1
|
Zhang X, Wang X, Deng F, Liu Y, Ru L, Yan G, Xu Y, Zhu Z, He Y. Sly-miR398b Mediates Mature Leaf Flattening by Orchestrating Auxin and H 2O 2 Signalling in Tomato. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39248305 DOI: 10.1111/pce.15150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Leaf flattening plays a pivotal role in optimizing light capture and enhancing photosynthesis efficiency. While extensive research has clarified the molecular mechanisms governing the initial stages of leaf flattening, understanding the maintenance of this process in mature leaves remains limited. Our investigation focused on sly-miR398b in tomatoes and revealed its crucial role in maintaining leaf flattening. In situ hybridization experiments indicated predominant expression of sly-miR398b in the abaxial side. Disrupting sly-miR398b using CRISPR/Cas9 relieved its suppression on target gene (Cu/Zn-SOD, SlCSD1), elevating SlCSD1 levels specifically on the abaxial side. Consequently, this asymmetrical expression of SlCSD1 increased hydrogen peroxide (H2O2) levels in the abaxial side, hindering auxin influx genes while promoting auxin efflux gene expression. This shift reduced auxin response gene expression in the abaxial side of mature leaves compared to the adaxial side, leading to leaf epinasty in sly-miR398b mutants. Exogenous H2O2 spraying induced leaf epinasty, downregulating SlGH3.5 and upregulating SlPIN3 and SlPIN4. Remarkably, spraying with 1-naphthalacetic acid (NAA) restored leaf flattening in sly-miR398b mutants. Our findings offer novel insights into mature leaf flattening maintenance via sly-miR398b's regulation of auxin and H2O2 signalling pathways.
Collapse
Affiliation(s)
- Xinshan Zhang
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xiujuan Wang
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Fei Deng
- Department of Computer Science and Technology, College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yuanyuan Liu
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
| | - Lei Ru
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
| | - Guochao Yan
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
| | - Yunmin Xu
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
| | - Zhujun Zhu
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
| | - Yong He
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Lu N. Revisiting decade-old questions in proanthocyanidin biosynthesis: current understanding and new challenges. FRONTIERS IN PLANT SCIENCE 2024; 15:1373975. [PMID: 38595764 PMCID: PMC11002137 DOI: 10.3389/fpls.2024.1373975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Proanthocyanidins (PAs), one of the most abundant natural polymers found in plants, are gaining increasing attention because of their beneficial effects for agriculture and human health. The study of PA biosynthesis has been active for decades, and progress has been drastically accelerated since the discovery of key enzymes such as Anthocyanidin Reductase (ANR), Leucoanthocyanidin Reductase (LAR), and key transcription factors such as Transparent Testa 2 (TT2) and Transparent Testa 8 (TT8) in the early 2000s. Scientists raised some compelling questions regarding PA biosynthesis about two decades ago in the hope that addressing these questions would lead to an enhanced understanding of PA biosynthesis in plants. These questions focus on the nature of starter and extension units for PA biosynthesis, the stereochemistry of PA monomers and intermediates, and how and where the polymerization or condensation steps work subcellularly. Here, I revisit these long-standing questions and provide an update on progress made toward answering them. Because of advanced technologies in genomics, bioinformatics and metabolomics, we now have a much-improved understanding of functionalities of key enzymes and identities of key intermediates in the PA biosynthesis and polymerization pathway. Still, several questions, particularly the ones related to intracellular PA transportation and deposition, as well as enzyme subcellular localization, largely remain to be explored. Our increasing understanding of PA biosynthesis in various plant species has led to a new set of compelling open questions, suggesting future research directions to gain a more comprehensive understanding of PA biosynthesis.
Collapse
Affiliation(s)
- Nan Lu
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|
3
|
Yu K, Song Y, Lin J, Dixon RA. The complexities of proanthocyanidin biosynthesis and its regulation in plants. PLANT COMMUNICATIONS 2023; 4:100498. [PMID: 36435967 PMCID: PMC10030370 DOI: 10.1016/j.xplc.2022.100498] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 05/04/2023]
Abstract
Proanthocyanidins (PAs) are natural flavan-3-ol polymers that contribute protection to plants under biotic and abiotic stress, benefits to human health, and bitterness and astringency to food products. They are also potential targets for carbon sequestration for climate mitigation. In recent years, from model species to commercial crops, research has moved closer to elucidating the flux control and channeling, subunit biosynthesis and polymerization, transport mechanisms, and regulatory networks involved in plant PA metabolism. This review extends the conventional understanding with recent findings that provide new insights to address lingering questions and focus strategies for manipulating PA traits in plants.
Collapse
Affiliation(s)
- Keji Yu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Yushuang Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|