1
|
Matilla AJ. Current Insights into Weak Seed Dormancy and Pre-Harvest Sprouting in Crop Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:2559. [PMID: 39339534 PMCID: PMC11434978 DOI: 10.3390/plants13182559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024]
Abstract
During the domestication of crops, seed dormancy has been reduced or eliminated to encourage faster and more consistent germination. This alteration makes cultivated crops particularly vulnerable to pre-harvest sprouting, which occurs when mature crops are subjected to adverse environmental conditions, such as excessive rainfall or high humidity. Consequently, some seeds may bypass the normal dormancy period and begin to germinate while still attached to the mother plant before harvest. Grains affected by pre-harvest sprouting are characterized by increased levels of α-amylase activity, resulting in poor processing quality and immediate grain downgrading. In the agriculture industry, pre-harvest sprouting causes annual economic losses exceeding USD 1 billion worldwide. This premature germination is influenced by a complex interplay of genetic, biochemical, and molecular factors closely linked to environmental conditions like rainfall. However, the exact mechanism behind this process is still unclear. Unlike pre-harvest sprouting, vivipary refers to the germination process and the activation of α-amylase during the soft dough stage, when the grains are still immature. Mature seeds with reduced levels of ABA or impaired ABA signaling (weak dormancy) are more susceptible to pre-harvest sprouting. While high seed dormancy can enhance resistance to pre-harvest sprouting, it can lead to undesirable outcomes for most crops, such as non-uniform seedling establishment after sowing. Thus, resistance to pre-harvest sprouting is crucial to ensuring productivity and sustainability and is an agronomically important trait affecting yield and grain quality. On the other hand, seed color is linked to sprouting resistance; however, the genetic relationship between both characteristics remains unresolved. The identification of mitogen-activated protein kinase kinase-3 (MKK3) as the gene responsible for pre-harvest sprouting-1 (Phs-1) represents a significant advancement in our understanding of how sprouting in wheat is controlled at the molecular and genetic levels. In seed maturation, Viviparous-1 (Vp-1) plays a crucial role in managing pre-harvest sprouting by regulating seed maturation and inhibiting germination through the suppression of α-amylase and proteases. Vp-1 is a key player in ABA signaling and is essential for the activation of the seed maturation program. Mutants of Vp-1 exhibit an unpigmented aleurone cell layer and exhibit precocious germination due to decreased sensitivity to ABA. Recent research has also revealed that TaSRO-1 interacts with TaVp-1, contributing to the regulation of seed dormancy and resistance to pre-harvest sprouting in wheat. The goal of this review is to emphasize the latest research on pre-harvest sprouting in crops and to suggest possible directions for future studies.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Park H, Cha JK, Lee SM, Kwon Y, Choi J, Lee JH. Artificial Rainfall on Grain Quality and Baking Characteristics of Winter Wheat Cultivars in Korea. Foods 2024; 13:1679. [PMID: 38890907 PMCID: PMC11172332 DOI: 10.3390/foods13111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Wheat (Triticum aestivum L.) stands as a significant cereal crop globally, including in Korea, where its consumption reached 35.7 kg per capita in 2023. In the southern regions of Korea, wheat cultivation follows paddy rice, with harvesting typically occurring during the rainy season in mid-June. This timing, coupled with the high humidity and unpredictable rainfall, often leads to pre-harvest sprouting and subsequent deterioration in flour quality. To assess the impact of rain on flour quality, an artificial rain treatment was administered 45 days after heading in an open field greenhouse, followed by flour quality analysis. The color measurement revealed an increase in the L* parameter, indicative of enhanced kernel vitreousness, attributed to endosperm starch degradation via alpha-amylase activation induced by water absorption. Moreover, significant changes were observed in ash content and the gluten index within the wetted group, resulting in decreased dough strength and stability, ultimately leading to a reduction in loaf volume. Consequently, it is recommended that wheat be harvested 4-7 days after reaching the physiological maturity stage to avoid the rainy season and ensure the production of high-quality wheat.
Collapse
Affiliation(s)
| | | | | | | | | | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea; (H.P.); (J.-K.C.); (S.-M.L.); (Y.K.); (J.C.)
| |
Collapse
|
3
|
Clauw H, Van de Put H, Sghaier A, Kerkaert T, Debonne E, Eeckhout M, Steppe K. The Impact of a Six-Hour Light-Dark Cycle on Wheat Ear Emergence, Grain Yield, and Flour Quality in Future Plant-Growing Systems. Foods 2024; 13:750. [PMID: 38472863 DOI: 10.3390/foods13050750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Cultivating wheat (Triticum aestivum) in a closed environment offers applications in both indoor farming and in outer-space farming. Tailoring the photoperiod holds potential to shorten the growth cycle, thereby increasing the annual number of cycles. As wheat is a long-day plant, a night shorter than a critical length is required to induce flowering. In growth chambers, experiments were conducted to examine the impact of a 6 h light-dark cycle on the timing of wheat ear emergence, grain yield, and flour quality. Under equal daily light-integral conditions, the 6 h light-dark cycle promoted growth and development, resulting in accelerated ear emergence when compared to a 12 h cycle, additionally indicating that 12 h of darkness was excessive. To further stimulate heading and increase yield, the 6 h cycle was changed at the onset of stem elongation to a 14 h-10 h, mimicking spring conditions, and maintained until maturity. This successful transition was then combined with two levels of light intensity and nutrient solution, which did not significantly impact yield, while tillering and grain ripening did increase under higher light intensities. Moreover, it enabled manipulation of the baking quality, although lower-end falling numbers were observed. In conclusion, combining a 6 h light-dark cycle until stem elongation with a 14 h-10 h cycle presents a promising strategy for increasing future wheat production in closed environments. The observation of low falling numbers underscores the importance of factoring in flour quality when designing the wheat-growing systems of the future.
Collapse
Affiliation(s)
- Helena Clauw
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Hans Van de Put
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Abderahman Sghaier
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Trui Kerkaert
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Els Debonne
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Mia Eeckhout
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Hauvermale AL, Matzke C, Bohaliga G, Pumphrey MO, Steber CM, McCubbin AG. Development of Novel Monoclonal Antibodies to Wheat Alpha-Amylases Associated with Grain Quality Problems That Are Increasing with Climate Change. PLANTS (BASEL, SWITZERLAND) 2023; 12:3798. [PMID: 38005695 PMCID: PMC10675223 DOI: 10.3390/plants12223798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Accurate, rapid testing platforms are essential for early detection and mitigation of late maturity α-amylase (LMA) and preharvest sprouting (PHS) in wheat. These conditions are characterized by elevated α-amylase levels and negatively impact flour quality, resulting in substantial economic losses. The Hagberg-Perten Falling Number (FN) method is the industry standard for measuring α-amylase activity in wheatmeal. However, FN does not directly detect α-amylase and has major limitations. Developing α-amylase immunoassays would potentially enable early, accurate detection regardless of testing environment. With this goal, we assessed an expression of α-amylase isoforms during seed development. Transcripts of three of the four isoforms were detected in developing and mature grain. These were cloned and used to develop E. coli expression lines expressing single isoforms. After assessing amino acid conservation between isoforms, we identified peptide sequences specific to a single isoform (TaAMY1) or that were conserved in all isoforms, to develop monoclonal antibodies with targeted specificities. Three monoclonal antibodies were developed, anti-TaAMY1-A, anti-TaAMY1-B, and anti-TaAMY1-C. All three detected endogenous α-amylase(s). Anti-TaAMY1-A was specific for TaAMY1, whereas anti-TaAMY1-C detected TaAMY1, 2, and 4. Thus, confirming that they possessed the intended specificities. All three antibodies were shown to be compatible for use with immuno-pulldown and immuno-assay applications.
Collapse
Affiliation(s)
- Amber L. Hauvermale
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (A.L.H.); (G.B.); (M.O.P.)
| | - Courtney Matzke
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Gamila Bohaliga
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (A.L.H.); (G.B.); (M.O.P.)
| | - Mike O. Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (A.L.H.); (G.B.); (M.O.P.)
| | - Camille M. Steber
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (A.L.H.); (G.B.); (M.O.P.)
- Wheat Health, Quality and Genetics Unit, United States Department of Agriculture-Agricultural Research Service, Pullman, WA 99164, USA
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Peery SR, Carle SW, Wysock M, Pumphrey MO, Steber CM. LMA or vivipary? Wheat grain can germinate precociously during grain maturation under the cool conditions used to induce late maturity alpha-amylase (LMA). FRONTIERS IN PLANT SCIENCE 2023; 14:1156784. [PMID: 37457341 PMCID: PMC10338928 DOI: 10.3389/fpls.2023.1156784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/08/2023] [Indexed: 07/18/2023]
Abstract
Introduction This study found that wheat (Triticum aestivum) grain can germinate precociously during the maturation phase of grain development, a phenomenon called vivipary that was associated with alpha-amylase induction. Farmers receive severe discounts for grain with low falling number (FN), an indicator that grain contains sufficiently elevated levels of the starch-digesting enzyme alpha-amylase to pose a risk to end-product quality. High grain alpha-amylase can result from: preharvest sprouting (PHS)/germination when mature wheat is rained on before harvest, or from late maturity alpha-amylase (LMA) when grain experiences cool temperatures during the soft dough stage of grain maturation (Zadoks growth stage 85). An initial LMA-induction experiment found that low FN was associated with premature visible germination, suggesting that cool and humid conditions caused vivipary. Methods To examine whether LMA and vivipary are related, controlled environment experiments examined the conditions that induce vivipary, whether LMA could be induced without vivipary, and whether the pattern of alpha-amylase expression during vivipary better resembled PHS or LMA. Results Vivipary was induced in the soft to hard dough stages of grain development (Zadok's stages 83-87) both on agar and after misting of the mother plant. This premature germination was associated with elevated alpha-amylase activity. Vivipary was more strongly induced under the cooler conditions used for LMA-induction (18°C day/7.5°C night) than warmer conditions (25°C day/18°C night). Cool temperatures could induce LMA with little or no visible germination when low humidity was maintained, and susceptibility to vivipary was not always associated with LMA susceptibility in a panel of 8 varieties. Mature grain preharvest sprouting results in much higher alpha-amylase levels at the embryo-end of the kernel. In contrast, vivipary resulted in a more even distribution of alpha-amylase that was reminiscent of LMA. Discussion Vivipary can occur in susceptible varieties under moist, cool conditions, and the resulting alpha-amylase activity may result in low FN problems when a farm experiences cool, rainy conditions before the crop is mature. While there are genotypic differences in LMA and vivipary susceptibility, overlapping mechanisms are likely involved since they are similarly controlled by temperature and growth stage, and result in similar patterns of alpha-amylase expression.
Collapse
Affiliation(s)
- Sarah R. Peery
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Scott W. Carle
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Matthew Wysock
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Michael O. Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Camille M. Steber
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- U.S. Department of Agriculture – Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| |
Collapse
|
6
|
Vincent D, Bui A, Ezernieks V, Shahinfar S, Luke T, Ram D, Rigas N, Panozzo J, Rochfort S, Daetwyler H, Hayden M. A community resource to mass explore the wheat grain proteome and its application to the late-maturity alpha-amylase (LMA) problem. Gigascience 2022; 12:giad084. [PMID: 37919977 PMCID: PMC10627334 DOI: 10.1093/gigascience/giad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Late-maturity alpha-amylase (LMA) is a wheat genetic defect causing the synthesis of high isoelectric point alpha-amylase following a temperature shock during mid-grain development or prolonged cold throughout grain development, both leading to starch degradation. While the physiology is well understood, the biochemical mechanisms involved in grain LMA response remain unclear. We have applied high-throughput proteomics to 4,061 wheat flours displaying a range of LMA activities. Using an array of statistical analyses to select LMA-responsive biomarkers, we have mined them using a suite of tools applicable to wheat proteins. RESULTS We observed that LMA-affected grains activated their primary metabolisms such as glycolysis and gluconeogenesis; TCA cycle, along with DNA- and RNA- binding mechanisms; and protein translation. This logically transitioned to protein folding activities driven by chaperones and protein disulfide isomerase, as well as protein assembly via dimerisation and complexing. The secondary metabolism was also mobilized with the upregulation of phytohormones and chemical and defence responses. LMA further invoked cellular structures, including ribosomes, microtubules, and chromatin. Finally, and unsurprisingly, LMA expression greatly impacted grain storage proteins, as well as starch and other carbohydrates, with the upregulation of alpha-gliadins and starch metabolism, whereas LMW glutenin, stachyose, sucrose, UDP-galactose, and UDP-glucose were downregulated. CONCLUSIONS To our knowledge, this is not only the first proteomics study tackling the wheat LMA issue but also the largest plant-based proteomics study published to date. Logistics, technicalities, requirements, and bottlenecks of such an ambitious large-scale high-throughput proteomics experiment along with the challenges associated with big data analyses are discussed.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - AnhDuyen Bui
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Vilnis Ezernieks
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Saleh Shahinfar
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Timothy Luke
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Doris Ram
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Nicholas Rigas
- Agriculture Victoria Research, Grains Innovation Park, Horsham, VIC 3400, Australia
| | - Joe Panozzo
- Agriculture Victoria Research, Grains Innovation Park, Horsham, VIC 3400, Australia
- Centre for Agricultural Innovation, University of Melbourne, Parkville, VIC 3010, Australia
| | - Simone Rochfort
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Hans Daetwyler
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Matthew Hayden
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
7
|
Liu G, Mullan D, Zhang A, Liu H, Liu D, Yan G. Identification of KASP markers and putative genes for pre-harvest sprouting resistance in common wheat (Triticum aestivum L.). THE CROP JOURNAL 2022. [DOI: 10.1016/j.cj.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Kweon M, Slade L, Levine H. Impacts of weathering/pre‐harvest sprouting in the field on the milling and flour quality of soft wheats, and resulting baking performance for soft wheat‐based baked products. Cereal Chem 2022. [DOI: 10.1002/cche.10534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. Kweon
- Department of Food Science and Nutrition Pusan National University Busan South Korea
| | - L. Slade
- Food Polymer Science Consultancy Morris Plains New Jersey USA
| | - H. Levine
- Food Polymer Science Consultancy Morris Plains New Jersey USA
| |
Collapse
|