1
|
Ali A, Shahbaz M, Ölmez F, Fatima N, Umar UUD, Ali MA, Akram M, Seelan JSS, Baloch FS. RNA interference: a promising biotechnological approach to combat plant pathogens, mechanism and future prospects. World J Microbiol Biotechnol 2024; 40:339. [PMID: 39358476 DOI: 10.1007/s11274-024-04143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Plant pathogens and other biological pests represent significant obstacles to crop Protection worldwide. Even though there are many effective conventional methods for controlling plant diseases, new methods that are also effective, environmentally safe, and cost-effective are required. While plant breeding has traditionally been used to manipulate the plant genome to develop resistant cultivars for controlling plant diseases, the emergence of genetic engineering has introduced a completely new approach to render plants resistant to bacteria, nematodes, fungi, and viruses. The RNA interference (RNAi) approach has recently emerged as a potentially useful tool for mitigating the inherent risks associated with the development of conventional transgenics. These risks include the use of specific transgenes, gene control sequences, or marker genes. Utilizing RNAi to silence certain genes is a promising solution to this dilemma as disease-resistant transgenic plants can be generated within a legislative structure. Recent investigations have shown that using target double stranded RNAs via an effective vector system can produce significant silencing effects. Both dsRNA-containing crop sprays and transgenic plants carrying RNAi vectors have proven effective in controlling plant diseases that threaten commercially significant crop species. This article discusses the methods and applications of the most recent RNAi technology for reducing plant diseases to ensure sustainable agricultural yields.
Collapse
Affiliation(s)
- Amjad Ali
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, 88400, Kota kinabalu, Malaysia
| | - Fatih Ölmez
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, 54000, Lahore, Punjab, Pakistan
| | - Ummad Ud Din Umar
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus, Bosan Road, 60800, Multan, Pakistan
| | - Md Arshad Ali
- Biotechnology Program, Faculty of Science and Natural, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Muhammad Akram
- Department of Botany, The Islamia University of Bahawalpur, 63100, Bahawalpur, Punjab, Pakistan
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, 88400, Kota kinabalu, Malaysia.
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, 33343, Yenişehir Mersin, Turkey.
| |
Collapse
|
2
|
Zenda MF, Masamba P, Allie F, Kappo AP. Geminiviruses and Food Security: A Molecular Genetics Perspective for Sustainable Agriculture in Africa. PLANTS (BASEL, SWITZERLAND) 2024; 13:2768. [PMID: 39409638 PMCID: PMC11478365 DOI: 10.3390/plants13192768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
The African continent is vulnerable to food insecurity. Increased food costs, job losses, and climate change force Africans to chronic hunger. Biotechnology can be used to mitigate this by using techniques such as CRISPR/Cas9 systems, TALENs, and ZFNs. Biotechnology can utilize geminiviruses to deliver the necessary reagents for precise genome alteration. Additionally, plants infected with geminiviruses can withstand harsher weather conditions such as drought. Therefore, this article discusses geminivirus replication and its use as beneficial plant DNA viruses. It focuses explicitly on genome editing to increase plant resistance by manipulating plants' salicylic acid and jasmonic acid pathways.
Collapse
Affiliation(s)
| | | | - Farhahna Allie
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| | - Abidemi Paul Kappo
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| |
Collapse
|
3
|
Mardini M, Kazancev M, Ivoilova E, Utkina V, Vlasova A, Demurin Y, Soloviev A, Kirov I. Advancing virus-induced gene silencing in sunflower: key factors of VIGS spreading and a novel simple protocol. PLANT METHODS 2024; 20:122. [PMID: 39135113 PMCID: PMC11318282 DOI: 10.1186/s13007-024-01241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Virus-Induced Gene Silencing (VIGS) is a versatile tool in plant science, yet its application to non-model species like sunflower demands extensive optimization due to transformation challenges. In this study, we aimed to elucidate the factors that significantly affect the efficiency of Agrobacterium-VIGS in sunflowers. After testing a number of approaches, we concluded that the seed vacuum technique followed by 6 h of co-cultivation produced the most efficient VIGS results. Genotype-dependency analysis revealed varying infection percentages (62-91%) and silencing symptom spreading in different sunflower genotypes. Additionally, we explored the mobility of tobacco rattle virus (TRV) and phenotypic silencing manifestation (photo-bleaching) across different tissues and regions of VIGS-infected sunflower plants. We showed the presence of TRV is not necessarily limited to tissues with observable silencing events. Finally, time-lapse observation demonstrated a more active spreading of the photo-bleached spots in young tissues compared to mature ones. This study not only offers a robust VIGS protocol for sunflowers but also provides valuable insights into genotype-dependent responses and the dynamic nature of silencing events, shedding light on TRV mobility across different plant tissues.
Collapse
Affiliation(s)
- Majd Mardini
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550, Moscow, Russia
| | - Mikhail Kazancev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550, Moscow, Russia
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Elina Ivoilova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550, Moscow, Russia
| | - Victoria Utkina
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550, Moscow, Russia
| | - Anastasia Vlasova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550, Moscow, Russia
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Yakov Demurin
- Pustovoit All-Russia Research Institute of Oilseed Crops, Filatova St. 17, 350038, Krasnodar, Russia
| | - Alexander Soloviev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550, Moscow, Russia
- All-Russia Center for Plant Quarantine, 140150, Ramenski, Russia
| | - Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550, Moscow, Russia.
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia.
| |
Collapse
|
4
|
Gulzar RMA, Ren CX, Fang X, Xu YP, Saand MA, Cai XZ. Glutamate Receptor-like (GLR) Family in Brassica napus: Genome-Wide Identification and Functional Analysis in Resistance to Sclerotinia sclerotiorum. Int J Mol Sci 2024; 25:5670. [PMID: 38891858 PMCID: PMC11172227 DOI: 10.3390/ijms25115670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Plant glutamate receptor-like channels (GLRs) are homologs of animal ionotropic glutamate receptors. GLRs are critical in various plant biological functions, yet their genomic features and functions in disease resistance remain largely unknown in many crop species. Here, we report the results on a thorough genome-wide study of the GLR family in oilseed rape (Brassica napus) and their role in resistance to the fungal pathogen Sclerotinia sclerotiorum. A total of 61 GLRs were identified in oilseed rape. They comprised three groups, as in Arabidopsis thaliana. Detailed computational analyses, including prediction of domain and motifs, cellular localization, cis-acting elements, PTM sites, and amino acid ligands and their binding pockets in BnGLR proteins, unveiled a set of group-specific characteristics of the BnGLR family, which included chromosomal distribution, motif composition, intron number and size, and methylation sites. Functional dissection employing virus-induced gene silencing of BnGLRs in oilseed rape and Arabidopsis mutants of BnGLR homologs demonstrated that BnGLR35/AtGLR2.5 positively, while BnGLR12/AtGLR1.2 and BnGLR53/AtGLR3.2 negatively, regulated plant resistance to S. sclerotiorum, indicating that GLR genes were differentially involved in this resistance. Our findings reveal the complex involvement of GLRs in B. napus resistance to S. sclerotiorum and provide clues for further functional characterization of BnGLRs.
Collapse
Affiliation(s)
- Rana Muhammad Amir Gulzar
- Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chun-Xiu Ren
- Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xi Fang
- Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - You-Ping Xu
- Centre of Analysis and Measurement, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Mumtaz Ali Saand
- Department of Botany, Shah Abdul Latif University, Khairpur 66020, Sindh, Pakistan
| | - Xin-Zhong Cai
- Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
5
|
Fan L, Hou Y, Zheng L, Shi H, Liu Z, Wang Y, Li S, Liu L, Guo M, Yang Z, Liu J. Characterization and fine mapping of a yellow leaf gene regulating chlorophyll biosynthesis and chloroplast development in cotton (Gossypium arboreum). Gene 2023; 885:147712. [PMID: 37579958 DOI: 10.1016/j.gene.2023.147712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Chlorophyll biosynthesis and chloroplast development are essential for photosynthesis and plant growth. Gossypium arboreum, a valuable source of genetic variation for cotton improvement, remains poorly studied for the mechanisms regulating chlorophyll biosynthesis and chloroplast development. Here we created a G. arboreum etiolated leaf and stuntedness (els) mutant that displayed a distinct yellow color of leaves, bracts and stems throughout the whole growth, where chlorophyll accumulation in leaves was reduced and chloroplast development was delayed. The GaCHLH gene, which encodes the H subunit of magnesium chelatase (Mg-chelatase), was screened by MutMap and KASP analysis. Compared to GaCHLH, the gene Gachlh of the mutant had a single nucleotide transition (G to A) at 1549 bp, which causes the substitution of a glycine (G) by a serine (S) at the 517th amino acid, resulting in an abnormal secondary structure of the Gachlh protein. GaCHLH-silenced SXY1 and ZM24 plants exhibited a lower GaCHLH expression level, a lower chlorophyll content, and the yellow-leaf phenotype. Gachlh expression affected the expression of key genes in the tetrapyrrole pathway. GaCHLH and Gachlh were located in the chloroplasts and that alteration of the mutation site did not affect the final target position. The BiFC assay result indicated that Gachlh could not bind to GaCHLD properly, which prevented the assembly of Mg-chelatase and thus led to the failure of chlorophyll synthesis. In this study, the Gachlh gene of G. arboreum els was finely localized and identified for the first time, providing new insights into the chlorophyll biosynthesis pathway in cotton.
Collapse
Affiliation(s)
- Liqiang Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yan Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lei Zheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Beijing 100081, China
| | - Huiyun Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shengdong Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Le Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengzhen Guo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
6
|
Wang P, Zhu L, Li Z, Cheng M, Chen X, Wang A, Wang C, Zhang X. Genome-Wide Identification of the U-Box E3 Ubiquitin Ligase Gene Family in Cabbage ( Brassica oleracea var. capitata) and Its Expression Analysis in Response to Cold Stress and Pathogen Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:1437. [PMID: 37050063 PMCID: PMC10097260 DOI: 10.3390/plants12071437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Plant U-box E3 ubiquitin ligases (PUBs) play an important role in growth, development, and stress responses in many species. However, the characteristics of U-box E3 ubiquitin ligase genes in cabbage (Brassica oleracea var. capitata) are still unclear. Here, we carry out the genome-wide analysis of U-box E3 ubiquitin ligase genes in cabbage and identify 65 Brassica oleracea var. capitata U-box E3 ubiquitin ligase (BoPUB) genes in the cabbage genome. Phylogenetic analysis indicates that all 65 BoPUB genes are grouped into six subfamilies, whose members are relatively conserved in the protein domain and exon-intron structure. Chromosomal localization and synteny analyses show that segmental and tandem duplication events contribute to the expansion of the U-box E3 ubiquitin ligase gene family in cabbage. Protein interaction prediction presents that heterodimerization may occur in BoPUB proteins. In silico promoter analysis and spatio-temporal expression profiling of BoPUB genes reveal their involvement in light response, phytohormone response, and growth and development. Furthermore, we find that BoPUB genes participate in the biosynthesis of cuticular wax and in response to cold stress and pathogenic attack. Our findings provide a deep insight into the U-box E3 ubiquitin ligase gene family in cabbage and lay a foundation for the further functional analysis of BoPUB genes in different biological processes.
Collapse
Affiliation(s)
- Peiwen Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Ziheng Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Mozhen Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Chao Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxuan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Establishment of a Virus-Induced Gene-Silencing (VIGS) System in Tea Plant and Its Use in the Functional Analysis of CsTCS1. Int J Mol Sci 2022; 24:ijms24010392. [PMID: 36613837 PMCID: PMC9820744 DOI: 10.3390/ijms24010392] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Tea (Camellia sinensis [L.] O. Kuntze) is an important global economic crop and is considered to enhance health. However, the functions of many genes in tea plants are unknown. Virus-induced gene silencing (VIGS) mediated by tobacco rattle virus (TRV) is an effective tool for the analysis of gene functions, although this method has rarely been reported in tea plants. In this study, we established an effective VIGS-mediated gene knockout technology to understand the functional identification of large-scale genomic sequences in tea plants. The results showed that the VIGS system was verified by detecting the virus and using a real-time quantitative reverse transcription PCR (qRT-PCR) analysis. The reporter gene CsPOR1 (protochlorophyllide oxidoreductase) was silenced using the vacuum infiltration method, and typical photobleaching and albino symptoms were observed in newly sprouted leaves at the whole plant level of tea after infection for 12 d and 25 d. After optimization, the VIGS system was successfully used to silence the tea plant CsTCS1 (caffeine synthase) gene. The results showed that the relative caffeine content was reduced 6.26-fold compared with the control, and the level of expression of CsPOR1 decreased by approximately 3.12-fold in plants in which CsPOR1 was silenced. These results demonstrate that VIGS can be quickly and efficiently used to analyze the function of genes in tea plants. The successful establishment of VIGS could eliminate the need for tissue culture by providing an effective method to study gene function in tea plants and accelerate the process of functional genome research in tea.
Collapse
|
8
|
Bhattacharjee B, Hallan V. Geminivirus-Derived Vectors as Tools for Functional Genomics. Front Microbiol 2022; 13:799345. [PMID: 35432267 PMCID: PMC9010885 DOI: 10.3389/fmicb.2022.799345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
A persistent issue in the agricultural sector worldwide is the intensive damage caused to crops by the geminivirus family of viruses. The diverse types of viruses, rapid virus evolution rate, and broad host range make this group of viruses one of the most devastating in nature, leading to millions of dollars' worth of crop damage. Geminiviruses have a small genome and can be either monopartite or bipartite, with or without satellites. Their ability to independently replicate within the plant without integration into the host genome and the relatively easy handling make them excellent candidates for plant bioengineering. This aspect is of great importance as geminiviruses can act as natural nanoparticles in plants which can be utilized for a plethora of functions ranging from vaccine development systems to geminivirus-induced gene silencing (GIGS), through deconstructed viral vectors. Thus, the investigation of these plant viruses is pertinent to understanding their crucial roles in nature and subsequently utilizing them as beneficial tools in functional genomics. This review, therefore, highlights some of the characteristics of these viruses that can be deemed significant and the subsequent successful case studies for exploitation of these potentially significant pathogens for role mining in functional biology.
Collapse
Affiliation(s)
- Bipasha Bhattacharjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
9
|
Han F, Zhang X, Yang L, Zhuang M, Zhang Y, Liu Y, Li Z, Wang Y, Fang Z, Ji J, Lv H. Genome-wide characterization and analysis of the anthocyanin biosynthetic genes in Brassica oleracea. PLANTA 2021; 254:92. [PMID: 34633541 DOI: 10.1007/s00425-021-03746-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
From Brassica oleracea genome, 88 anthocyanin biosynthetic genes were identified. They expanded via whole-genome or tandem duplication and showed significant expression differentiation. Functional characterization revealed BoMYB113.1 as positive and BoMYBL2.1 as negative regulators responsible for anthocyanin accumulation. Brassica oleracea produces various health-promoting phytochemicals, including glucosinolates, carotenoids, and vitamins. Despite the anthocyanin biosynthetic pathways in the model plant Arabidopsis thaliana being well characterized, little is known about the genetic basis of anthocyanin biosynthesis in B. oleracea. In this study, we identified 88 B. oleracea anthocyanin biosynthetic genes (BoABGs) representing homologs of 46 Arabidopsis anthocyanin biosynthetic genes (AtABGs). Most anthocyanin biosynthetic genes, having expanded via whole-genome duplication and tandem duplication, retained more than one copy in B. oleracea. Expression analysis revealed diverse expression patterns of BoABGs in different tissues, and BoABG duplications showed significant expression differentiation. Additional expression analysis and functional characterization revealed that the positive regulator BoMYB113.1 and negative regulator BoMYBL2.1 may be key genes responsible for anthocyanin accumulation in red cabbage and ornamental kale by upregulating the expression of structural genes. This study paves the way for a better understanding of anthocyanin biosynthetic genes in B. oleracea and should promote breeding for anthocyanin content.
Collapse
Affiliation(s)
- Fengqing Han
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Xiaoli Zhang
- Tianjin Kernel Vegetable Research Institute, State Key Laboratory of Vegetable Germplasm Innovation, Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yumei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Zhansheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|