1
|
Zhao T, Li Q, Yan T, Yu B, Wang Q, Wang D. Sugar and anthocyanins: A scientific exploration of sweet signals and natural pigments. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112409. [PMID: 39894058 DOI: 10.1016/j.plantsci.2025.112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/05/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
The presence of anthocyanins imparts vibrant hues to plants, whose biosynthesis and accumulation is a complex process and are influenced by numerous factors. In plants, sugar acts as a primary energy source and signaling molecule regulating anthocyanins biosynthesis. In this review, we provides a comprehensive overview of the relationship between sugar and anthocyanin. We delved into the intricate biosynthetic pathway of anthocyanins, outlining the key structural genes involved and their functions. Furthermore, we summarized how various environmental factors such as sugar, light, abiotic stresses, etc., affect anthocyanin biosynthesis. Notably, Most notably, we emphasized that sugars can independently regulate anthocyanin biosynthesis by modulating the expression of the MBW complex or structural genes, as well as through cascades involving hormones. These findings offer valuable insights into understanding the molecular mechanisms underlying anthocyanin accumulation and present potential avenues for enhancing anthocyanin content in plants through targeted manipulations that could have applications in agriculture and nutrition.
Collapse
Affiliation(s)
- Ting Zhao
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qian Li
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ting Yan
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Boping Yu
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qi Wang
- Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
2
|
Zhang Q, Gao R, Wu D, Wang X, Liu Y, Gao Y, Guan L. Metabolome and Transcriptome Analysis Revealed the Pivotal Role of Exogenous Melatonin in Enhancing Salt Tolerance in Vitis vinifera L. Int J Mol Sci 2024; 25:3651. [PMID: 38612463 PMCID: PMC11011403 DOI: 10.3390/ijms25073651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 04/14/2024] Open
Abstract
Vitis vinifera L. possesses high economic value, but its growth and yield are seriously affected by salt stress. Though melatonin (MT) has been widely reported to enhance tolerance towards abiotic stresses in plants, the regulatory role melatonin plays in resisting salt tolerance in grapevines has scarcely been studied. Here, we observed the phenotypes under the treatment of different melatonin concentrations, and then transcriptome and metabolome analyses were performed. A total of 457 metabolites were detected in CK- and MT-treated cell cultures at 1 WAT (week after treatment) and 4 WATs. Exogenous melatonin treatment significantly increased the endogenous melatonin content while down-regulating the flavonoid content. To be specific, the melatonin content was obviously up-regulated, while the contents of more than a dozen flavonoids were down-regulated. Auxin response genes and melatonin synthesis-related genes were regulated by the exogenous melatonin treatment. WGCNA (weighted gene coexpression network analysis) identified key salt-responsive genes; they were directly or indirectly involved in melatonin synthesis and auxin response. The synergistic effect of salt and melatonin treatment was investigated by transcriptome analysis, providing additional evidence for the stress-alleviating properties of melatonin through auxin-related pathways. The present study explored the impact of exogenous melatonin on grapevines' ability to adapt to salt stress and provided novel insights into enhancing their tolerance to salt stress.
Collapse
Affiliation(s)
- Qiunan Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Gao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Di Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiao Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yang Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yanqiang Gao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Le Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
3
|
Ren R, Shi J, Zeng M, Tang Z, Xie S, Zhang Z. Inter- and intra-varietal genetic variations co-shape the polyphenol profiles of Vitis vinifera L. grapes and wines. Food Chem X 2023; 20:101030. [PMID: 38144762 PMCID: PMC10740138 DOI: 10.1016/j.fochx.2023.101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Inheritance and mutations are important factors affecting grape phenolic composition. To investigate the inter- and intra-varietal differences in polyphenolic compounds among grapes and wines, 27 clones belonging to eight varieties of Vitis vinifera L. were studied over two consecutive years. A total of 24 polyphenols (nine anthocyanins, three flavanols, five flavonols, and seven phenolic acids) were analyzed, and the physicochemical parameters of the grapes and wines were determined. Polyphenol profiles showed significant varietal and clonal polymorphisms, and malvidin-3-O-glucoside, peonidin-3-O- glucoside, and epicatechin were identified as key biomarkers distinguishing different grapes and wines when using an orthogonal partial least squares discriminant analysis. Further multivariate analysis classified these genotypes into three subclasses, and a somatic variant of 'Malbec', MBVCR6, had the most abundant polyphenolic compounds that were related to the titratable acid content. The current results reveal that varietal and clonal variations are important for obtaining wines with high polyphenol content.
Collapse
Affiliation(s)
- Ruihua Ren
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Jingjing Shi
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Maoyu Zeng
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Zizhu Tang
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Sha Xie
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
- China Wine Industry Technology Institute, Room 1606, Zhongguancun Innovation Center, Yinchuan, Ningxia 750021, China
| |
Collapse
|
4
|
Wang Y, Shang B, Génard M, Hilbert-Masson G, Delrot S, Gomès E, Poni S, Keller M, Renaud C, Kong J, Chen J, Liang Z, Dai Z. Model-assisted analysis for tuning anthocyanin composition in grape berries. ANNALS OF BOTANY 2023; 132:1033-1050. [PMID: 37850481 PMCID: PMC10808033 DOI: 10.1093/aob/mcad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Anthocyanin composition is responsible for the red colour of grape berries and wines, and contributes to their organoleptic quality. However, anthocyanin biosynthesis is under genetic, developmental and environmental regulation, making its targeted fine-tuning challenging. We constructed a mechanistic model to simulate the dynamics of anthocyanin composition throughout grape ripening in Vitis vinifera, employing a consensus anthocyanin biosynthesis pathway. The model was calibrated and validated using six datasets from eight cultivars and 37 growth conditions. Tuning the transformation and degradation parameters allowed us to accurately simulate the accumulation process of each individual anthocyanin under different environmental conditions. The model parameters were robust across environments for each genotype. The coefficients of determination (R2) for the simulated versus observed values for the six datasets ranged from 0.92 to 0.99, while the relative root mean square errors (RRMSEs) were between 16.8 and 42.1 %. The leave-one-out cross-validation for three datasets showed R2 values of 0.99, 0.96 and 0.91, and RRMSE values of 28.8, 32.9 and 26.4 %, respectively, suggesting a high prediction quality of the model. Model analysis showed that the anthocyanin profiles of diverse genotypes are relatively stable in response to parameter perturbations. Virtual experiments further suggested that targeted anthocyanin profiles may be reached by manipulating a minimum of three parameters, in a genotype-dependent manner. This model presents a promising methodology for characterizing the temporal progression of anthocyanin composition, while also offering a logical foundation for bioengineering endeavours focused on precisely adjusting the anthocyanin composition of grapes.
Collapse
Affiliation(s)
- Yongjian Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Boxing Shang
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Michel Génard
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| | | | - Serge Delrot
- EGFV, University of Bordeaux, Bordeaux-Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Eric Gomès
- EGFV, University of Bordeaux, Bordeaux-Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Stefano Poni
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Markus Keller
- Department of Viticulture and Enology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Christel Renaud
- EGFV, University of Bordeaux, Bordeaux-Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Junhua Kong
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Jinliang Chen
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanwu Dai
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhang K, Du M, Zhang H, Zhang X, Cao S, Wang X, Wang W, Guan X, Zhou P, Li J, Jiang W, Tang M, Zheng Q, Cao M, Zhou Y, Chen K, Liu Z, Fang Y. The haplotype-resolved T2T genome of teinturier cultivar Yan73 reveals the genetic basis of anthocyanin biosynthesis in grapes. HORTICULTURE RESEARCH 2023; 10:uhad205. [PMID: 38046853 PMCID: PMC10689054 DOI: 10.1093/hr/uhad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/01/2023] [Indexed: 12/05/2023]
Abstract
Teinturier grapes are characterized by the typical accumulation of anthocyanins in grape skin, flesh, and vegetative tissues, endowing them with high utility value in red wine blending and nutrient-enriched foods developing. However, due to the lack of genome information, the mechanism involved in regulating teinturier grape coloring has not yet been elucidated and their genetic utilization research is still insufficient. Here, the cultivar 'Yan73' was used for assembling the telomere-to-telomere (T2T) genome of teinturier grapes by combining the High Fidelity (HiFi), Hi-C and ultralong Oxford Nanopore Technologies (ONT) reads. Two haplotype genomes were assembled, at the sizes of 501.68 Mb and 493.38 Mb, respectively. In the haplotype 1 genome, the transposable elements (TEs) contained 32.77% of long terminal repeats (LTRs), while in the haplotype 2 genome, 31.53% of LTRs were detected in TEs. Furthermore, obvious inversions were identified in chromosome 18 between the two haplotypes. Transcriptome profiling suggested that the gene expression patterns in 'Cabernet Sauvignon' and 'Yan73' were diverse depending on tissues, developmental stages, and varieties. The transcription program of genes in the anthocyanins biosynthesis pathway between the two cultivars exhibited high similarity in different tissues and developmental stages, whereas the expression levels of numerous genes showed significant differences. Compared with other genes, the expression levels of VvMYBA1 and VvUFGT4 in all samples, VvCHS2 except in young shoots and VvPAL9 except in the E-L23 stage of 'Yan73' were higher than those of 'Cabernet Sauvignon'. Further sequence alignments revealed potential variant gene loci and structure variations of anthocyanins biosynthesis related genes and a 816 bp sequence insertion was found in the promoter of VvMYBA1 of 'Yan73' haplotype 2 genome. The 'Yan73' T2T genome assembly and comparative analysis provided valuable foundations for further revealing the coloring mechanism of teinturier grapes and the genetic improvement of grape coloring traits.
Collapse
Affiliation(s)
- Kekun Zhang
- College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling 712100, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Mengrui Du
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Hongyan Zhang
- College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling 712100, China
| | - Xiaoqian Zhang
- College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling 712100, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wenrui Wang
- College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling 712100, China
| | - Xueqiang Guan
- Shandong Grape Research Institute, Shanda South Road, Jinan 250199, China
| | - Penghui Zhou
- Shandong Technology Innovation Center of Wine Grape and Wine, COFCO Great Wall Wine (Penglai) Co., Ltd., Yantai 265600, China
| | - Jin Li
- Shandong Technology Innovation Center of Wine Grape and Wine, COFCO Great Wall Wine (Penglai) Co., Ltd., Yantai 265600, China
| | | | - Meiling Tang
- Yantai Academy of Agricultural Sciences, Gangcheng West Street, Yantai 264000, China
| | - Qiuling Zheng
- Yantai Academy of Agricultural Sciences, Gangcheng West Street, Yantai 264000, China
| | - Muming Cao
- Viticulture and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Keqin Chen
- College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling 712100, China
| | - Zhongjie Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yulin Fang
- College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Urbanek Krajnc A, Senekovič J, Cappellozza S, Mikulic-Petkovsek M. The Darker the Better: Identification of Chemotype Profile in Soroses of Local and Introduced Mulberry Varieties with Respect to the Colour Type. Foods 2023; 12:3985. [PMID: 37959104 PMCID: PMC10650418 DOI: 10.3390/foods12213985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Mulberries are the "essence of the past", the so-called Proust effect, for the inhabitants of the sericultural regions who enthusiastically remember feeding silkworms with mulberry leaves and picking the different coloured fruits that were their favourite sweets in childhood. To determine the chemistry behind the colour and taste of mulberry soroses, the main metabolites of the local and introduced varieties were studied. The soroses were classified into five different colour types and the size parameters were determined. The main sugars identified were glucose and fructose, while the predominant organic acids were citric and malic acids, which were highest in the darker varieties, and fumaric and tartaric acids, which were highest in the lighter varieties. A total of 42 phenolic compounds were identified. The predominant phenolic acid was chlorogenic acid, followed by other caffeoylquinic acids and coumaroylquinic acids. The predominant anthocyanins were cyanidin-3-glucoside and cyanidin-3-rutinoside. According to PCA analysis, the colour types showed a clear chemotype character. The sweet taste of the yellowish-white soroses was defined by 49% fructose, followed by 45% glucose and 6% organic acids. The sour character of the black genotypes was characterised by a lower sugar and higher (11%) organic acid content. The colour- and species-dependent effect was observed in the proportion of caffeoylquinic acids and quercetin glycosides, which decreased with increasing colour intensity from 60% of the total to 7%, and from 17% to 1%, respectively. An upward trend was observed for flavanols (5% to 29%) and anthocyanins, which accounted for 62% of the total phenolics in black varieties. This article gives an insight into the metabolite composition of mulberry soroses as the sweets of choice between light and sweet and dark and sour.
Collapse
Affiliation(s)
- Andreja Urbanek Krajnc
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (A.U.K.); (J.S.)
| | - Jan Senekovič
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (A.U.K.); (J.S.)
| | - Silvia Cappellozza
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Via Eulero 6a, 35143 Padua, Italy;
| | - Maja Mikulic-Petkovsek
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Kőrösi L, Molnár S, Teszlák P, Dörnyei Á, Maul E, Töpfer R, Marosvölgyi T, Szabó É, Röckel F. Comparative Study on Grape Berry Anthocyanins of Various Teinturier Varieties. Foods 2022; 11:foods11223668. [PMID: 36429259 PMCID: PMC9689461 DOI: 10.3390/foods11223668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The red-fleshed grape cultivars, called teinturier or dyer grapes, contain anthocyanins in both the skin and flesh. These phenolic compounds exhibit excellent coloring ability, and as antioxidants, they are important bioactive compounds in food crops. In this work, anthocyanin patterns of grape berries of fifteen teinturier varieties collected from the gene bank located at Pécs in the southwest of Hungary were compared. Anthocyanin profiles of numerous varieties originating from Hungary such as 'Bíborkadarka', 'Kármin', 'Kurucvér', and 'Turán' are reported for the first time. Anthocyanins extracted separately from the skin and juice were analyzed using high-performance liquid chromatography coupled with a photodiode array detector. For the identification of compounds, high-resolution orbitrap mass spectrometry was used. All in all, twenty-one anthocyanins were identified and quantified. We found that anthocyanin patterns differed significantly in the skin and juice for all investigated cultivars. For Vitis vinifera varieties, the predominant anthocyanin in the skin was malvidin-3-O-glucoside, while the main pigment in the juice was peonidin-3-O-glucoside. For the first time, a significant amount of diglucosides was detected in two Vitis Vinifera cultivars with a direct relationship. In general, the pigment composition of the skin was much more complex than that of the juice. The comparative study with presented patterns gives valuable and beneficial information from a chemotaxonomical point of view. Our results also help to choose the appropriate teinturier varieties with the desired anthocyanins for food coloring or winemaking purposes.
Collapse
Affiliation(s)
- László Kőrösi
- Research Institute for Viticulture and Oenology, University of Pécs, 7634 Pécs, Hungary
- Correspondence:
| | - Szilárd Molnár
- Research Institute for Viticulture and Oenology, University of Pécs, 7634 Pécs, Hungary
| | - Péter Teszlák
- Research Institute for Viticulture and Oenology, University of Pécs, 7634 Pécs, Hungary
| | - Ágnes Dörnyei
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Erika Maul
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Reinhard Töpfer
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Franco Röckel
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| |
Collapse
|