1
|
Matías J, Rodríguez MJ, Carrillo-Vico A, Casals J, Fondevilla S, Haros CM, Pedroche J, Aparicio N, Fernández-García N, Aguiló-Aguayo I, Soler-Rivas C, Caballero PA, Morte A, Rico D, Reguera M. From 'Farm to Fork': Exploring the Potential of Nutrient-Rich and Stress-Resilient Emergent Crops for Sustainable and Healthy Food in the Mediterranean Region in the Face of Climate Change Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:1914. [PMID: 39065441 PMCID: PMC11281201 DOI: 10.3390/plants13141914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
In the dynamic landscape of agriculture and food science, incorporating emergent crops appears as a pioneering solution for diversifying agriculture, unlocking possibilities for sustainable cultivation and nutritional bolstering food security, and creating economic prospects amid evolving environmental and market conditions with positive impacts on human health. This review explores the potential of utilizing emergent crops in Mediterranean environments under current climate scenarios, emphasizing the manifold benefits of agricultural and food system diversification and assessing the impact of environmental factors on their quality and consumer health. Through a deep exploration of the resilience, nutritional value, and health impacts of neglected and underutilized species (NUS) such as quinoa, amaranth, chia, moringa, buckwheat, millet, teff, hemp, or desert truffles, their capacity to thrive in the changing Mediterranean climate is highlighted, offering novel opportunities for agriculture and functional food development. By analysing how promoting agricultural diversification can enhance food system adaptability to evolving environmental conditions, fostering sustainability and resilience, we discuss recent findings that underscore the main benefits and limitations of these crops from agricultural, food science, and health perspectives, all crucial for responsible and sustainable adoption. Thus, by using a sustainable and holistic approach, this revision analyses how the integration of NUS crops into Mediterranean agrifood systems can enhance agriculture resilience and food quality addressing environmental, nutritional, biomedical, economic, and cultural dimensions, thereby mitigating the risks associated with monoculture practices and bolstering local economies and livelihoods under new climate scenarios.
Collapse
Affiliation(s)
- Javier Matías
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), 06187 Guadajira (Badajoz), Spain;
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura (INTAEX-CICYTEX), Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain;
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Joan Casals
- Fundació Miquel Agustí/HorPTA, Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, 08860 Castelldefels, Spain;
| | - Sara Fondevilla
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Claudia Mónika Haros
- Cereal Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Parque Científico, 46980 Valencia, Spain;
| | - Justo Pedroche
- Group of Plant Proteins, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Nieves Aparicio
- Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Burgos Km. 119, 47071 Valladolid, Spain;
| | - Nieves Fernández-García
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, 30100 Murcia, Spain;
| | - Ingrid Aguiló-Aguayo
- Postharvest Programme, Institute of Agrifood Research and Technology (IRTA), Parc Agrobiotech Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003 Lleida, Spain;
| | - Cristina Soler-Rivas
- Departamento de Producción y Caracterización de Nuevos Alimentos, Institute of Food Science Research-CIAL (UAM+CSIC), Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Nicolas Cabrera 9, 28049 Madrid, Spain;
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pedro A. Caballero
- Food Technology, Department of Agriculture and Forestry Engineering, Universidad de Valladolid, 34004 Palencia, Spain;
| | - Asunción Morte
- Departamento Biología Vegetal, Facultad de Biología, Campus Universitario de Espinardo, Universidad de Murcia, 30100 Murcia, Spain;
| | - Daniel Rico
- Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain;
| | - María Reguera
- Departamento de Biología, Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
2
|
Ramírez Gonzales LY, Cannarozzi G, Jäggi L, Assefa K, Chanyalew S, Dell'Acqua M, Tadele Z. The role of omics in improving the orphan crop tef. Trends Genet 2024; 40:449-461. [PMID: 38599921 DOI: 10.1016/j.tig.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Tef or teff [Eragrostis tef (Zucc.) Trotter] is a cereal crop indigenous to the Horn of Africa, where it is a staple food for a large population. The popularity of tef arises from its resilience to environmental stresses and its nutritional value. For many years, tef has been considered an orphan crop, but recent research initiatives from across the globe are helping to unravel its undisclosed potential. Advanced omics tools and techniques have been directed toward the exploration of tef's diversity with the aim of increasing its productivity. In this review, we report on the most recent advances in tef omics that brought the crop into the spotlight of international research.
Collapse
Affiliation(s)
| | - Gina Cannarozzi
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland
| | - Lea Jäggi
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland
| | - Kebebew Assefa
- Ethiopian Institute of Agricultural Research, Debre Zeit Agricultural Research Center, PO Box 32, Debre Zeit, Ethiopia
| | - Solomon Chanyalew
- Ethiopian Institute of Agricultural Research, Debre Zeit Agricultural Research Center, PO Box 32, Debre Zeit, Ethiopia
| | | | - Zerihun Tadele
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland.
| |
Collapse
|
3
|
Jiang L, Yang X, Gao X, Yang H, Ma S, Huang S, Zhu J, Zhou H, Li X, Gu X, Zhou H, Liang Z, Yang A, Huang Y, Xiao M. Multiomics Analyses Reveal the Dual Role of Flavonoids in Pigmentation and Abiotic Stress Tolerance of Soybean Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3231-3243. [PMID: 38303105 DOI: 10.1021/acs.jafc.3c08202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The color of the seed coat has great diversity and is regarded as a biomarker of metabolic variations. Here we isolated a soybean variant (BLK) from a population of recombinant inbred lines with a black seed coat, while its sibling plants have yellow seed coats (YL). The BLK and YL plants showed no obvious differences in vegetative growth and seed weight. However, the BLK seeds had higher anthocyanins and flavonoids level and showed tolerance to various abiotic stresses including herbicide, oxidation, salt, and alkalinity during germination. Integrated metabolomic and transcriptomic analyses revealed that the upregulation of biosynthetic genes probably contributed to the overaccumulation of flavonoids in BLK seeds. The transient expression of those biosynthetic genes in soybean root hairs increased the levels of total flavonoids or anthocyanins. Our study revealed the molecular basis of flavonoid accumulation in soybean seeds, leveraging genetic engineering for both nutritious and stress-tolerant soybean germplasm.
Collapse
Affiliation(s)
- Ling Jiang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
- Yuelushan Laboratory, Changsha 410128, People's Republic of China
| | - Xiaofeng Yang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Xiewang Gao
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Hui Yang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Shumei Ma
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| | - Shan Huang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Jianyu Zhu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Hong Zhou
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Xiaohong Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Xiaoyan Gu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Hongming Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Zeya Liang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Antong Yang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Yong Huang
- Yuelushan Laboratory, Changsha 410128, People's Republic of China
- Key Laboratory of Hunan Province on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, People's Republic of China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Mu Xiao
- Yuelushan Laboratory, Changsha 410128, People's Republic of China
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
- Key Laboratory of Hunan Province on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, People's Republic of China
| |
Collapse
|