1
|
Imanaka K, Sugi T, Nakamoto H. Relationships between the magnitude of representational momentum and the spatial and temporal anticipatory judgments of opponent's kicks in taekwondo. Front Psychol 2023; 14:1193116. [PMID: 37809301 PMCID: PMC10551154 DOI: 10.3389/fpsyg.2023.1193116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
For successful actions in a fast, dynamic environment such as sports, a quick successful anticipation of a forthcoming environmental state is essential. However, the perceptual mechanisms involved in successful anticipation are not fully understood. This study examined the relationships between the magnitude of representational momentum (RM) as a forward displacement of the memory representation of the final position of a moving object (which implies that observers perceptually "see" a near future forthcoming dynamic environmental state) and the temporal and spatial anticipatory judgments of the opponent's high or middle kicks in taekwondo. Twenty-seven participants (university taekwondo club members and non-members) observed video clips of taekwondo kicks that vanished at one of 10 frame positions prior to the kick impact and performed three tasks consecutively: anticipatory coincidence timing (CT) with the arrival of kick impact, judgment of the kick type (high and middle kicks) by forced choice, and judgment of the vanishing frame position (measuring RM). Our results showed significant group effects for the number of correct kick-type judgments and the judgment threshold for kick-type choice (kick-typeJT), which was estimated in terms of individual psychometric function curves. A significant correlation was found between the magnitude of RM (estimated at kick-typeJT) and kick-typeJT, but not between the CT errors (estimated at kick-typeJT) and kick-typeJT. This indicates that the magnitude of RM may play an influential role in quick kick-type judgments, but not in coincidence timing while observing an opponent's kick motion. These findings suggest that subjective anticipatory perception or judgment of the future spatial state is vital to anticipatory actions under severe time constraints.
Collapse
Affiliation(s)
- Kuniyasu Imanaka
- Department of Health Promotion Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Takahiro Sugi
- Graduate School of Humanities [Psychology], Tokyo Metropolitan University, Tokyo, Japan
| | - Hiroki Nakamoto
- Faculty of Physical Education, National Institute of Fitness and Sports in Kanoya, Kagoshima, Japan
| |
Collapse
|
2
|
Sacheli LM, Verga C, Zapparoli L, Seghezzi S, Tomasetig G, Banfi G, Paulesu E. When action prediction grows old: An fMRI study. Hum Brain Mapp 2022; 44:373-387. [PMID: 35997233 PMCID: PMC9842895 DOI: 10.1002/hbm.26049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Predicting the unfolding of others' actions (action prediction) is crucial for successfully navigating the social world and interacting efficiently. Age-related changes in this domain have remained largely unexplored, especially for predictions regarding simple gestures and independent of contextual information or motor expertise. Here, we evaluated whether healthy aging impacts the neurophysiological processes recruited to anticipate, from the observation of implied-motion postures, the correct conclusion of simple grasping and pointing actions. A color-discrimination task served as a control condition to assess the specificity of the age-related effects. Older adults showed reduced efficiency in performance that was yet not specific to the action prediction task. Nevertheless, fMRI results revealed task-specific age-related differences: while both groups showed stronger recruitment of the lateral occipito-temporal cortex bilaterally during the action prediction than the control task, the younger participants additionally showed a higher bilateral engagement of parietal regions. Importantly, in both groups, the recruitment of visuo-motor processes in the right posterior parietal cortex was a predictor of good performance. These results support the hypothesis of decreased involvement of sensorimotor processes in cognitive tasks when processing action- and body-related stimuli in healthy aging. These results have implications for social interaction, which requires the fast reading of others' gestures.
Collapse
Affiliation(s)
- Lucia Maria Sacheli
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly
| | - Chiara Verga
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly,Department of Psychology, Faculty of Medicine and PsychologySapienza University of RomeRomeItaly
| | - Laura Zapparoli
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly,IRCCS Istituto Ortopedico GaleazziMilanItaly
| | - Silvia Seghezzi
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly
| | - Giulia Tomasetig
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico GaleazziMilanItaly,San Raffaele Vita e Salute UniversityMilanItaly
| | - Eraldo Paulesu
- Psychology Department and Milan Center for NeuroscienceUniversity of Milano‐BicoccaMilanItaly,IRCCS Istituto Ortopedico GaleazziMilanItaly
| |
Collapse
|
3
|
Infants' sensitivity to emotional expressions in actions: The contributions of parental expressivity and motor experience. Infant Behav Dev 2022; 68:101751. [PMID: 35914367 DOI: 10.1016/j.infbeh.2022.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 06/13/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
Actions can convey information about the affective state of an actor. By the end of the first year, infants show sensitivity to such emotional information in actions. Here, we examined the mechanisms contributing to infants' developing sensitivity to emotional action kinematics. We hypothesized that this sensitivity might rely on two factors: a stable motor representation of the observed action to be able to detect deviations from how it would typically be performed and experience with emotional expressions. The sensitivity of 12- to 13-month-old infants to happy and angry emotional cues in a manual transport action was examined using facial EMG. Infants' own movements when performing an object transport task were assessed using optical motion capture. The infants' caregivers' emotional expressivity was measured using a questionnaire. Negative emotional expressivity of the primary caregiver was significantly related to infants' sensitivity to observed angry actions. There was no evidence for such an association with infants' own motor skill. Overall, our results show that infants' experience with emotions, measured as caregivers' emotional expressivity, may aid infants' discrimination of others' emotions expressed in action kinematics.
Collapse
|
4
|
Gowen E, Poliakoff E, Shepherd H, Stadler W. Measuring the prediction of observed actions using an occlusion paradigm: Comparing autistic and non-autistic adults. Autism Res 2022; 15:1636-1648. [PMID: 35385218 PMCID: PMC9543210 DOI: 10.1002/aur.2716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/12/2022]
Abstract
Action prediction involves observing and predicting the actions of others and plays an important role in social cognition and interacting with others. It is thought to use simulation, whereby the observers use their own motor system to predict the observed actions. As individuals diagnosed with autism are characterized by difficulties understanding the actions of others and motor coordination issues, it is possible that action prediction ability is altered in this population. This study compared action prediction ability between 20 autistic and 22 non-autistic adults using an occlusion paradigm. Participants watched different videos of a female actor carrying out everyday actions. During each video, the action was transiently occluded by a gray rectangle for 1000 ms. During occlusions, the video was allowed to continue as normal or was moved forward (i.e., appearing to continue too far ahead) or moved backwards (i.e., appearing to continue too far behind). Participants were asked to indicate after each occlusion whether the action continued with the correct timing or was too far ahead/behind. Autistic individuals were less accurate than non-autistic individuals, particularly when the video was too far behind. A trend analysis suggested that autistic participants were more likely to judge too far behind occlusions as being in time. These preliminary results suggest that prediction ability may be altered in autistic adults, potentially due to slower simulation or a delayed onset of these processes. LAY SUMMARY: When we observe other people performing everyday actions, we use their movements to help us understand and predict what they are doing. In this study, we found that autistic compared to non-autistic adults were slightly less accurate at predicting other people's actions. These findings help to unpick the different ways that social understanding is affected in autism.
Collapse
Affiliation(s)
- Emma Gowen
- Division of Neuroscience and Experimental Psychology, School of Biology, Faculty of Biology, Medicine and Health Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ellen Poliakoff
- Division of Neuroscience and Experimental Psychology, School of Biology, Faculty of Biology, Medicine and Health Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Hayley Shepherd
- Division of Neuroscience and Experimental Psychology, School of Biology, Faculty of Biology, Medicine and Health Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Waltraud Stadler
- Technical University of Munich, Department of Sport and Health Sciences, Munich, Germany
| |
Collapse
|
5
|
Prior knowledge shapes older adults' perception and memory for everyday events. PSYCHOLOGY OF LEARNING AND MOTIVATION 2022. [DOI: 10.1016/bs.plm.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Smith ME, Loschky LC, Bailey HR. Knowledge guides attention to goal-relevant information in older adults. COGNITIVE RESEARCH-PRINCIPLES AND IMPLICATIONS 2021; 6:56. [PMID: 34406505 PMCID: PMC8374018 DOI: 10.1186/s41235-021-00321-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/31/2021] [Indexed: 11/18/2022]
Abstract
How does viewers’ knowledge guide their attention while they watch everyday events, how does it affect their memory, and does it change with age? Older adults have diminished episodic memory for everyday events, but intact semantic knowledge. Indeed, research suggests that older adults may rely on their semantic memory to offset impairments in episodic memory, and when relevant knowledge is lacking, older adults’ memory can suffer. Yet, the mechanism by which prior knowledge guides attentional selection when watching dynamic activity is unclear. To address this, we studied the influence of knowledge on attention and memory for everyday events in young and older adults by tracking their eyes while they watched videos. The videos depicted activities that older adults perform more frequently than young adults (balancing a checkbook, planting flowers) or activities that young adults perform more frequently than older adults (installing a printer, setting up a video game). Participants completed free recall, recognition, and order memory tests after each video. We found age-related memory deficits when older adults had little knowledge of the activities, but memory did not differ between age groups when older adults had relevant knowledge and experience with the activities. Critically, results showed that knowledge influenced where viewers fixated when watching the videos. Older adults fixated less goal-relevant information compared to young adults when watching young adult activities, but they fixated goal-relevant information similarly to young adults, when watching more older adult activities. Finally, results showed that fixating goal-relevant information predicted free recall of the everyday activities for both age groups. Thus, older adults may use relevant knowledge to more effectively infer the goals of actors, which guides their attention to goal-relevant actions, thus improving their episodic memory for everyday activities.
Collapse
Affiliation(s)
- Maverick E Smith
- Department of Psychological Sciences, Kansas State University, 471 Bluemont Hall, 1100 Mid-campus Dr., Manhattan, KS, 66506, USA.
| | - Lester C Loschky
- Department of Psychological Sciences, Kansas State University, 471 Bluemont Hall, 1100 Mid-campus Dr., Manhattan, KS, 66506, USA
| | - Heather R Bailey
- Department of Psychological Sciences, Kansas State University, 471 Bluemont Hall, 1100 Mid-campus Dr., Manhattan, KS, 66506, USA
| |
Collapse
|
7
|
Salas-Herrera JL, Urrutia Martínez M, Melipillan Araneda R, Veliz De Vos M. Comprensión de oraciones de esfuerzo en jóvenes y adultos mayores desde una perspectiva corpórea. UNIVERSITAS PSYCHOLOGICA 2021. [DOI: 10.11144/javeriana.upsy19.coej] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Actualmente se desconoce la validez de las propuestas de la cognición corpórea y su relación con el lenguaje de los adultos mayores. Para responder a esto realizamos un experimento con los factores Esfuerzo, Imaginabilidad y Contexto Lingüístico. 50 adultos mayores (M= 66.18 años, DE= 4.39, 22 mujeres y 28 hombres) y 43 jóvenes (M= 21.28 años, DE= 1.08, 36 mujeres y 7 hombres) leyeron oraciones en la pantalla de un computador, presionando la barra espaciadora para decidir luego si una palabra se hallaba o no en la frase recién leída. Los resultados muestran efectos principales para los factores Imaginabilidad (β = 0.309; p < 0.05) y Contexto (β = -0.856; p < 0.001) en los tiempos de lectura del objeto directo, dos efectos de interacción Imaginabilidad-Esfuerzo (β = -0.732; p < 0.01) e Imaginabilidad-Contexto (β = 0.611; p < 0.05) para el complemento circunstancial y un efecto interactivo Imaginabilidad-Contexto (β = 0.727; p < 0.05) para la palabra de activación. Los resultados respaldan una visión de corporeidad débil con integración interactiva de las propiedades corpóreas y simbólicas de los textos. Es necesario ampliar la investigación a otros parámetros corpóreos, edades y lenguas para contrastar estos resultados.
Collapse
|
8
|
Ganglmayer K, Haupt M, Finke K, Paulus M. Adults, but not preschoolers or toddlers integrate situational constraints in their action anticipations: a developmental study on the flexibility of anticipatory gaze. Cogn Process 2021; 22:515-528. [PMID: 33763791 PMCID: PMC8324589 DOI: 10.1007/s10339-021-01015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/16/2021] [Indexed: 10/29/2022]
Abstract
Recent theories stress the role of situational information in understanding others' behaviour. For example, the predictive coding framework assumes that people take contextual information into account when anticipating other's actions. Likewise, the teleological stance theory assumes an early developing ability to consider situational constraints in action prediction. The current study investigates, over a wide age range, whether humans flexibly integrate situational constraints in their action anticipations. By means of an eye-tracking experiment, 2-year-olds, 5-year-olds, younger and older adults (together N = 181) observed an agent repeatedly taking one of two paths to reach a goal. Then, this path became blocked, and for test trials only the other path was passable. Results demonstrated that in test trials younger and older adults anticipated that the agent would take the continuous path, indicating that they took the situational constraints into account. In contrast, 2- and 5-year-olds anticipated that the agent would take the blocked path, indicating that they still relied on the agent's previous observed behaviour and-contrary to claims by the teleological stance theory-did not take the situational constraints into account. The results highlight developmental changes in human's ability to include situational constraints in their visual anticipations. Overall, the study contributes to theories on predictive coding and the development of action understanding.
Collapse
Affiliation(s)
- Kerstin Ganglmayer
- Department Psychology, Developmental Psychology, Ludwig Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany.
| | - Marleen Haupt
- Department Psychology, General and Experimental Psychology, Ludwig-Maximilians-Universtität München, Munich, Germany
| | - Kathrin Finke
- Department Psychology, General and Experimental Psychology, Ludwig-Maximilians-Universtität München, Munich, Germany.,Hans-Berger Department of Neurology, University Hospital Jena, Jena, Germany
| | - Markus Paulus
- Department Psychology, Developmental Psychology, Ludwig Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany
| |
Collapse
|
9
|
Scurry AN, Vercillo T, Nicholson A, Webster M, Jiang F. Aging Impairs Temporal Sensitivity, but not Perceptual Synchrony, Across Modalities. Multisens Res 2019; 32:671-692. [PMID: 31059487 DOI: 10.1163/22134808-20191343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/11/2019] [Indexed: 11/19/2022]
Abstract
Encoding the temporal properties of external signals that comprise multimodal events is a major factor guiding everyday experience. However, during the natural aging process, impairments to sensory processing can profoundly affect multimodal temporal perception. Various mechanisms can contribute to temporal perception, and thus it is imperative to understand how each can be affected by age. In the current study, using three different temporal order judgement tasks (unisensory, multisensory, and sensorimotor), we investigated the effects of age on two separate temporal processes: synchronization and integration of multiple signals. These two processes rely on different aspects of temporal information, either the temporal alignment of processed signals or the integration/segregation of signals arising from different modalities, respectively. Results showed that the ability to integrate/segregate multiple signals decreased with age regardless of the task, and that the magnitude of such impairment correlated across tasks, suggesting a widespread mechanism affected by age. In contrast, perceptual synchrony remained stable with age, revealing a distinct intact mechanism. Overall, results from this study suggest that aging has differential effects on temporal processing, and general impairments with aging may impact global temporal sensitivity while context-dependent processes remain unaffected.
Collapse
Affiliation(s)
| | - Tiziana Vercillo
- 2Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Alexis Nicholson
- 1Department of Psychology, University of Nevada, Reno, NV 89557, USA
| | - Michael Webster
- 1Department of Psychology, University of Nevada, Reno, NV 89557, USA
| | - Fang Jiang
- 1Department of Psychology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
10
|
Gowen E, Vabalas A, Casson AJ, Poliakoff E. Instructions to attend to an observed action increase imitation in autistic adults. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2019; 24:730-743. [PMID: 31752526 DOI: 10.1177/1362361319882810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated whether reduced visual attention to an observed action might account for altered imitation in autistic adults. A total of 22 autistic and 22 non-autistic adults observed and then imitated videos of a hand producing sequences of movements that differed in vertical elevation while their hand and eye movements were recorded. Participants first performed a block of imitation trials with general instructions to imitate the action. They then performed a second block with explicit instructions to attend closely to the characteristics of the movement. Imitation was quantified according to how much participants modulated their movement between the different heights of the observed movements. In the general instruction condition, the autistic group modulated their movements significantly less compared to the non-autistic group. However, following instructions to attend to the movement, the autistic group showed equivalent imitation modulation to the non-autistic group. Eye movement recording showed that the autistic group spent significantly less time looking at the hand movement for both instruction conditions. These findings show that visual attention contributes to altered voluntary imitation in autistic individuals and have implications for therapies involving imitation as well as for autistic people's ability to understand the actions of others.
Collapse
|
11
|
Representational momentum in adolescent dancers. PSYCHOLOGICAL RESEARCH 2019; 85:47-54. [PMID: 31363849 DOI: 10.1007/s00426-019-01234-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
An observer's memory for the final position of a previously viewed moving target is often displaced slightly forward in the direction of the target motion. This forward displacement, named representational momentum (RM), reflects the implied momentum of the target and is influenced by the level of familiarity that the observer has with the target observed. In this study, we investigated whether RM would be present in adolescents when they viewed actions from their domain of expertise, which would allow them to anticipate the sequence of familiar movements. We thus recruited adolescent ballet dancers and asked them to view a typical ballet jump (grand jeté) in photos as in a classical RM paradigm. The ascending, descending, and flying (between ascending and descending) phases of the jump were used to test the effects of the momentum of the jump combined with the effects of gravity, and adolescent dancers' performance was compared with age-matched non-dancers. Results revealed that all adolescents exhibited RM in the ascending and descending phases of the jump with a greater RM effect in the descending than in the ascending phases. Crucially, only dancers exhibited RM in the flying phase of the jump. Our findings provided evidence of the presence of RM phenomenon in adolescents along with the tendency of an amplified effect due to the level of expertise.
Collapse
|
12
|
Behavioral and neural correlates of normal aging effects on motor preparatory mechanisms of speech production and limb movement. Exp Brain Res 2019; 237:1759-1772. [PMID: 31030282 DOI: 10.1007/s00221-019-05549-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Normal aging is associated with decline of the sensorimotor mechanisms that support movement function in the human brain. In this study, we used behavioral and event-related potential (ERP) recordings to investigate the effects of normal aging on the motor preparatory mechanisms of speech production and limb movement. The experiment involved two groups of older and younger adults who performed randomized speech vowel vocalization and button press motor reaction time tasks in response to temporally predictable and unpredictable visual stimuli. Behavioral results revealed age-related slowness of motor reaction time only during speech production in response to temporally unpredictable stimuli, and this effect was accompanied by increased pre-motor ERP activities in older vs. younger adults during the speech task. These results indicate that motor preparatory mechanisms of limb movement during button press are not affected by normal aging, whereas the functional capacity of these mechanisms is reduced in older adults during speech production in response to unpredictable sensory stimuli. These findings suggest that the aging brain selectively compromises the motor timing of speech and recruits additional neural resources for motor planning and execution of speech, as indexed by the increased pre-motor ERP activations in response to temporally unpredictable vs. predictable sensory stimuli.
Collapse
|
13
|
Wermelinger S, Gampe A, Daum MM. The dynamics of the interrelation of perception and action across the life span. PSYCHOLOGICAL RESEARCH 2018; 83:116-131. [PMID: 30083839 DOI: 10.1007/s00426-018-1058-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/14/2018] [Indexed: 11/30/2022]
Abstract
Successful social interaction relies on the interaction partners' perception, anticipation and understanding of their respective actions. The perception of a particular action and the capability to produce this action share a common representational ground. So far, no study has explored the interrelation between action perception and production across the life span using the same tasks and the same measurement techniques. This study was designed to fill this gap. Participants between 3 and 80 years (N = 214) observed two multistep actions of different familiarities and then reproduced the according actions. Using eye tracking, we measured participants' action perception via their prediction of action goals during observation. To capture subtler perceptual processes, we additionally analysed the dynamics and recurrent patterns within participants' gaze behaviour. Action production was assessed via the accuracy of the participants' reproduction of the observed actions. No age-related differences were found for the perception of the familiar action, where participants of all ages could rely on previous experience. In the unfamiliar action, where participants had less experience, action goals were predicted more frequently with increasing age. The recurrence in participants' gaze behaviour was related to both, age and action production: gaze behaviour was more recurrent (i.e. less flexible) in very young and very old participants, and lower levels of recurrence (i.e. greater flexibility) were related to higher scores in action production across participants. Incorporating a life-span perspective, this study illustrates the dynamic nature of developmental differences in the associations of action production with action perception.
Collapse
Affiliation(s)
- Stephanie Wermelinger
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, Box 21, 8050, Zurich, Switzerland.
| | - Anja Gampe
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, Box 21, 8050, Zurich, Switzerland
| | - Moritz M Daum
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, Box 21, 8050, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Kirsch LP, Diersch N, Sumanapala DK, Cross ES. Dance Training Shapes Action Perception and Its Neural Implementation within the Young and Older Adult Brain. Neural Plast 2018; 2018:5459106. [PMID: 30123253 PMCID: PMC6079376 DOI: 10.1155/2018/5459106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/17/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022] Open
Abstract
How we perceive others in action is shaped by our prior experience. Many factors influence brain responses when observing others in action, including training in a particular physical skill, such as sport or dance, and also general development and aging processes. Here, we investigate how learning a complex motor skill shapes neural and behavioural responses among a dance-naïve sample of 20 young and 19 older adults. Across four days, participants physically rehearsed one set of dance sequences, observed a second set, and a third set remained untrained. Functional MRI was obtained prior to and immediately following training. Participants' behavioural performance on motor and visual tasks improved across the training period, with younger adults showing steeper performance gains than older adults. At the brain level, both age groups demonstrated decreased sensorimotor cortical engagement after physical training, with younger adults showing more pronounced decreases in inferior parietal activity compared to older adults. Neural decoding results demonstrate that among both age groups, visual and motor regions contain experience-specific representations of new motor learning. By combining behavioural measures of performance with univariate and multivariate measures of brain activity, we can start to build a more complete picture of age-related changes in experience-dependent plasticity.
Collapse
Affiliation(s)
- Louise P. Kirsch
- Social Brain in Action Laboratory, Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Bangor, UK
- Research Department of Clinical, Educational, and Health Psychology, Division of Psychology and Language Sciences, Faculty of Brain Sciences, University College London, London, UK
| | - Nadine Diersch
- Aging & Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Dilini K. Sumanapala
- Social Brain in Action Laboratory, Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Bangor, UK
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK
| | - Emily S. Cross
- Social Brain in Action Laboratory, Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Bangor, UK
- Institute of Neuroscience and Psychology & School of Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Kuehn E, Perez-Lopez MB, Diersch N, Döhler J, Wolbers T, Riemer M. Embodiment in the aging mind. Neurosci Biobehav Rev 2018; 86:207-225. [DOI: 10.1016/j.neubiorev.2017.11.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 12/24/2022]
|
16
|
Wermelinger S, Gampe A, Behr J, Daum MM. Interference of action perception on action production increases across the adult life span. Exp Brain Res 2017; 236:577-586. [PMID: 29249051 DOI: 10.1007/s00221-017-5157-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Abstract
Action perception and action production are assumed to be based on an internal simulation process that involves the sensorimotor system. This system undergoes changes across the life span and is assumed to become less precise with age. In the current study, we investigated how increasing age affects the magnitude of interference in action production during simultaneous action perception. In a task adapted from Brass et al. (Brain Cogn 44(2):124-143, 2000), we asked participants (aged 20-80 years) to respond to a visually presented finger movement and/or symbolic cue by executing a previously defined finger movement. Action production was assessed via participants' reaction times. Results show that participants were slower in trials in which they were asked to ignore an incongruent finger movement compared to trials in which they had to ignore an incongruent symbolic cue. Moreover, advancing age was shown to accentuate this effect. We suggest that the internal simulation of the action becomes less precise with age making the sensorimotor system more susceptible to perturbations such as the interference of a concurrent action perception.
Collapse
Affiliation(s)
- Stephanie Wermelinger
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.
| | - Anja Gampe
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland
| | - Jannis Behr
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland
| | - Moritz M Daum
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Wermelinger S, Gampe A, Daum MM. Higher levels of motor competence are associated with reduced interference in action perception across the lifespan. PSYCHOLOGICAL RESEARCH 2017; 83:432-444. [PMID: 29116436 DOI: 10.1007/s00426-017-0941-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/27/2017] [Indexed: 11/29/2022]
Abstract
Action perception and action production are tightly linked and elicit bi-directional influences on each other when performed simultaneously. In this study, we investigated whether age-related differences in manual fine-motor competence and/or age affect the (interfering) influence of action production on simultaneous action perception. In a cross-sectional eye-tracking study, participants of a broad age range (N = 181, 20-80 years) observed a manual grasp-and-transport action while performing an additional motor or cognitive distractor task. Action perception was measured via participants' frequency of anticipatory gaze shifts towards the action goal. Manual fine-motor competence was assessed with the Motor Performance Series. The interference effect in action perception was greater in the motor than the cognitive distractor task. Furthermore, manual fine-motor competence and age in years were both associated with this interference. The better the participants' manual fine-motor competence and the younger they were, the smaller the interference effect. However, when both influencing factors (age and fine-motor competence) were taken into account, a model including only age-related differences in manual fine-motor competence best fit with our data. These results add to the existing literature that motor competence and its age-related differences influence the interference effects between action perception and production.
Collapse
Affiliation(s)
- Stephanie Wermelinger
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.
| | - Anja Gampe
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland
| | - Moritz M Daum
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Costello MC, Bloesch EK. Are Older Adults Less Embodied? A Review of Age Effects through the Lens of Embodied Cognition. Front Psychol 2017; 8:267. [PMID: 28289397 PMCID: PMC5326803 DOI: 10.3389/fpsyg.2017.00267] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/10/2017] [Indexed: 11/13/2022] Open
Abstract
Embodied cognition is a theoretical framework which posits that cognitive function is intimately intertwined with the body and physical actions. Although the field of psychology is increasingly accepting embodied cognition as a viable theory, it has rarely been employed in the gerontological literature. However, embodied cognition would appear to have explanatory power for aging research given that older adults typically manifest concurrent physical and mental changes, and that research has indicated a correlative relationship between such changes. The current paper reviews age-related changes in sensory processing, mental representation, and the action-perception relationship, exploring how each can be understood through the lens of embodied cognition. Compared to younger adults, older adults exhibit across all three domains an increased tendency to favor visual processing over bodily factors, leading to the conclusion that older adults are less embodied than young adults. We explore the significance of this finding in light of existing theoretical models of aging and argue that embodied cognition can benefit gerontological research by identifying further factors that can explain the cause of age-related declines.
Collapse
Affiliation(s)
| | - Emily K Bloesch
- Department of Psychology, Central Michigan University, Mount Pleasant MI, USA
| |
Collapse
|
19
|
Predictive action tracking without motor experience in 8-month-old infants. Brain Cogn 2016; 109:131-139. [PMID: 27693999 PMCID: PMC5090050 DOI: 10.1016/j.bandc.2016.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/31/2016] [Accepted: 09/15/2016] [Indexed: 11/24/2022]
Abstract
Can infants predictively track the kinematics of actions outside their motor repertoire? Pre-walking infants predictively tracked upright, but not inverted stepping actions. Sensorimotor cortex was activated more when infants observed upright stepping actions. Motor experience is not necessary for predictive tracking of action kinematics.
A popular idea in cognitive neuroscience is that to predict others’ actions, observers need to map those actions onto their own motor repertoire. If this is true, infants with a relatively limited motor repertoire should be unable to predict actions with which they have no previous motor experience. We investigated this idea by presenting pre-walking infants with videos of upright and inverted stepping actions that were briefly occluded from view, followed by either a correct (time-coherent) or an incorrect (time-incoherent) continuation of the action (Experiment 1). Pre-walking infants looked significantly longer to the still frame after the incorrect compared to the correct continuations of the upright, but not the inverted stepping actions. This demonstrates that motor experience is not necessary for predictive tracking of action kinematics. In a follow-up study (Experiment 2), we investigated sensorimotor cortex activation as a neural indication of predictive action tracking in another group of pre-walking infants. Infants showed significantly more sensorimotor cortex activation during the occlusion of the upright stepping actions that the infants in Experiment 1 could predictively track, than during the occlusion of the inverted stepping actions that the infants in Experiment 1 could not predictively track. Taken together, these findings are inconsistent with the idea that motor experience is necessary for the predictive tracking of action kinematics, and suggest that infants may be able to use their extensive experience with observing others’ actions to generate real-time action predictions.
Collapse
|
20
|
Effects of paired-object affordance in search tasks across the adult lifespan. Brain Cogn 2016; 105:22-33. [DOI: 10.1016/j.bandc.2016.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/13/2016] [Accepted: 03/27/2016] [Indexed: 12/18/2022]
|
21
|
Diersch N, Jones AL, Cross ES. The timing and precision of action prediction in the aging brain. Hum Brain Mapp 2015; 37:54-66. [PMID: 26503586 PMCID: PMC5082531 DOI: 10.1002/hbm.23012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/03/2015] [Accepted: 09/24/2015] [Indexed: 11/19/2022] Open
Abstract
Successful social interactions depend on the ability to anticipate other people's actions. Current conceptualizations of brain function propose that causes of sensory input are inferred through their integration with internal predictions generated in the observer's motor system during action observation. Less is known concerning how action prediction changes with age. Previously we showed that internal action representations are less specific in older compared with younger adults at behavioral and neural levels. Here, we characterize how neural activity varies while healthy older adults aged 56–71 years predict the time‐course of an unfolding action as well as the relation to task performance. By using fMRI, brain activity was measured while participants observed partly occluded actions and judged the temporal coherence of the action continuation that was manipulated. We found that neural activity in frontoparietal and occipitotemporal regions increased the more an action continuation was shifted backwards in time. Action continuations that were shifted towards the future preferentially engaged early visual cortices. Increasing age was associated with neural activity that extended from posterior to anterior regions in frontal and superior temporal cortices. Lower sensitivity in action prediction resulted in activity increases in the caudate. These results imply that the neural implementation of predicting actions undergoes similar changes as the neural process of executing actions in older adults. The comparison between internal predictions and sensory input seems to become less precise with age leading to difficulties in anticipating observed actions accurately, possibly due to less specific internal action models. Hum Brain Mapp 37:54–66, 2016. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nadine Diersch
- Wales Institute of Cognitive Neuroscience, School of Psychology, Bangor University, Gwynedd, United Kingdom.,Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alex L Jones
- Wales Institute of Cognitive Neuroscience, School of Psychology, Bangor University, Gwynedd, United Kingdom.,Department of Psychology, Gettysburg College, Pennsylvania
| | - Emily S Cross
- Wales Institute of Cognitive Neuroscience, School of Psychology, Bangor University, Gwynedd, United Kingdom.,Behavioural Science Institute and Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Patel M, Roberts RE, Riyaz MU, Ahmed M, Buckwell D, Bunday K, Ahmad H, Kaski D, Arshad Q, Bronstein AM. Locomotor adaptation is modulated by observing the actions of others. J Neurophysiol 2015; 114:1538-44. [PMID: 26156386 DOI: 10.1152/jn.00446.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/06/2015] [Indexed: 12/24/2022] Open
Abstract
Observing the motor actions of another person could facilitate compensatory motor behavior in the passive observer. Here we explored whether action observation alone can induce automatic locomotor adaptation in humans. To explore this possibility, we used the "broken escalator" paradigm. Conventionally this involves stepping upon a stationary sled after having previously experienced it actually moving (Moving trials). This history of motion produces a locomotor aftereffect when subsequently stepping onto a stationary sled. We found that viewing an actor perform the Moving trials was sufficient to generate a locomotor aftereffect in the observer, the size of which was significantly correlated with the size of the movement (postural sway) observed. Crucially, the effect is specific to watching the task being performed, as no motor adaptation occurs after simply viewing the sled move in isolation. These findings demonstrate that locomotor adaptation in humans can be driven purely by action observation, with the brain adapting motor plans in response to the size of the observed individual's motion. This mechanism may be mediated by a mirror neuron system that automatically adapts behavior to minimize movement errors and improve motor skills through social cues, although further neurophysiological studies are required to support this theory. These data suggest that merely observing the gait of another person in a challenging environment is sufficient to generate appropriate postural countermeasures, implying the existence of an automatic mechanism for adapting locomotor behavior.
Collapse
Affiliation(s)
- Mitesh Patel
- Department of Neuro-otology, Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom; and
| | - R Edward Roberts
- Department of Neuro-otology, Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom; and
| | - Mohammed U Riyaz
- Department of Neuro-otology, Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom; and
| | - Maroof Ahmed
- Department of Neuro-otology, Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom; and
| | - David Buckwell
- Department of Neuro-otology, Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom; and
| | - Karen Bunday
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Hena Ahmad
- Department of Neuro-otology, Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom; and
| | - Diego Kaski
- Department of Neuro-otology, Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom; and
| | - Qadeer Arshad
- Department of Neuro-otology, Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom; and
| | - Adolfo M Bronstein
- Department of Neuro-otology, Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom; and
| |
Collapse
|
23
|
Calmels C, Pichon S, Grèzes J. Can we simulate an action that we temporarily cannot perform? Neurophysiol Clin 2014; 44:433-45. [PMID: 25438976 DOI: 10.1016/j.neucli.2014.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 03/31/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022] Open
Abstract
AIMS OF THE STUDY The scope of individuals' motor repertoire and expertise influences the way they perceive the actions of others. When observing skilled actions, experts recruit the cortical network subserving action perception (action observation network, AON) to a greater extent than non-experts. However, it remains unknown whether and how a temporary motor injury affects activation within the AON. MATERIALS AND METHODS To investigate this issue, brain hemodynamic activity was recorded twice in thirteen national female gymnasts suffering from a lower extremity injury at the onset of the experiment. The gymnasts were scanned one month after the injury and were shown gymnastics routines they were able and temporarily unable to perform. Six months later, after complete recovery, they were scanned again and shown the same routines they were now able to practice. RESULTS Results showed: first, that the level of activity within the inferior parietal lobule and MT/V5/EBA (extrastriate body area), areas constitutive of the AON, was independent of the gymnasts' physical condition. Second, when gymnasts were hurt (vs. when recovered), higher activity in the cerebellum was detected. CONCLUSION The equal contribution of MT/V5/EBA and inferior parietal lobule during the observation of movements the gymnasts were able or unable to practice suggests respectively that physical provisional incapacity does not interfere with the perceptual processing of body shape and motion information, and that motor expertise may prevent the decay of sensorimotor representations. Higher activations in the cerebellum may suggest that this structure plays a role in dissociating perceived physically feasible movements from those that are provisionally unfeasible.
Collapse
Affiliation(s)
- C Calmels
- Institut national du sport, de l'expertise et de la performance, département recherche, laboratoire SEP, Paris, France.
| | - S Pichon
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, Medical School, University of Geneva, Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - J Grèzes
- LNC, INSERM U960, IEC, École Normale Supérieure, Paris, France; UMR-S975, Inserm U975, CNRS UMR7225, Centre de Neuroimagerie de Recherche - CENIR, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Université Pierre et Marie Curie Paris 6, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
24
|
Maguinness C, Setti A, Roudaia E, Kenny RA. Does that look heavy to you? Perceived weight judgment in lifting actions in younger and older adults. Front Hum Neurosci 2013; 7:795. [PMID: 24324423 PMCID: PMC3839046 DOI: 10.3389/fnhum.2013.00795] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/31/2013] [Indexed: 11/13/2022] Open
Abstract
When interpreting other people's movements or actions, observers may not only rely on the visual cues available in the observed movement, but they may also be able to "put themselves in the other person's shoes" by engaging brain systems involved in both "mentalizing" and motor simulation. The ageing process brings changes in both perceptual and motor abilities, yet little is known about how these changes may affect the ability to accurately interpret other people's actions. Here we investigated the effect of ageing on the ability to discriminate the weight of objects based on the movements of actors lifting these objects. Stimuli consisted of videos of an actor lifting a small box weighing 0.05-0.9 kg or a large box weighting 3-18 kg. In a four-alternative forced-choice task, younger and older participants reported the perceived weight of the box in each video. Overall, older participants were less sensitive than younger participants in discriminating the perceived weight of lifted boxes, an effect that was especially pronounced in the small box condition. Weight discrimination performance was better for the large box compared to the small box in both groups, due to greater saliency of the visual cues in this condition. These results suggest that older adults may require more salient visual cues to interpret the actions of others accurately. We discuss the potential contribution of age-related changes in visual and motor function on the observed effects and suggest that older adults' decline in the sensitivity to subtle visual cues may lead to greater reliance on visual analysis of the observed scene and its semantic context.
Collapse
Affiliation(s)
- Corrina Maguinness
- School of Psychology, Trinity College Dublin Dublin, Ireland ; Institute of Neuroscience, Trinity College Dublin Dublin, Ireland
| | | | | | | |
Collapse
|
25
|
Kirsch LP, Drommelschmidt KA, Cross ES. The impact of sensorimotor experience on affective evaluation of dance. Front Hum Neurosci 2013; 7:521. [PMID: 24027511 PMCID: PMC3760289 DOI: 10.3389/fnhum.2013.00521] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/13/2013] [Indexed: 11/13/2022] Open
Abstract
Past research demonstrates that we are more likely to positively evaluate a stimulus if we have had previous experience with that stimulus. This has been shown for judgment of faces, architecture, artworks and body movements. In contrast, other evidence suggests that this relationship can also work in the inverse direction, at least in the domain of watching dance. Specifically, it has been shown that in certain contexts, people derive greater pleasure from watching unfamiliar movements they would not be able to physically reproduce compared to simpler, familiar actions they could physically reproduce. It remains unknown, however, how different kinds of experience with complex actions, such as dance, might change observers' affective judgments of these movements. Our aim was to clarify the relationship between experience and affective evaluation of whole body movements. In a between-subjects design, participants received either physical dance training with a video game system, visual and auditory experience or auditory experience only. Participants' aesthetic preferences for dance stimuli were measured before and after the training sessions. Results show that participants from the physical training group not only improved their physical performance of the dance sequences, but also reported higher enjoyment and interest in the stimuli after training. This suggests that physically learning particular movements leads to greater enjoyment while observing them. These effects are not simply due to increased familiarity with audio or visual elements of the stimuli, as the other two training groups showed no increase in aesthetic ratings post-training. We suggest these results support an embodied simulation account of aesthetics, and discuss how the present findings contribute to a better understanding of the shaping of preferences by sensorimotor experience.
Collapse
Affiliation(s)
- Louise P Kirsch
- Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University Bangor, Gwynedd, UK
| | | | | |
Collapse
|
26
|
Springer A, Parkinson J, Prinz W. Action simulation: time course and representational mechanisms. Front Psychol 2013; 4:387. [PMID: 23847563 PMCID: PMC3701141 DOI: 10.3389/fpsyg.2013.00387] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 06/10/2013] [Indexed: 11/16/2022] Open
Abstract
The notion of action simulation refers to the ability to re-enact foreign actions (i.e., actions observed in other individuals). Simulating others' actions implies a mirroring of their activities, based on one's own sensorimotor competencies. Here, we discuss theoretical and experimental approaches to action simulation and the study of its representational underpinnings. One focus of our discussion is on the timing of internal simulation and its relation to the timing of external action, and a paradigm that requires participants to predict the future course of actions that are temporarily occluded from view. We address transitions between perceptual mechanisms (referring to action representation before and after occlusion) and simulation mechanisms (referring to action representation during occlusion). Findings suggest that action simulation runs in real-time; acting on newly created action representations rather than relying on continuous visual extrapolations. A further focus of our discussion pertains to the functional characteristics of the mechanisms involved in predicting other people's actions. We propose that two processes are engaged, dynamic updating and static matching, which may draw on both semantic and motor information. In a concluding section, we discuss these findings in the context of broader theoretical issues related to action and event representation, arguing that a detailed functional analysis of action simulation in cognitive, neural, and computational terms may help to further advance our understanding of action cognition and motor control.
Collapse
Affiliation(s)
- Anne Springer
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Department of Sport and Exercise Psychology, University of Potsdam Potsdam, Germany
| | | | | |
Collapse
|
27
|
Diersch N, Mueller K, Cross ES, Stadler W, Rieger M, Schütz-Bosbach S. Action prediction in younger versus older adults: neural correlates of motor familiarity. PLoS One 2013; 8:e64195. [PMID: 23704980 PMCID: PMC3660406 DOI: 10.1371/journal.pone.0064195] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/12/2013] [Indexed: 11/22/2022] Open
Abstract
Generating predictions during action observation is essential for efficient navigation through our social environment. With age, the sensitivity in action prediction declines. In younger adults, the action observation network (AON), consisting of premotor, parietal and occipitotemporal cortices, has been implicated in transforming executed and observed actions into a common code. Much less is known about age-related changes in the neural representation of observed actions. Using fMRI, the present study measured brain activity in younger and older adults during the prediction of temporarily occluded actions (figure skating elements and simple movement exercises). All participants were highly familiar with the movement exercises whereas only some participants were experienced figure skaters. With respect to the AON, the results confirm that this network was preferentially engaged for the more familiar movement exercises. Compared to younger adults, older adults recruited visual regions to perform the task and, additionally, the hippocampus and caudate when the observed actions were familiar to them. Thus, instead of effectively exploiting the sensorimotor matching properties of the AON, older adults seemed to rely predominantly on the visual dynamics of the observed actions to perform the task. Our data further suggest that the caudate played an important role during the prediction of the less familiar figure skating elements in better-performing groups. Together, these findings show that action prediction engages a distributed network in the brain, which is modulated by the content of the observed actions and the age and experience of the observer.
Collapse
Affiliation(s)
- Nadine Diersch
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Weiss C, Schütz-Bosbach S. Vicarious action preparation does not result in sensory attenuation of auditory action effects. Conscious Cogn 2012; 21:1654-61. [DOI: 10.1016/j.concog.2012.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/16/2012] [Accepted: 08/25/2012] [Indexed: 10/27/2022]
|
29
|
Thomaschke R. Investigating ideomotor cognition with motorvisual priming paradigms: key findings, methodological challenges, and future directions. Front Psychol 2012. [PMID: 23189067 PMCID: PMC3505020 DOI: 10.3389/fpsyg.2012.00519] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ideomotor theory claims that perceptual representations of action-effects are functionally involved in the planning of actions. Strong evidence for this claim comes from a phenomenon called motorvisual priming. Motorvisual priming refers to the finding that action planning directly affects perception, and that the effects are selective for stimuli that share features with the planned action. Motorvisual priming studies have provided detailed insights into the processing of perceptual representations in action planning. One important finding is that such representations in action planning have a categorical format, whereas metric representations are not anticipated in planning. Further essential findings regard the processing mechanisms and the time course of ideomotor cognition. Perceptual representations of action-effects are first activated by action planning and then bound into a compound representation of the action plan. This compound representation is stabilized throughout the course of the action by the shielding of all involved representations from other cognitive processes. Despite a rapid growth in the number of motorvisual priming studies in the current literature, there are still many aspects of ideomotor cognition which have not yet been investigated. These aspects include the scope of ideomotor processing with regard to action types and stimulus types, as well as the exact nature of the binding and shielding mechanisms involved.
Collapse
Affiliation(s)
- Roland Thomaschke
- Institut für Psychologie, Universität Regensburg Regensburg, Germany
| |
Collapse
|
30
|
Simulating and predicting others’ actions. PSYCHOLOGICAL RESEARCH 2012; 76:383-7. [DOI: 10.1007/s00426-012-0443-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
|
31
|
Stadler W, Springer A, Parkinson J, Prinz W. Movement kinematics affect action prediction: comparing human to non-human point-light actions. PSYCHOLOGICAL RESEARCH 2012; 76:395-406. [PMID: 22411563 DOI: 10.1007/s00426-012-0431-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 02/29/2012] [Indexed: 12/22/2022]
Abstract
The influence of movement kinematics on the accuracy of predicting the time course of another individual's actions was studied. A human point-light shape was animated with human movement (natural condition) and with artificial movement that was more uniform regarding velocity profiles and trajectories (artificial condition). During brief occlusions, the participants predicted the actions in order to judge after occlusion whether the actions were continued coherently in time or shifted to an earlier or later frame. Error rates and reaction times were increased in the artificial compared to the natural condition. The findings suggest a perceptual advantage for movement with a human velocity profile, corresponding to the notion of a close interaction between observed and executed movement. The results are discussed in the framework of the simulation account and alternative interpretations are provided on the basis of correlations between the velocity profiles of natural and artificial movements with prediction performance.
Collapse
Affiliation(s)
- Waltraud Stadler
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | | | | | | |
Collapse
|
32
|
Language-induced modulation during the prediction of others' actions. PSYCHOLOGICAL RESEARCH 2012; 76:456-66. [PMID: 22234446 DOI: 10.1007/s00426-012-0411-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 01/01/2012] [Indexed: 10/14/2022]
Abstract
Processing of action words has been shown to influence the perception of the actions the words refer to. Specifically, the accuracy with which people predict the future course of actions observed in another individual seems to be affected by verbal primes. Two processes may be involved in action prediction; dynamic simulation (updating) and static matching. The present study examined this issue by testing the impact of action verb processing on action prediction performance using a masked priming paradigm. Evidence of dynamic updating was revealed after prime verbs expressing dynamic actions (e.g., 'to catch') but not those expressing static actions (e.g., 'to lean'). In contrast to previous work, the primes were masked and did not require any response at all. Hence, our results indicate that implicit action-related linguistic processing may trigger action simulation that in turn might affect action prediction (see also Liepelt, Dolk, & Prinz, Psychological Research, 2012, in this issue).
Collapse
|