1
|
Tezuka T, Nagai S, Matsuo C, Okamori T, Iizuka T, Marubashi W. Genetic Cause of Hybrid Lethality Observed in Reciprocal Interspecific Crosses between Nicotiana simulans and N. tabacum. Int J Mol Sci 2024; 25:1226. [PMID: 38279225 PMCID: PMC10817076 DOI: 10.3390/ijms25021226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Hybrid lethality, a type of postzygotic reproductive isolation, is an obstacle to wide hybridization breeding. Here, we report the hybrid lethality that was observed in crosses between the cultivated tobacco, Nicotiana tabacum (section Nicotiana), and the wild tobacco species, Nicotiana simulans (section Suaveolentes). Reciprocal hybrid seedlings were inviable at 28 °C, and the lethality was characterized by browning of the hypocotyl and roots, suggesting that hybrid lethality is due to the interaction of nuclear genomes derived from each parental species, and not to a cytoplasmic effect. Hybrid lethality was temperature-sensitive and suppressed at 36 °C. However, when hybrid seedlings cultured at 36 °C were transferred to 28 °C, all of them showed hybrid lethality. After crossing between an N. tabacum monosomic line missing one copy of the Q chromosome and N. simulans, hybrid seedlings with or without the Q chromosome were inviable and viable, respectively. These results indicated that gene(s) on the Q chromosome are responsible for hybrid lethality and also suggested that N. simulans has the same allele at the Hybrid Lethality A1 (HLA1) locus responsible for hybrid lethality as other species in the section Suaveolentes. Haplotype analysis around the HLA1 locus suggested that there are at least six and two haplotypes containing Hla1-1 and hla1-2 alleles, respectively, in the section Suaveolentes.
Collapse
Affiliation(s)
- Takahiro Tezuka
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan;
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan;
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Shota Nagai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan;
| | - Chihiro Matsuo
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Toshiaki Okamori
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Takahiro Iizuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan;
| | - Wataru Marubashi
- School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan;
| |
Collapse
|
2
|
He H, Shiragaki K, Tezuka T. Understanding and overcoming hybrid lethality in seed and seedling stages as barriers to hybridization and gene flow. FRONTIERS IN PLANT SCIENCE 2023; 14:1219417. [PMID: 37476165 PMCID: PMC10354522 DOI: 10.3389/fpls.2023.1219417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Hybrid lethality is a type of reproductive isolation barrier observed in two developmental stages, hybrid embryos (hybrid seeds) and hybrid seedlings. Hybrid lethality has been reported in many plant species and limits distant hybridization breeding including interspecific and intergeneric hybridization, which increases genetic diversity and contributes to produce new germplasm for agricultural purposes. Recent studies have provided molecular and genetic evidence suggesting that underlying causes of hybrid lethality involve epistatic interaction of one or more loci, as hypothesized by the Bateson-Dobzhansky-Muller model, and effective ploidy or endosperm balance number. In this review, we focus on the similarities and differences between hybrid seed lethality and hybrid seedling lethality, as well as methods of recovering seed/seedling activity to circumvent hybrid lethality. Current knowledge summarized in our article will provides new insights into the mechanisms of hybrid lethality and effective methods for circumventing hybrid lethality.
Collapse
Affiliation(s)
- Hai He
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Kumpei Shiragaki
- Laboratory of Plant Breeding and Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Takahiro Tezuka
- Laboratory of Breeding and Genetics, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
3
|
RNA-Seq Analysis Demystify the Pathways of UV-A Supplementation in Different Photoperiods Integrated with Blue and Red Light on Morphology and Phytochemical Profile of Kale. Antioxidants (Basel) 2023; 12:antiox12030737. [PMID: 36978985 PMCID: PMC10045344 DOI: 10.3390/antiox12030737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
As an indispensable element in the morphology and phytochemical profile of plants, UV-A has proved to help promote the growth and quality of kale. In this study, UV-A supplementation in different photoperiods (light period supplemental UVA = LS, dark period supplemental UVA = DS, and light-dark period supplemental UVA = LDS) contributed to yielding greater biomass production (fresh weight, dry weight, and plant moisture content), thus improving morphology (plant height, stem diameter, etc.) and promoting higher phytochemicals content (flavonoids, vitamin c, etc.), especially glucosinolates. To fathom its mechanisms, this study, using RNA-seq, verified that UV-A supplementation treatments signally generated related DEGs of plant hormone signal pathway, circadian rhythm plant pathway, glucosinolate pathway, etc. Moreover, 2047 DEGs were obtained in WGCNA, illustrating the correlations between genes, treatments, and pathways. Additionally, DS remarkedly up-regulated related DEGs of the key pathways and ultimately contributed to promoting the stem diameter, plant height, etc., thus increasing the pigment, biomass, vitamin c, etc., enhancing the antioxidant capacity, and most importantly, boosting the accumulations of glucosinolates in kale. In short, this study displayed new insights into UV-A supplementation affected the pathways related to the morphology and phytochemical profile of kale in plant factories.
Collapse
|
4
|
Tezuka T, Kitamura N, Imagawa S, Hasegawa A, Shiragaki K, He H, Yanase M, Ogata Y, Morikawa T, Yokoi S. Genetic Mapping of the HLA1 Locus Causing Hybrid Lethality in Nicotiana Interspecific Hybrids. PLANTS 2021; 10:plants10102062. [PMID: 34685871 PMCID: PMC8539413 DOI: 10.3390/plants10102062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
Hybrid lethality, a postzygotic mechanism of reproductive isolation, is a phenomenon that causes the death of F1 hybrid seedlings. Hybrid lethality is generally caused by the epistatic interaction of two or more loci. In the genus Nicotiana, N. debneyi has the dominant allele Hla1-1 at the HLA1 locus that causes hybrid lethality in F1 hybrid seedlings by interaction with N. tabacum allele(s). Here, we mapped the HLA1 locus using the F2 population segregating for the Hla1-1 allele derived from the interspecific cross between N. debneyi and N. fragrans. To map HLA1, several DNA markers including random amplified polymorphic DNA, amplified fragment length polymorphism, and simple sequence repeat markers, were used. Additionally, DNA markers were developed based on disease resistance gene homologs identified from the genome sequence of N. benthamiana. Linkage analysis revealed that HLA1 was located between two cleaved amplified polymorphic sequence markers Nb14-CAPS and NbRGH1-CAPS at a distance of 10.8 and 10.9 cM, respectively. The distance between these markers was equivalent to a 682 kb interval in the genome sequence of N. benthamiana.
Collapse
Affiliation(s)
- Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
- Education and Research Field, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
- Correspondence:
| | - Naoto Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Sae Imagawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (S.I.); (A.H.)
| | - Akira Hasegawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (S.I.); (A.H.)
| | - Kumpei Shiragaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Hai He
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Masanori Yanase
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Yoshiyuki Ogata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Toshinobu Morikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Shuji Yokoi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
- Education and Research Field, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
- Bioeconomy Research Institute, Research Center for the 21st Century, Osaka Prefecture University, Osaka 599-8531, Japan
| |
Collapse
|