential candidate genes for overcoming CIS. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing technology offers transgene-free breeding for developing CIS resistant potato cultivars. Moreover, the post-transcriptional regulation of invertase inhibitors during cold storage can be warranted. This review summarizes progress and current knowledge on biochemical and molecular approaches used for the understanding of invertase inhibitors with special reference to key findings in potato.
Collapse
Affiliation(s)
- Sagar S Datir
- Biology Department, Biosciences Complex, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
9
|
Villano C, Esposito S, D'Amelia V, Garramone R, Alioto D, Zoina A, Aversano R, Carputo D. WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species. Sci Rep 2020; 10:7196. [PMID: 32346026 PMCID: PMC7188836 DOI: 10.1038/s41598-020-63823-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/06/2020] [Indexed: 01/30/2023] Open
Abstract
Wild potatoes, as dynamic resource adapted to various environmental conditions, represent a powerful and informative reservoir of genes useful for breeding efforts. WRKY transcription factors (TFs) are encoded by one of the largest families in plants and are involved in several biological processes such as growth and development, signal transduction, and plant defence against stress. In this study, 79 and 84 genes encoding putative WRKY TFs have been identified in two wild potato relatives, Solanum commersonii and S. chacoense. Phylogenetic analysis of WRKY proteins divided ScWRKYs and SchWRKYs into three Groups and seven subGroups. Structural and phylogenetic comparative analyses suggested an interspecific variability of WRKYs. Analysis of gene expression profiles in different tissues and under various stresses allowed to select ScWRKY045 as a good candidate in wounding-response, ScWRKY055 as a bacterial infection triggered WRKY and ScWRKY023 as a multiple stress-responsive WRKY gene. Those WRKYs were further studied through interactome analysis allowing the identification of potential co-expression relationships between ScWRKYs/SchWRKYs and genes of various pathways. Overall, this study enabled the discrimination of WRKY genes that could be considered as potential candidates in both breeding programs and functional studies.
Collapse
Affiliation(s)
- Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Salvatore Esposito
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy.,CREA Via Cavalleggeri 25, 84098, Pontecagnano-Faiano, Italy
| | - Vincenzo D'Amelia
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy.,National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Raffaele Garramone
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Daniela Alioto
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | | | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy.
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy.
| |
Collapse
|
10
|
Villano C, D’Amelia V, Esposito S, Adelfi MG, Contaldi F, Ferracane R, Vitaglione P, Aversano R, Carputo D. Genome-Wide HMG Family Investigation and Its Role in Glycoalkaloid Accumulation in Wild Tuber-Bearing Solanum commersonii. Life (Basel) 2020; 10:life10040037. [PMID: 32290207 PMCID: PMC7235733 DOI: 10.3390/life10040037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022] Open
Abstract
Steroidal glycoalkaloids (SGAs) are a class of nitrogen-containing glycosides occurring in several plant families and biosynthesized through a specific pathway. HMG-CoA reductase is the first enzyme of this pathway, and its transcription can be regulated by biotic and abiotic stressors and even in a tissue-specific manner. This study aimed to characterize the HMG genes family in a tuber-bearing potato species, Solanum commersonii, using transcriptional and functional approaches. Our results provided evidence that four ScHMGs with different tissue-specificities represent the HMG gene family in S. commersonii and that they originated from ScHMG1 through segmental duplications. Phylogenetic analysis suggests that ScHMG1 is the direct ortholog of AtHMG1, which is associated with SGAs accumulation in plants. Its overexpression in S. commersonii revealed that this gene plays a key role in the accumulation of glycoalkaloids regulating the production of dehydrocommersonine.
Collapse
Affiliation(s)
- Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
| | - Vincenzo D’Amelia
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, NA, Italy;
| | - Salvatore Esposito
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, SA, Italy; (S.E.); (F.C.)
| | - Maria Grazia Adelfi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
| | - Felice Contaldi
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, SA, Italy; (S.E.); (F.C.)
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
- Correspondence:
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
| |
Collapse
|
11
|
Genome-Wide Identification, Expression Profile and Evolution Analysis of Karyopherin β Gene Family in Solanum tuberosum Group Phureja DM1-3 Reveals Its Roles in Abiotic Stresses. Int J Mol Sci 2020; 21:ijms21030931. [PMID: 32023817 PMCID: PMC7037939 DOI: 10.3390/ijms21030931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/19/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
In eukaryotic cells, nucleocytoplasmic trafficking of macromolecules is largely mediated by Karyopherin β/Importin (KPNβ or Impβ) nuclear transport factors, and they import and export cargo proteins or RNAs via the nuclear pores across the nuclear envelope, consequently effecting the cellular signal cascades in response to pathogen attack and environmental cues. Although achievements on understanding the roles of several KPNβs have been obtained from model plant Arabidopsis thaliana, comprehensive analysis of potato KPNβ gene family is yet to be elucidated. In our genome-wide identifications, a total of 13 StKPNβ (Solanum tuberosum KPNβ) genes were found in the genome of the doubled monoploid S. tuberosum Group Phureja DM1-3. Sequence alignment and conserved domain analysis suggested the presence of importin-β N-terminal domain (IBN_N, PF08310) or Exporin1-like domain (XpoI, PF08389) at N-terminus and HEAT motif at the C-terminal portion in most StKPNβs. Phylogenetic analysis indicated that members of StKPNβ could be classified into 16 subgroups in accordance with their homology to human KPNβs, which was also supported by exon-intron structure, consensus motifs, and domain compositions. RNA-Seq analysis and quantitative real-time PCR experiments revealed that, except StKPNβ3d and StKPNβ4, almost all StKPNβs were ubiquitously expressed in all tissues analyzed, whereas transcriptional levels of several StKPNβs were increased upon biotic/abiotic stress or phytohormone treatments, reflecting their potential roles in plant growth, development or stress responses. Furthermore, we demonstrated that silencing of StKPNβ3a, a SA- and H2O2-inducible KPNβ genes led to increased susceptibility to environmental challenges, implying its crucial roles in plant adaption to abiotic stresses. Overall, our results provide molecular insights into StKPNβ gene family, which will serve as a strong foundation for further functional characterization and will facilitate potato breeding programs.
Collapse
|
12
|
Esposito S, Aversano R, Bradeen JM, Di Matteo A, Villano C, Carputo D. Deep-sequencing of Solanum commersonii small RNA libraries reveals riboregulators involved in cold stress response. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:133-142. [PMID: 30597710 DOI: 10.1111/plb.12955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Among wild species used in potato breeding, Solanum commersonii displays the highest tolerance to low temperatures under both acclimated (ACC) and non-acclimated (NACC) conditions. It is also the first wild potato relative with a known whole genome sequence. Recent studies have shown that abiotic stresses induce changes in the expression of many small non-coding RNA (sncRNA). We determined the small non-coding RNA (sncRNAome) of two clones of S. commersonii contrasting in their cold response phenotypes via smRNAseq. Differential analysis provided evidence that expression of several miRNAs changed in response to cold stress conditions. Conserved miR408a and miR408b changed their expression under NACC conditions, whereas miR156 and miR169 were differentially expressed only under ACC conditions. We also report changes in tasiRNA and secondary siRNA expression under both stress conditions. Our results reveal possible roles of sncRNA in the regulatory networks associated with tolerance to low temperatures and provide useful information for a more strategic use of genomic resources in potato breeding.
Collapse
Affiliation(s)
- S Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - R Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - J M Bradeen
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - A Di Matteo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - C Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - D Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
13
|
Applications and Trends of Machine Learning in Genomics and Phenomics for Next-Generation Breeding. PLANTS 2019; 9:plants9010034. [PMID: 31881663 PMCID: PMC7020215 DOI: 10.3390/plants9010034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022]
Abstract
Crops are the major source of food supply and raw materials for the processing industry. A balance between crop production and food consumption is continually threatened by plant diseases and adverse environmental conditions. This leads to serious losses every year and results in food shortages, particularly in developing countries. Presently, cutting-edge technologies for genome sequencing and phenotyping of crops combined with progress in computational sciences are leading a revolution in plant breeding, boosting the identification of the genetic basis of traits at a precision never reached before. In this frame, machine learning (ML) plays a pivotal role in data-mining and analysis, providing relevant information for decision-making towards achieving breeding targets. To this end, we summarize the recent progress in next-generation sequencing and the role of phenotyping technologies in genomics-assisted breeding toward the exploitation of the natural variation and the identification of target genes. We also explore the application of ML in managing big data and predictive models, reporting a case study using microRNAs (miRNAs) to identify genes related to stress conditions.
Collapse
|
14
|
Andolfo G, Villano C, Errico A, Frusciante L, Carputo D, Aversano R, Ercolano MR. Inferring RPW8-NLRs's evolution patterns in seed plants: case study in Vitis vinifera. PLANTA 2019; 251:32. [PMID: 31823009 DOI: 10.1007/s00425-019-03324-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/03/2019] [Indexed: 05/20/2023]
Abstract
Genomic and transcriptomic studies in plants and, more in deep, in grapevine reveal that the disease-resistance RNL gene family is highly variable. RNLs (RPW8-NLRs) are a phylogenetically distinct class of nucleotide oligomerization domain (NOD)-like receptors (NLRs) identified in plants. Two RNLs, namely, the NRG1 (N Requirement Gene 1) and the ADR1 (Activated Disease Resistance 1), have been characterized; however, little is known about the RNL evolutionary history in higher plants. To trace the diversification of RNL gene subfamily, we scanned the NLR proteins of 73 plant genomes belonging to 29 taxa, revealing a noticeable diversification across species and within the same genus or botanic family together with a conspicuous expansion in important crop species. To explore the RNL variability in Vitis vinifera and gain information with respect to their structure, evolutionary diversification of five grape genomes ('Aglianico', 'Falanghina', 'Sultanina', 'Tannat', and 'Nebbiolo') has been compared to the reference genome ('Pinot Noir'). The number of RNLs ranged from 6 ('Sultanina') to 14 ('Nebbiolo'), in contrast to the 10 'Pinot Noir' RNLs. The phylogenetic study on grapevine RNLs revealed that all collapsed into NRG1-clade, rather than four. To investigate more in depth the means of intraspecific variability of grape RNL copies, a transcriptomic profiling in response to powdery mildew (PM) infection was carried out through qRT-PCRs and public databases interrogation. The RNL expression variability identified in transcriptome data sets supports the hypothesis of a functional expansion/contraction in grapevine varieties. Although no direct correlations between grapevine PM-resistance and RNL expression was identified, our work can provide good candidates for functional studies able to elucidate the putative "helper" role of RNLs in grape immune signalling.
Collapse
Affiliation(s)
- Giuseppe Andolfo
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Clizia Villano
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Angela Errico
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Luigi Frusciante
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Domenico Carputo
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Riccardo Aversano
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy.
| | - Maria R Ercolano
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy.
| |
Collapse
|
15
|
Esposito S, Barteri F, Casacuberta J, Mirouze M, Carputo D, Aversano R. LTR-TEs abundance, timing and mobility in Solanum commersonii and S. tuberosum genomes following cold-stress conditions. PLANTA 2019; 250:1781-1787. [PMID: 31562541 DOI: 10.1007/s00425-019-03283-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/13/2019] [Indexed: 05/25/2023]
Abstract
Copia/Ale is the youngest lineage in both Solanum tuberosum and S. commersonii. Within it, we identified nightshade, a new LTR element active in the cultivated potato. From an evolutionary perspective, long-terminal repeat retrotransposons (LTR-RT) activity during stress may be viewed as a mean by which organisms can keep up rates of genetic adaptation to changing conditions. Potato is one of the most important crop consumed worldwide, but studies on LTR-RT characterization are still lacking. Here, we assessed the abundance, insertion time and activity of LTR-RTs in both cultivated Solanum tuberosum and its cold-tolerant wild relative S. commersonii genomes. Gypsy elements were more abundant than Copia ones, suggesting that the former was somehow more successful in colonizing potato genomes. However, Copia elements, and in particular, the Ale lineage, are younger than Gypsy ones, since their insertion time was in average ~ 2 Mya. Due to the ability of LTR-RTs to be circularized by the host DNA repair mechanisms, we identified via mobilome-seq a Copia/Ale element (called nightshade, informal name used for potato family) active in S. tuberosum genome. Our analyses represent a valuable resource for comparative genomics within the Solanaceae, transposon-tagging and for the design of cultivar-specific molecular markers in potato.
Collapse
Affiliation(s)
- Salvatore Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Fabio Barteri
- Center for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona, Universitat de Barcelona, Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona, Universitat de Barcelona, Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Marie Mirouze
- Institut de Recherche pour le Développement, IRD DIADE, Université de Perpignan, Plant Genome and Development Laboratory, Perpignan, France
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
| |
Collapse
|
16
|
Sabbione A, Daurelio L, Vegetti A, Talón M, Tadeo F, Dotto M. Genome-wide analysis of AGO, DCL and RDR gene families reveals RNA-directed DNA methylation is involved in fruit abscission in Citrus sinensis. BMC PLANT BIOLOGY 2019; 19:401. [PMID: 31510935 PMCID: PMC6739940 DOI: 10.1186/s12870-019-1998-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/29/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Small RNAs regulate a wide variety of processes in plants, from organ development to both biotic and abiotic stress response. Being master regulators in genetic networks, their biogenesis and action is a fundamental aspect to characterize in order to understand plant growth and development. Three main gene families are critical components of RNA silencing: DICER-LIKE (DCL), ARGONAUTE (AGO) and RNA-DEPENDENT RNA POLYMERASE (RDR). Even though they have been characterized in other plant species, there is no information about these gene families in Citrus sinensis, one of the most important fruit species from both economical and nutritional reasons. While small RNAs have been implicated in the regulation of multiple aspects of plant growth and development, their role in the abscission process has not been characterized yet. RESULTS Using genome-wide analysis and a phylogenetic approach, we identified a total of 13 AGO, 5 DCL and 7 RDR genes. We characterized their expression patterns in root, leaf, flesh, peel and embryo samples using RNA-seq data. Moreover, we studied their role in fruit abscission through gene expression analysis in fruit rind compared to abscission zone from samples obtained by laser capture microdissection. Interestingly, we determined that the expression of several RNA silencing factors are down-regulated in fruit abscission zone, being particularly represented gene components of the RNA-dependent DNA Methylation pathway, indicating that repression of this process is necessary for fruit abscission to take place in Citrus sinensis. CONCLUSIONS The members of these 3 families present characteristic conserved domains and distinct expression patterns. We provide a detailed analysis of the members of these families and improved the annotation of some of these genes based on RNA-seq data. Our data suggests that the RNA-dependent DNA Methylation pathway is involved in the important fruit abscission process in C. sinensis.
Collapse
Affiliation(s)
- Agustín Sabbione
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucas Daurelio
- Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Abelardo Vegetti
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Manuel Talón
- Centre de Genómica, Institut Valencià d’Investigacions Agràries (IVIA), Montcada, València, Spain
| | - Francisco Tadeo
- Centre de Genómica, Institut Valencià d’Investigacions Agràries (IVIA), Montcada, València, Spain
| | - Marcela Dotto
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
17
|
RNA Interference: A Natural Immune System of Plants to Counteract Biotic Stressors. Cells 2019; 8:cells8010038. [PMID: 30634662 PMCID: PMC6356646 DOI: 10.3390/cells8010038] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
During plant-pathogen interactions, plants have to defend the living transposable elements from pathogens. In response to such elements, plants activate a variety of defense mechanisms to counteract the aggressiveness of biotic stressors. RNA interference (RNAi) is a key biological process in plants to inhibit gene expression both transcriptionally and post-transcriptionally, using three different groups of proteins to resist the virulence of pathogens. However, pathogens trigger an anti-silencing mechanism through the expression of suppressors to block host RNAi. The disruption of the silencing mechanism is a virulence strategy of pathogens to promote infection in the invaded hosts. In this review, we summarize the RNA silencing pathway, anti-silencing suppressors, and counter-defenses of plants to viral, fungal, and bacterial pathogens.
Collapse
|