1
|
Huo H, Li J, Tian L, Dong X, Xu J, Zhang Y, Qi D, Liu C, Ye Z, Jiang Z, Li Z, Zhou Z, Cao Y. Multi-omics analysis reveals the role of UGT72 family genes in arbutin biosynthesis in Pyrus and evolution driven by whole genome duplication. Int J Biol Macromol 2024; 291:139005. [PMID: 39708880 DOI: 10.1016/j.ijbiomac.2024.139005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
The UGT72 gene family encodes proteins that glycosylate phenylpropanoids, and thus contribute to the synthesis of various phenolic substances. However, their functional role and evolutionary history in Pyrus spp. remains poorly understood. Here we explored the evolution, amplification, coding region structural variation, and functional divergence of the UGT72 gene family and its subfamilies. Further, we identified functional genes involved in arbutin synthesis and functionally validated the key genes. 15 UGT72 genes were identified in the complete genome sequence and classified into two subfamilies of Pyrus betulifolia. Significant expansion of the UGT72 gene family occurred after genome duplication in P. betulifolia. 53.33 % of all UGT72 family genes were found to have undergone expansion via WGD/segmental duplication. A noteworthy discovery was that the amplification of functional genes such as PbUGT72B1714 during polyploidization, combined with the loss of vital motifs and variations at important sites within these genes, significantly impacted the diversification of arbutin metabolism. These findings offer novel insights into how gene gains and losses caused by WGDs have contributed to metabolic diversification and evolutionary adaptation in Pyrus, as well as a groundwork for more detailed investigations into the mechanisms of arbutin metabolism.
Collapse
Affiliation(s)
- Hongliang Huo
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jing Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Luming Tian
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Xingguang Dong
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Jiayu Xu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Ying Zhang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Dan Qi
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Chao Liu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Zimao Ye
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Zixiao Jiang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Zhenqing Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
| | - Yufen Cao
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China.
| |
Collapse
|
2
|
Samal I, Bhoi TK, Raj MN, Majhi PK, Murmu S, Pradhan AK, Kumar D, Paschapur AU, Joshi DC, Guru PN. Underutilized legumes: nutrient status and advanced breeding approaches for qualitative and quantitative enhancement. Front Nutr 2023; 10:1110750. [PMID: 37275642 PMCID: PMC10232757 DOI: 10.3389/fnut.2023.1110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Underutilized/orphan legumes provide food and nutritional security to resource-poor rural populations during periods of drought and extreme hunger, thus, saving millions of lives. The Leguminaceae, which is the third largest flowering plant family, has approximately 650 genera and 20,000 species and are distributed globally. There are various protein-rich accessible and edible legumes, such as soybean, cowpea, and others; nevertheless, their consumption rate is far higher than production, owing to ever-increasing demand. The growing global urge to switch from an animal-based protein diet to a vegetarian-based protein diet has also accelerated their demand. In this context, underutilized legumes offer significant potential for food security, nutritional requirements, and agricultural development. Many of the known legumes like Mucuna spp., Canavalia spp., Sesbania spp., Phaseolus spp., and others are reported to contain comparable amounts of protein, essential amino acids, polyunsaturated fatty acids (PUFAs), dietary fiber, essential minerals and vitamins along with other bioactive compounds. Keeping this in mind, the current review focuses on the potential of discovering underutilized legumes as a source of food, feed and pharmaceutically valuable chemicals, in order to provide baseline data for addressing malnutrition-related problems and sustaining pulse needs across the globe. There is a scarcity of information about underutilized legumes and is restricted to specific geographical zones with local or traditional significance. Around 700 genera and 20,000 species remain for domestication, improvement, and mainstreaming. Significant efforts in research, breeding, and development are required to transform existing local landraces of carefully selected, promising crops into types with broad adaptability and economic viability. Different breeding efforts and the use of biotechnological methods such as micro-propagation, molecular markers research and genetic transformation for the development of underutilized crops are offered to popularize lesser-known legume crops and help farmers diversify their agricultural systems and boost their profitability.
Collapse
Affiliation(s)
- Ipsita Samal
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack, Odisha, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE-Arid Forest Research Institute, Jodhpur, India
| | - M. Nikhil Raj
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prasanta Kumar Majhi
- Regional Research and Technology Transfer Station, Odisha University of Agriculture and Technology, Keonjhar, Odisha, India
| | - Sneha Murmu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dilip Kumar
- ICAR-National Institute of Agricultural Economics and Policy Research, New Delhi, India
| | | | | | - P. N. Guru
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana, India
| |
Collapse
|
3
|
Rathi D, Verma JK, Chakraborty S, Chakraborty N. Suspension cell secretome of the grain legume Lathyrus sativus (grasspea) reveals roles in plant development and defense responses. PHYTOCHEMISTRY 2022; 202:113296. [PMID: 35868566 DOI: 10.1016/j.phytochem.2022.113296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Plant secretomics has been especially important in understanding the molecular basis of plant development, stress resistance and biomarker discovery. In addition to sharing a similar role in maintaining cell metabolism and biogenesis with the animal secretome, plant-secreted proteins actively participate in signaling events crucial for cellular homeostasis during stress adaptation. However, investigation of the plant secretome remains largely overlooked, particularly in pulse crops, demanding urgent attention. To better understand the complexity of the secretome, we developed a reference map of a stress-resilient orphan legume, Lathyrus sativus (grasspea), which can be utilized as a potential proteomic resource. Secretome analysis of L. sativus led to the identification of 741 nonredundant proteins belonging to a myriad of functional classes, including antimicrobial, antioxidative and redox potential. Computational prediction of the secretome revealed that ∼29% of constituents are predicted to follow unconventional protein secretion (UPS) routes. We conducted additional in planta analysis to determine the localization of two secreted proteins, recognized as cell surface residents. Sequence-based homology comparison revealed that L. sativus shares ∼40% of the constituents reported thus far from in vitro and in planta secretome analysis in model and crop species. Significantly, we identified 571 unique proteins secreted from L. sativus involved in cell-to-cell communication, organ development, kinase-mediated signaling, and stress perception, among other critical roles. Conclusively, the grasspea secretome participates in putative crosstalk between genetic circuits that regulate developmental processes and stress resilience.
Collapse
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra Kumar Verma
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
4
|
Rathi D, Verma JK, Pareek A, Chakraborty S, Chakraborty N. Dissection of grasspea (Lathyrus sativus L.) root exoproteome reveals critical insights and novel proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111161. [PMID: 35151446 DOI: 10.1016/j.plantsci.2021.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/20/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The plant exoproteome is crucial because its constituents greatly influence plant phenotype by regulating physiological characteristics to adapt to environmental stresses. The root exudates constitute a dynamic aspect of plant exoproteome, as its molecular composition ensures a beneficial rhizosphere in a species-specific manner. We investigated the root exoproteome of grasspea, a stress-resilient pulse and identified 2861 non-redundant proteins, belonging to a myriad of functional classes, including root development, rhizosphere augmentation as well as defense functions against soil-borne pathogens. Significantly, we identified 1986 novel exoproteome constituents of grasspea, potentially involved in cell-to-cell communication and root meristem maintenance, among other critical roles. Sequence-based comparison revealed that grasspea shares less than 30 % of its exoproteome with the reports so far from model plants as well as crop species. Further, the exoproteome revealed 65 % proteins to be extracellular in nature and of these, 37 % constituents were predicted to follow unconventional protein secretion (UPS) mode. We validated the UPS for four stress-responsive proteins, which were otherwise predicted to follow classical protein secretion (CPS). Conclusively, we recognized not only the highest number of root exudate proteins, but also pinpointed novel signatures of dicot root exoproteome.
Collapse
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra Kumar Verma
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Akanksha Pareek
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Dimitrova PA, Alipieva K, Grozdanova T, Leseva M, Gerginova D, Simova S, Marchev AS, Bankova V, Georgiev MI, Popova MP. Veronica austriaca L. Extract and Arbutin Expand Mature Double TNF-α/IFN-γ Neutrophils in Murine Bone Marrow Pool. Molecules 2020; 25:molecules25153410. [PMID: 32731392 PMCID: PMC7435612 DOI: 10.3390/molecules25153410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/03/2022] Open
Abstract
Plants from the Veronica genus are used across the world as traditional remedies. In the present study, extracts from the aerial part of the scarcely investigated Veronica austriaca L., collected from two habitats in Bulgaria—the Balkan Mountains (Vau-1) and the Rhodopi Mountains (Vau-2), were analyzed by nuclear magnetic resonance (NMR) spectroscopy. The secondary metabolite, arbutin, was identified as a major constituent in both extracts, and further quantified by high-performance liquid chromatography (HPLC), while catalpol, aucubin and verbascoside were detected at lower amounts. The effect of the extracts and of pure arbutin on the survival of neutrophils isolated from murine bone marrow (BM) were determined by colorimetric assay. The production of cytokines—tumor necrosis factor (TNF)-α and interferon (IFN)-γ was evaluated by flowcytometry. While Vau-1 inhibited neutrophil vitality in a dose-dependent manner, arbutin stimulated the survival of neutrophils at lower concentrations, and inhibited cell density at higher concentrations. The Vau-1 increased the level of intracellular TNF-α, while Vau-2 and arbutin failed to do so, and expanded the frequency of mature double TNF-α+/IFN-γhi neutrophils within the BM pool.
Collapse
Affiliation(s)
- Petya A. Dimitrova
- Department of Immunology, The Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, bl. 26 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria; (P.A.D.); (M.L.)
| | - Kalina Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria; (T.G.); (D.G.); (S.S.); (V.B.); (M.P.P.)
- Correspondence: ; Tel.: +359-2-960-6137
| | - Tsvetinka Grozdanova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria; (T.G.); (D.G.); (S.S.); (V.B.); (M.P.P.)
| | - Milena Leseva
- Department of Immunology, The Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, bl. 26 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria; (P.A.D.); (M.L.)
| | - Dessislava Gerginova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria; (T.G.); (D.G.); (S.S.); (V.B.); (M.P.P.)
| | - Svetlana Simova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria; (T.G.); (D.G.); (S.S.); (V.B.); (M.P.P.)
| | - Andrey S. Marchev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (A.S.M.); (M.I.G.)
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria; (T.G.); (D.G.); (S.S.); (V.B.); (M.P.P.)
| | - Milen I. Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (A.S.M.); (M.I.G.)
| | - Milena P. Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria; (T.G.); (D.G.); (S.S.); (V.B.); (M.P.P.)
| |
Collapse
|
6
|
|