1
|
Opitz MW, Díaz-Manzano FE, Ruiz-Ferrer V, Daneshkhah R, Ludwig R, Lorenz C, Escobar C, Steinkellner S, Wieczorek K. The other side of the coin: systemic effects of Serendipita indica root colonization on development of sedentary plant-parasitic nematodes in Arabidopsis thaliana. PLANTA 2024; 259:121. [PMID: 38615288 PMCID: PMC11016515 DOI: 10.1007/s00425-024-04402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
MAIN CONCLUSION Upon systemic S. indica colonization in split-root system cyst and root-knot nematodes benefit from endophyte-triggered carbon allocation and altered defense responses what significantly facilitates their development in A. thaliana. Serendipita indica is an endophytic fungus that establishes mutualistic relationships with different plants including Arabidopsis thaliana. It enhances host's growth and resistance to different abiotic and biotic stresses such as infestation by the cyst nematode Heterodera schachtii (CN). In this work, we show that S. indica also triggers similar direct reduction in development of the root-knot nematode Meloidogyne javanica (RKN) in A. thaliana. Further, to mimick the natural situation occurring frequently in soil where roots are unequally colonized by endophytes we used an in vitro split-root system with one half of A. thaliana root inoculated with S. indica and the other half infected with CN or RKN, respectively. Interestingly, in contrast to direct effects, systemic effects led to an increase in number of both nematodes. To elucidate this phenomenon, we focused on sugar metabolism and defense responses in systemic non-colonized roots of plants colonized by S. indica. We analyzed the expression of several SUSs and INVs as well as defense-related genes and measured sugar pools. The results show a significant downregulation of PDF1.2 as well as slightly increased sucrose levels in the non-colonized half of the root in three-chamber dish. Thus, we speculate that, in contrast to direct effects, both nematode species benefit from endophyte-triggered carbon allocation and altered defense responses in the systemic part of the root, which promotes their development. With this work, we highlight the complexity of this multilayered tripartite relationship and deliver new insights into sugar metabolism and plant defense responses during S. indica-nematode-plant interaction.
Collapse
Affiliation(s)
- Michael W Opitz
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Fernando Evaristo Díaz-Manzano
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Virginia Ruiz-Ferrer
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Roshanak Daneshkhah
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Roland Ludwig
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cindy Lorenz
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Carolina Escobar
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Siegrid Steinkellner
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Krzysztof Wieczorek
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria.
| |
Collapse
|
2
|
Wu C, Yang Y, Wang Y, Zhang W, Sun H. Colonization of root endophytic fungus Serendipita indica improves drought tolerance of Pinus taeda seedlings by regulating metabolome and proteome. Front Microbiol 2024; 15:1294833. [PMID: 38559354 PMCID: PMC10978793 DOI: 10.3389/fmicb.2024.1294833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024] Open
Abstract
Pinus taeda is an important forest tree species for plantations because of its rapid growth and high yield of oleoresins. Although P. taeda plantations distribute in warm and wet southern China, drought, sometime serious and long time, often occurs in the region. To explore drought tolerance of P. taeda and usage of beneficial microorganisms, P. taeda seedlings were planted in pots and were inoculated with root endophytic fungus Serendipita indica and finally were treated with drought stress for 53 d. Metabolome and proteome of their needles were analyzed. The results showed that S. indica inoculation of P. taeda seedlings under drought stress caused great changes in levels of some metabolites in their needles, especially some flavonoids and organic acids. Among them, the levels of eriocitrin, trans-aconitic acid, vitamin C, uric acid, alpha-ketoglutaric acid, vitamin A, stachydrine, coumalic acid, itaconic acid, calceolarioside B, 2-oxoglutaric acid, and citric acid were upregulated more than three times in inoculated seedlings under drought stress, compared to those of non-inoculated seedlings under drought stress. KEGG analysis showed that some pathways were enriched in inoculated seedlings under drought stress, such as flavonoid biosynthesis, ascorbate and aldarate metabolism, C5-branched dibasic acid metabolism. Proteome analysis revealed some specific differential proteins. Two proteins, namely, H9X056 and H9VDW5, only appeared in the needles of inoculated seedlings under drought stress. The protein H9VNE7 was upregulated more than 11.0 times as that of non-inoculated seedlings under drought stress. In addition, S. indica inoculation increased enrichment of water deficient-inducible proteins (such as LP3-1, LP3-2, LP3-3, and dehydrins) and those involved in ribosomal structures (such as A0A385JF23). Meanwhile, under drought stress, the inoculation caused great changes in biosynthesis and metabolism pathways, mainly including phenylpropanoid biosynthesis, cutin, suberine and wax biosynthesis, and 2-oxocarboxylic acid metabolism. In addition, there were positive relationships between accumulation of some metabolites and enrichment of proteins in P. taeda under drought stress. Altogether, our results showed great changes in metabolome and proteome in inoculated seedlings under drought stress and provided a guideline to further study functions of metabolites and proteins, especially those related to drought stress.
Collapse
Affiliation(s)
- Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yujie Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yun Wang
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Wenying Zhang
- College of Agricultural Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Honggang Sun
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
3
|
Sehar S, Adil MF, Ma Z, Karim MF, Faizan M, Zaidi SSA, Siddiqui MH, Alamri S, Zhou F, Shamsi IH. Phosphorus and Serendipita indica synergism augments arsenic stress tolerance in rice by regulating secondary metabolism related enzymatic activity and root metabolic patterns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114866. [PMID: 37023649 DOI: 10.1016/j.ecoenv.2023.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
The multifarious problems created by arsenic (As), for collective environment and human health, serve a cogent case for searching integrative agricultural approaches to attain food security. Rice (Oryza sativa L.) acts as a sponge for heavy metal(loid)s accretion, specifically As, due to anaerobic flooded growth conditions facilitating its uptake. Acclaimed for their positive impact on plant growth, development and phosphorus (P) nutrition, 'mycorrhizas' are able to promote stress tolerance. Albeit, the metabolic alterations underlying Serendipita indica (S. indica; S.i) symbiosis-mediated amelioration of As stress along with nutritional management of P are still understudied. By using biochemical, RT-qPCR and LC-MS/MS based untargeted metabolomics approach, rice roots of ZZY-1 and GD-6 colonized by S. indica, which were later treated with As (10 µM) and P (50 µM), were compared with non-colonized roots under the same treatments with a set of control plants. The responses of secondary metabolism related enzymes, especially polyphenol oxidase (PPO) activities in the foliage of ZZY-1 and GD-6 were enhanced 8.5 and 12-fold, respectively, compared to their respective control counterparts. The current study identified 360 cationic and 287 anionic metabolites in rice roots, and the commonly enriched pathway annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was biosynthesis of phenylalanine, tyrosine and tryptophan, which validated the results of biochemical and gene expression analyses associated with secondary metabolic enzymes. Particularly under As+S.i+P comparison, both genotypes exhibited an upregulation of key detoxification and defense related metabolites, including fumaric acid, L-malic acid, choline, 3,4-dihydroxybenzoic acid, to name a few. The results of this study provided the novel insights into the promising role of exogenous P and S. indica in alleviating As stress.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhengxin Ma
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Fazal Karim
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Agronomy, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Syed Shujaat Ali Zaidi
- Center for Innovation in Brain Science, Department of Neurology, University of Arizona, Tucson, AZ 85719, USA
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fanrui Zhou
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Jędrzejczyk RJ, Gustab M, Ważny R, Domka A, Jodłowski PJ, Sitarz M, Bezkosty P, Kowalski M, Pawcenis D, Jarosz K, Sebastian V, Łabaj PP, Rozpądek P. Iron inactivation by Sporobolomyces ruberrimus and its potential role in plant metal stress protection. An in vitro study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161887. [PMID: 36731550 DOI: 10.1016/j.scitotenv.2023.161887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The endophytic Basidiomycete Sporobolomyces ruberrimus protects its host Arabidopsis arenosa against metal toxicity. Plants inoculated with the fungus yielded more biomass and exhibited significantly fewer stress symptoms in medium mimicking mine dump conditions (medium supplemented with excess of Fe, Zn and Cd). Aside from fine-tuning plant metal homeostasis, the fungus was capable of precipitating Fe in the medium, most likely limiting host exposure to metal toxicity. The precipitated residue was identified by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-Ray Diffraction (XRD) and electron microscopy (SEM/TEM) with energy dispersive X-Ray analysis (EDX/SAED) techniques. The performed analyses revealed that the fungus transforms iron into amorphous (oxy)hydroxides and phosphates and immobilizes them in the form of a precipitate changing Fe behaviour in the MSR medium. Moreover, the complexation of free Fe ions by fungi could be obtained by biomolecules such as lipids, proteins, or biosynthesized redox-active molecules.
Collapse
Affiliation(s)
- Roman J Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - Maciej Gustab
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - Rafał Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - Agnieszka Domka
- W. Szafer Institute of Botany Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland.
| | - Przemysław J Jodłowski
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland.
| | - Maciej Sitarz
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland.
| | - Patryk Bezkosty
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland.
| | - Michał Kowalski
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - Dominika Pawcenis
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Kinga Jarosz
- Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland.
| | - Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain; Department of Chemical and Environmental Engineering, Universidad de Zaragoza, Campus Rio Ebro, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Paweł P Łabaj
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - Piotr Rozpądek
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| |
Collapse
|
5
|
Saleem S, Sekara A, Pokluda R. Serendipita indica-A Review from Agricultural Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:3417. [PMID: 36559533 PMCID: PMC9787873 DOI: 10.3390/plants11243417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Fulfilling the food demand of a fast-growing population is a global concern, resulting in increased dependence of the agricultural sector on various chemical formulations for enhancing crop production. This leads to an overuse of chemicals, which is not only harmful to human and animal health, but also to the environment and the global economy. Environmental safety and sustainable production are major responsibilities of the agricultural sector, which is inherently linked to the conservation of the biodiversity, the economy, and human and animal health. Scientists, therefore, across the globe are seeking to develop eco-friendly and cost-effective strategies to mitigate these issues by putting more emphasis on the use of beneficial microorganisms. Here, we review the literature on Serendipita indica, a beneficial endophytic fungus, to bring to the fore its properties of cultivation, the ability to enhance plant growth, improve the quality of produced crops, mitigate various plant stresses, as well as protect the environment. The major points in this review are as follows: (1) Although various plant growth promoting microorganisms are available, the distinguishing character of S. indica being axenically cultivable with a wide range of hosts makes it more interesting for research. (2) S. indica has numerous functions, ranging from promoting plant growth and quality to alleviating abiotic and biotic stresses, suggesting the use of this fungus as a biofertiliser. It also improves the soil quality by limiting the movement of heavy metals in the soil, thus, protecting the environment. (3) S. indica's modes of action are due to interactions with phytohormones, metabolites, photosynthates, and gene regulation, in addition to enhancing nutrient and water absorption. (4) Combined application of S. indica and nanoparticles showed synergistic promotion in crop growth, but the beneficial effects of these interactions require further investigation. This review concluded that S. indica has a great potential to be used as a plant growth promoter or biofertiliser, ensuring sustainable crop production and a healthy environment.
Collapse
Affiliation(s)
- Sana Saleem
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland
| | - Robert Pokluda
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic
| |
Collapse
|
6
|
Abbasi S, Nasirzadeh F, Boojar MMA, Kafi SA, Karimi E, Khelghatibana F, Sadeghi A. Streptomyces strains can improve the quality properties and antifungal bioactivities of tomato fruits by impacting WRKY70 transcription factor gene and nitrate accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 188:31-37. [PMID: 35964362 DOI: 10.1016/j.plaphy.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/09/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The current study evaluated the effect of plant growth-promoting (PGP) strains of Streptomyces on yield, quality, and nitrate content of fruits, plant-microbe responses, and antifungal effect against blight disease caused by fungus pathogen Alternaria solani on tomato fruits in commercial greenhouse conditions. Greenhouse trials were done with four treatments including strains Y28, IC10, IT25, and commercial bio-fertilizer (Barvar NPK®) on tomato plants. In PGP treatments, the number of infected fruits significantly reduced (60%) compared to Barvar and control. Strain Y28 improved the quality of tomatoes more than other treatments. All three PGP treatments contained a higher level of total sugar concentration and antioxidant enzyme activities than Barvar and control. In contrast, PGP strains, especially Y28, significantly reduced nitrate accumulation (25%) compared to Barvar and control tomatoes. Streptomyces treatments induced more than a 20-fold increase in UDP and WRKY70 transcription factor gene expression relative to the control (P < 0.01). Based on the results, microbe-dependent plant defense induced by these strains is positively correlated to WRKY70 expression and nitrate reduction in commercial greenhouse conditions. These findings suggest that the commercial application of specific strains not only can illustrate an eco-friendly solution to induce resistance against fungal pathogens but also improve the quality properties of food plants with lower nitrate content.
Collapse
Affiliation(s)
- Sakineh Abbasi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran; Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Farhad Nasirzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Sahar Alipour Kafi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ebrahim Karimi
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Fatemeh Khelghatibana
- Plant Protection Lab, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
7
|
De Rocchis V, Jammer A, Camehl I, Franken P, Roitsch T. Tomato growth promotion by the fungal endophytes Serendipita indica and Serendipita herbamans is associated with sucrose de-novo synthesis in roots and differential local and systemic effects on carbohydrate metabolisms and gene expression. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153755. [PMID: 35961165 DOI: 10.1016/j.jplph.2022.153755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 05/28/2023]
Abstract
Plant growth-promoting and stress resilience-inducing root endophytic fungi represent an additional carbohydrate sink. This study aims to test if such root endophytes affect the sugar metabolism of the host plant to divert the flow of resources for their purposes. Fresh and dry weights of roots and shoots of tomato (Solanum lycopersicum) colonised by the closely related Serendipita indica and Serendipita herbamans were recorded. Plant carbohydrate metabolism was analysed by measuring sugar levels, by determining activity signatures of key enzymes of carbohydrate metabolism, and by quantifying mRNA levels of genes involved in sugar transport and turnover. During the interaction with the tomato plants, both fungi promoted root growth and shifted shoot biomass from stem to leaf tissues, resulting in increased leaf size. A common effect induced by both fungi was the inhibition of phosphofructokinase (PFK) in roots and leaves. This glycolytic-pacing enzyme shows how the glycolysis rate is reduced in plants and, eventually, how sugars are allocated to different tissues. Sucrose phosphate synthase (SPS) activity was strongly induced in colonised roots. This was accompanied by increased SPS-A1 gene expression in S. herbamans-colonised roots and by increased sucrose amounts in roots colonised by S. indica. Other enzyme activities were barely affected by S. indica, but mainly induced in leaves of S. herbamans-colonised plants and decreased in roots. This study suggests that two closely related root endophytic fungi differentially influence plant carbohydrate metabolism locally and systemically, but both induce a similar increase in plant biomass. Notably, both fungal endophytes induce an increase in SPS activity and, in the case of S. indica, sucrose resynthesis in roots. In leaves of S. indica-colonised plants, SWEET11b expression was enhanced, thus we assume that excess sucrose was exported by this transporter to the roots. .
Collapse
Affiliation(s)
- Vincenzo De Rocchis
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Alexandra Jammer
- Institute of Biology, University of Graz, NAWI Graz, Schubertstraße 51, 8010, Graz, Austria
| | - Iris Camehl
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
8
|
Jing M, Xu X, Peng J, Li C, Zhang H, Lian C, Chen Y, Shen Z, Chen C. Comparative Genomics of Three Aspergillus Strains Reveals Insights into Endophytic Lifestyle and Endophyte-Induced Plant Growth Promotion. J Fungi (Basel) 2022; 8:jof8070690. [PMID: 35887447 PMCID: PMC9323082 DOI: 10.3390/jof8070690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Aspergillus includes both plant pathogenic and beneficial fungi. Although endophytes beneficial to plants have high potential for plant growth promotion and improving stress tolerance, studies on endophytic lifestyles and endophyte-plant interactions are still limited. Here, three endophytes belonging to Aspergillus, AS31, AS33, and AS42, were isolated. They could successfully colonize rice roots and significantly improved rice growth. The genomes of strains AS31, AS33, and AS42 were sequenced and compared with other Aspergillus species covering both pathogens and endophytes. The genomes of AS31, AS33, and AS42 were 36.8, 34.8, and 35.3 Mb, respectively. The endophytic genomes had more genes encoding carbohydrate-active enzymes (CAZymes) and small secreted proteins (SSPs) and secondary metabolism gene clusters involved in indole metabolism than the pathogens. In addition, these endophytes were able to improve Pi (phosphorus) accumulation and transport in rice by inducing the expression of Pi transport genes in rice. Specifically, inoculation with endophytes significantly increased Pi contents in roots at the early stage, while the Pi contents in inoculated shoots were significantly increased at the late stage. Our results not only provide important insights into endophyte-plant interactions but also provide strain and genome resources, paving the way for the agricultural application of Aspergillus endophytes.
Collapse
Affiliation(s)
- Minyu Jing
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Xihui Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Jing Peng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Can Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Hanchao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Tokyo 188-0002, Japan;
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.S.); (C.C.); Tel.: +86-2584396391 (C.C.)
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.J.); (X.X.); (J.P.); (C.L.); (H.Z.); (Y.C.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.S.); (C.C.); Tel.: +86-2584396391 (C.C.)
| |
Collapse
|
9
|
The Role of Serendipita indica (Piriformospora indica) in Improving Plant Resistance to Drought and Salinity Stresses. BIOLOGY 2022; 11:biology11070952. [PMID: 36101333 PMCID: PMC9312039 DOI: 10.3390/biology11070952] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary Environmental stresses are one of the biggest threats to modern agriculture, and climate change has heightened the risks of these stresses in different parts of the world. Among all the environmental stresses, salinity and drought are a severe threat to arid and semi-arid regions of the world, and for a long time, scientists have been searching for ways to reduce the risk of these stresses. In recent decades, solutions have been developed to reduce the risk of environmental stress on plants by identifying beneficial soil microorganisms. This study was conducted to identify morphophysiological and molecular changes of plants in coexistence with Serendipita indica and their impact on drought and salinity stress reduction. The study also has investigated the stressors’ impact on plants and the plants’ mechanisms to cope with them; Furthermore, sharing results with researchers provides a clear path for future research. Abstract Plant stress is one of the biggest threats to crops, causing irreparable damage to farmers’ incomes; Therefore, finding suitable, affordable, and practical solutions will help the agricultural economy and prevent the loss of millions of tons of agricultural products. Scientists have taken significant steps toward improving farm productivity in the last few decades by discovering how beneficial soil microorganisms enhance plant resistance to environmental stresses. Among these microorganisms is Serendipita indica, which the benefits of coexisting this fungus with plant roots have been extensively explored in recent years. By investigating fungus specification and its effects on plants’ morphological, physiological, and molecular traits, the present study seeks to understand how Serendipita indica affects plant resistance to salinity and drought conditions. Furthermore, this study attempts to identify the unknown mechanisms of action of the coexistence of Serendipita indica with plants in the face of stress using information from previous studies. Thus, it provides a way for future research to assess the impact of this fungus on tackling environmental stresses and enhancing agricultural productivity.
Collapse
|
10
|
Almario J, Fabiańska I, Saridis G, Bucher M. Unearthing the plant-microbe quid pro quo in root associations with beneficial fungi. THE NEW PHYTOLOGIST 2022; 234:1967-1976. [PMID: 35239199 DOI: 10.1111/nph.18061] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Mutualistic symbiotic associations between multicellular eukaryotes and their microbiota are driven by the exchange of nutrients in a quid pro quo manner. In the widespread arbuscular mycorrhizal (AM) symbiosis involving plant roots and Glomeromycotina fungi, the mycobiont is supplied with carbon through photosynthesis, which in return supplies the host plant with essential minerals such as phosphorus (P). Most terrestrial plants are largely dependent on AM fungi for nutrients, which raises the question of how plants that are unable to form a functional AM sustain their P nutrition. AM nonhost plants can form alternative, evolutionarily younger, mycorrhizal associations such as the ectomycorrhiza, ericoid and orchid mycorrhiza. However, it is unclear how plants such as the Brassicaceae species Arabidopsis thaliana, which do not form known mycorrhizal symbioses, have adapted to the loss of these essential mycorrhizal traits. Isotope tracing experiments with root-colonizing fungi have revealed the existence of new 'mycorrhizal-like' fungi capable of transferring nutrients such as nitrogen (N) and P to plants, including Brassicaceae. Here, we provide an overview of the biology of trophic relationships between roots and fungi and how these associations might support plant adaptation to climate change.
Collapse
Affiliation(s)
- Juliana Almario
- Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgroSup, Université de Lyon, Université Claude Bernard Lyon1, 43 Boulevard du 11 novembre 1918, Villeurbanne, 69622, France
| | - Izabela Fabiańska
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Georgios Saridis
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Marcel Bucher
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50931, Germany
| |
Collapse
|
11
|
The microscopic mechanism between endophytic fungi and host plants: From recognition to building stable mutually beneficial relationships. Microbiol Res 2022; 261:127056. [DOI: 10.1016/j.micres.2022.127056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022]
|
12
|
Garnica S, Liao Z, Hamard S, Waller F, Parepa M, Bossdorf O. Environmental stress determines the colonization and impact of an endophytic fungus on invasive knotweed. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02749-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractThere is increasing evidence that microbes play a key role in some plant invasions. A diverse and widespread but little understood group of plant-associated microbes are the fungal root endophytes of the order Sebacinales. They are associated with exotic populations of invasive knotweed (Reynoutria ssp.) in Europe, but their effects on the invaders are unknown. We used the recently isolated Sebacinales root endophyte Serendipita herbamans to experimentally inoculate invasive knotweed and study root colonisation and effects on knotweed growth under different environmental conditions. We verified the inoculation success and fungal colonisation through immunofluorescence microscopy and qPCR. We found that S. herbamans strongly colonized invasive knotweed in low-nutrient and shade environments, but much less under drought or benign conditions. At low nutrients, the endophyte had a positive effect on plant growth, whereas the opposite was true under shaded conditions. Our study demonstrates that the root endophyte S. herbamans has the potential to colonize invasive knotweed fine roots and impact its growth, and it could thus also play a role in natural populations. Our results also show that effects of fungal endophytes on plants can be strongly environment-dependent, and may only be visible under stressful environmental conditions.
Collapse
|