1
|
Deng A, Cesanek E, Domini F. Sensory feedback modulates Weber's law of both perception and action. J Vis 2024; 24:10. [PMID: 39688841 DOI: 10.1167/jov.24.13.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Weber's law states that estimation noise is proportional to stimulus intensity. Although this holds in perception, it appears absent in visually guided actions where response variability does not scale with object size. This discrepancy is often attributed to dissociated visual processing for perception and action. Here, we explore an alternative explanation: It is the influence of sensory feedback on motor output that causes this apparent violation. Our research investigated response variability across repeated grasps relative to object size and found that the variability pattern is contingent on sensory feedback. Pantomime grasps with neither online visual feedback nor final haptic feedback showed variability that scaled with object size, as expected by Weber's law. However, this scaling diminished when sensory feedback was available, either directly present in the movement (Experiment 1) or in adjacent movements in the same block (Experiment 2). Moreover, a simple visual cue indicating performance error similarly reduced the scaling of variability with object size in manual size estimates, the perceptual counterpart of grasping responses (Experiment 3). These results support the hypothesis that sensory feedback modulates motor responses and their associated variability across both action and perception tasks. Post hoc analyses indicated that the reduced scaling of response variability with object size could be due to changes in motor mapping, the process mapping visual size estimates to motor outputs. Consequently, the absence of Weber's law in action responses might not indicate distinct visual processing but rather adaptive changes in motor strategies based on sensory feedback.
Collapse
Affiliation(s)
- Ailin Deng
- Department of Cognitive Linguistic & Psychological Sciences, Brown University, Providence, RI, USA
| | - Evan Cesanek
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Fulvio Domini
- Department of Cognitive Linguistic & Psychological Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Giesel M, De Filippi F, Hesse C. Grasping tiny objects. PSYCHOLOGICAL RESEARCH 2024; 88:1678-1690. [PMID: 38554146 PMCID: PMC11281983 DOI: 10.1007/s00426-024-01947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/29/2024] [Indexed: 04/01/2024]
Abstract
In grasping studies, maximum grip aperture (MGA) is commonly used as an indicator of the object size representation within the visuomotor system. However, a number of additional factors, such as movement safety, comfort, and efficiency, might affect the scaling of MGA with object size and potentially mask perceptual effects on actions. While unimanual grasping has been investigated for a wide range of object sizes, so far very small objects (<5 mm) have not been included. Investigating grasping of these tiny objects is particularly interesting because it allows us to evaluate the three most prominent explanatory accounts of grasping (the perception-action model, the digits-in-space hypothesis, and the biomechanical account) by comparing the predictions that they make for these small objects. In the first experiment, participants ( N = 26 ) grasped and manually estimated the height of square cuboids with heights from 0.5 to 5 mm. In the second experiment, a different sample of participants ( N = 24 ) performed the same tasks with square cuboids with heights from 5 to 20 mm. We determined MGAs, manual estimation apertures (MEA), and the corresponding just-noticeable differences (JND). In both experiments, MEAs scaled with object height and adhered to Weber's law. MGAs for grasping scaled with object height in the second experiment but not consistently in the first experiment. JNDs for grasping never scaled with object height. We argue that the digits-in-space hypothesis provides the most plausible account of the data. Furthermore, the findings highlight that the reliability of MGA as an indicator of object size is strongly task-dependent.
Collapse
Affiliation(s)
- Martin Giesel
- School of Psychology, University of Aberdeen, William Guild Building, Aberdeen, AB24 3FX, UK.
| | - Federico De Filippi
- School of Psychology, University of Aberdeen, William Guild Building, Aberdeen, AB24 3FX, UK
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews, KY16 9JP, UK
| | - Constanze Hesse
- School of Psychology, University of Aberdeen, William Guild Building, Aberdeen, AB24 3FX, UK
| |
Collapse
|
3
|
Mudrik L, Hirschhorn R, Korisky U. Taking consciousness for real: Increasing the ecological validity of the study of conscious vs. unconscious processes. Neuron 2024; 112:1642-1656. [PMID: 38653247 PMCID: PMC11100345 DOI: 10.1016/j.neuron.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
The study of consciousness has developed well-controlled, rigorous methods for manipulating and measuring consciousness. Yet, in the process, experimental paradigms grew farther away from everyday conscious and unconscious processes, which raises the concern of ecological validity. In this review, we suggest that the field can benefit from adopting a more ecological approach, akin to other fields of cognitive science. There, this approach challenged some existing hypotheses, yielded stronger effects, and enabled new research questions. We argue that such a move is critical for studying consciousness, where experimental paradigms tend to be artificial and small effect sizes are relatively prevalent. We identify three paths for doing so-changing the stimuli and experimental settings, changing the measures, and changing the research questions themselves-and review works that have already started implementing such approaches. While acknowledging the inherent challenges, we call for increasing ecological validity in consciousness studies.
Collapse
Affiliation(s)
- Liad Mudrik
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Rony Hirschhorn
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Uri Korisky
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Fairchild GT, Holler DE, Fabbri S, Gomez MA, Walsh-Snow JC. Naturalistic Object Representations Depend on Distance and Size Cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.16.585308. [PMID: 38559105 PMCID: PMC10980039 DOI: 10.1101/2024.03.16.585308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Egocentric distance and real-world size are important cues for object perception and action. Nevertheless, most studies of human vision rely on two-dimensional pictorial stimuli that convey ambiguous distance and size information. Here, we use fMRI to test whether pictures are represented differently in the human brain from real, tangible objects that convey unambiguous distance and size cues. Participants directly viewed stimuli in two display formats (real objects and matched printed pictures of those objects) presented at different egocentric distances (near and far). We measured the effects of format and distance on fMRI response amplitudes and response patterns. We found that fMRI response amplitudes in the lateral occipital and posterior parietal cortices were stronger overall for real objects than for pictures. In these areas and many others, including regions involved in action guidance, responses to real objects were stronger for near vs. far stimuli, whereas distance had little effect on responses to pictures-suggesting that distance determines relevance to action for real objects, but not for pictures. Although stimulus distance especially influenced response patterns in dorsal areas that operate in the service of visually guided action, distance also modulated representations in ventral cortex, where object responses are thought to remain invariant across contextual changes. We observed object size representations for both stimulus formats in ventral cortex but predominantly only for real objects in dorsal cortex. Together, these results demonstrate that whether brain responses reflect physical object characteristics depends on whether the experimental stimuli convey unambiguous information about those characteristics. Significance Statement Classic frameworks of vision attribute perception of inherent object characteristics, such as size, to the ventral visual pathway, and processing of spatial characteristics relevant to action, such as distance, to the dorsal visual pathway. However, these frameworks are based on studies that used projected images of objects whose actual size and distance from the observer were ambiguous. Here, we find that when object size and distance information in the stimulus is less ambiguous, these characteristics are widely represented in both visual pathways. Our results provide valuable new insights into the brain representations of objects and their various physical attributes in the context of naturalistic vision.
Collapse
|
5
|
Tool use acquisition induces a multifunctional interference effect during object processing: evidence from the sensorimotor mu rhythm. Exp Brain Res 2023; 241:1145-1157. [PMID: 36920527 DOI: 10.1007/s00221-023-06595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
A fundamental characteristic of human development is acquiring and accumulating tool use knowledge through observation and sensorimotor experience. Recent studies showed that, in children and adults, different action possibilities to grasp-to-move and grasp-to-use objects generate a conflict that extinguishes neural motor resonance phenomena during visual object processing. In this study, a training protocol coupled with EEG recordings was administered in virtual reality to healthy adults to evaluate whether a similar conflict occurs between novel tool use knowledge. Participants perceived and manipulated two novel 3D tools trained beforehand with either single or double-usage. A weaker reduction of mu-band (10-13 Hz) power, accompanied by a reduced inter-trial phase coherence, was recorded during the perception of the tool associated with the double-usage. These effects started within the first 200 ms of visual object processing and were predominantly recorded over the left motor system. Furthermore, interacting with the double usage tool delayed grasp-to-reach movements. The results highlight a multifunctional interference effect, such as tool use acquisition reduces the neural motor resonance phenomenon and inhibits the activation of the motor system during subsequent object recognition. These results imply that learned tool use information guides sensorimotor processes of objects.
Collapse
|
6
|
Rzepka AM, Hussey KJ, Maltz MV, Babin K, Wilcox LM, Culham JC. Familiar size affects perception differently in virtual reality and the real world. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210464. [PMID: 36511414 PMCID: PMC9745877 DOI: 10.1098/rstb.2021.0464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022] Open
Abstract
The promise of virtual reality (VR) as a tool for perceptual and cognitive research rests on the assumption that perception in virtual environments generalizes to the real world. Here, we conducted two experiments to compare size and distance perception between VR and physical reality (Maltz et al. 2021 J. Vis. 21, 1-18). In experiment 1, we used VR to present dice and Rubik's cubes at their typical sizes or reversed sizes at distances that maintained a constant visual angle. After viewing the stimuli binocularly (to provide vergence and disparity information) or monocularly, participants manually estimated perceived size and distance. Unlike physical reality, where participants relied less on familiar size and more on presented size during binocular versus monocular viewing, in VR participants relied heavily on familiar size regardless of the availability of binocular cues. In experiment 2, we demonstrated that the effects in VR generalized to other stimuli and to a higher quality VR headset. These results suggest that the use of binocular cues and familiar size differs substantially between virtual and physical reality. A deeper understanding of perceptual differences is necessary before assuming that research outcomes from VR will generalize to the real world. This article is part of a discussion meeting issue 'New approaches to 3D vision'.
Collapse
Affiliation(s)
- Anna M. Rzepka
- Neuroscience Program, University of Western Ontario, Western Interdisciplinary Research Building, London, ON, Canada N6A 3K7
| | - Kieran J. Hussey
- Neuroscience Program, University of Western Ontario, Western Interdisciplinary Research Building, London, ON, Canada N6A 3K7
| | - Margaret V. Maltz
- Department of Psychology, University of Western Ontario, Western Interdisciplinary Research Building, London, ON, Canada N6A 3K7
| | - Karsten Babin
- Department of Psychology, University of Western Ontario, Western Interdisciplinary Research Building, London, ON, Canada N6A 3K7
| | - Laurie M. Wilcox
- Department of Psychology, York University, Toronto, ON, Canada M3J 1P3
| | - Jody C. Culham
- Neuroscience Program, University of Western Ontario, Western Interdisciplinary Research Building, London, ON, Canada N6A 3K7
- Department of Psychology, University of Western Ontario, Western Interdisciplinary Research Building, London, ON, Canada N6A 3K7
| |
Collapse
|
7
|
Bhatia K, Löwenkamp C, Franz VH. Grasping follows Weber's law: How to use response variability as a proxy for JND. J Vis 2022; 22:13. [DOI: 10.1167/jov.22.12.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Kriti Bhatia
- Experimental Cognitive Science, University of Tübingen, Tübingen, Germany
| | | | - Volker H. Franz
- Experimental Cognitive Science, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Uccelli S, Pisu V, Bruno N. Precision in grasping: Consistent with Weber's law, but constrained by "safety margins". Neuropsychologia 2021; 163:108088. [PMID: 34800489 DOI: 10.1016/j.neuropsychologia.2021.108088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022]
Abstract
Whether the visuomotor coding of size in grasping obeys Weber's law is currently debated. Following up on previous work from our laboratory, here we investigated the precision associated with the maximum in-flight index-thumb aperture (MGA) in grasping small-to-medium sized objects. We report three main findings. First, grasp preparation was longer with 5 mm objects and became increasingly faster as object size increased from 10 to 20-40 mm. Second, MGA variable errors increased as sizes increased from 5 to 10-20 mm, whereas they decreased as size reached 40 mm. Third, MGA distributions were symmetrical with 5 mm objects, but became increasingly right-skewed as size increased. These results, as well as a re-analysis of previous findings, suggest that the precision of visuomotor representations varies as a function of size, consistent with the key principle underlying Weber's law. However, a fundamental constraint on precision grips (the MGA must always exceed physical size) changes the skew of the distribution and reduces the variability of MGAs as size increases from very small to medium.
Collapse
|
9
|
Fairchild GT, Marini F, Snow JC. Graspability Modulates the Stronger Neural Signature of Motor Preparation for Real Objects vs. Pictures. J Cogn Neurosci 2021; 33:2477-2493. [PMID: 34407193 PMCID: PMC9946154 DOI: 10.1162/jocn_a_01771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The cognitive and neural bases of visual perception are typically studied using pictures rather than real-world stimuli. Unlike pictures, real objects are actionable solids that can be manipulated with the hands. Recent evidence from human brain imaging suggests that neural responses to real objects differ from responses to pictures; however, little is known about the neural mechanisms that drive these differences. Here, we tested whether brain responses to real objects versus pictures are differentially modulated by the "in-the-moment" graspability of the stimulus. In human dorsal cortex, electroencephalographic responses show a "real object advantage" in the strength and duration of mu (μ) and low beta (β) rhythm desynchronization-well-known neural signatures of visuomotor action planning. We compared desynchronization for real tools versus closely matched pictures of the same objects, when the stimuli were positioned unoccluded versus behind a large transparent barrier that prevented immediate access to the stimuli. We found that, without the barrier in place, real objects elicited stronger μ and β desynchronization compared to pictures, both during stimulus presentation and after stimulus offset, replicating previous findings. Critically, however, with the barrier in place, this real object advantage was attenuated during the period of stimulus presentation, whereas the amplification in later periods remained. These results suggest that the "real object advantage" is driven initially by immediate actionability, whereas later differences perhaps reflect other, more inherent properties of real objects. The findings showcase how the use of richer multidimensional stimuli can provide a more complete and ecologically valid understanding of object vision.
Collapse
|
10
|
Hesse C, Harrison RE, Giesel M. Bimanual Grasping Adheres to Weber's Law. Iperception 2021; 12:20416695211054534. [PMID: 34868538 PMCID: PMC8641124 DOI: 10.1177/20416695211054534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/03/2021] [Indexed: 11/16/2022] Open
Abstract
Weber's law states that our ability to detect changes in stimulus attributes decreases linearly with their magnitude. This principle holds true for many attributes across sensory modalities but appears to be violated in grasping. One explanation for the failure to observe Weber's law in grasping is that its effect is masked by biomechanical constraints of the hand. We tested this hypothesis using a bimanual task that eliminates biomechanical constraints. Participants either grasped differently sized boxes that were comfortably within their arm span (action task) or estimated their width (perceptual task). Within each task, there were two conditions: One where the hands' start positions remained fixed for all object sizes (meaning the distance between the initial and final hand-positions varied with object size), and one in which the hands' start positions adapted with object size (such that the distance between the initial and final hand-position remained constant). We observed adherence to Weber's law in bimanual estimation and grasping across both conditions. Our results conflict with a previous study that reported the absence of Weber's law in bimanual grasping. We discuss potential explanations for these divergent findings and encourage further research on whether Weber's law persists when biomechanical constraints are reduced.
Collapse
Affiliation(s)
| | | | - Martin Giesel
- School of Psychology, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
11
|
Korisky U, Mudrik L. Dimensions of Perception: 3D Real-Life Objects Are More Readily Detected Than Their 2D Images. Psychol Sci 2021; 32:1636-1648. [PMID: 34555305 DOI: 10.1177/09567976211010718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Most of our interactions with our environment involve manipulating real 3D objects. Accordingly, 3D objects seem to enjoy preferential processing compared with 2D images, for example, in capturing attention or being better remembered. But are they also more readily perceived? Thus far, the possibility of preferred detection for real 3D objects could not be empirically tested because suppression from awareness has been applied only to on-screen stimuli. Here, using a variant of continuous flash suppression (CFS) with augmented-reality goggles ("real-life" CFS), we managed to suppress both real 3D objects and their 2D representations. In 20 healthy young adults, real objects broke suppression faster than their photographs. Using 3D printing, we also showed in 50 healthy young adults that this finding held only for meaningful objects, whereas no difference was found for meaningless, novel ones (a similar trend was observed in another experiment with 20 subjects, yet it did not reach significance). This suggests that the effect might be mediated by affordances facilitating detection of 3D objects under interocular suppression.
Collapse
Affiliation(s)
- Uri Korisky
- School of Psychological Sciences, Tel Aviv University
| | - Liad Mudrik
- School of Psychological Sciences, Tel Aviv University.,Sagol School of Neuroscience, Tel Aviv University
| |
Collapse
|
12
|
Langridge RW, Marotta JJ. Manipulation of physical 3-D and virtual 2-D stimuli: comparing digit placement and fixation position. Exp Brain Res 2021; 239:1863-1875. [PMID: 33860822 DOI: 10.1007/s00221-021-06101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/30/2021] [Indexed: 11/28/2022]
Abstract
The visuomotor processes involved in grasping a 2-D target are known to be fundamentally different than those involved in grasping a 3-D object, and this has led to concerns regarding the generalizability of 2-D grasping research. This study directly compared participants' fixation positions and digit placement during interaction with either physical square objects or 2-D virtual versions of these objects. Participants were instructed to either simply grasp the stimulus or grasp and slide it to another location. Participants' digit placement and fixation positions did not significantly differ as a function of stimulus type when grasping in the center of the display. However, gaze and grasp positions shifted toward the near side of non-central virtual stimuli, while consistently remaining close to the horizontal midline of the physical stimulus. Participants placed their digits at less stable locations when grasping the virtual stimulus in comparison to the physical stimulus on the right side of the display, but this difference disappeared when grasping in the center and on the left. Similar outward shifts in digit placement and lowered fixations were observed when sliding both stimulus types, suggesting participants incorporated similar adjustments in grasp selection in anticipation of manipulation in both Physical and Virtual stimulus conditions. These results suggest that while fixation position and grasp point selection differed between stimulus type as a function of stimulus position, certain eye-hand coordinated behaviours were maintained when grasping both physical and virtual stimuli.
Collapse
Affiliation(s)
- Ryan W Langridge
- Perception and Action Lab, Department of Psychology, University of Manitoba, 190 Dysart Rd, Winnipeg, MB, R3T-2N2, Canada.
| | - Jonathan J Marotta
- Perception and Action Lab, Department of Psychology, University of Manitoba, 190 Dysart Rd, Winnipeg, MB, R3T-2N2, Canada
| |
Collapse
|
13
|
Fan AWY, Guo LL, Frost A, Whitwell RL, Niemeier M, Cant JS. Grasping of Real-World Objects Is Not Biased by Ensemble Perception. Front Psychol 2021; 12:597691. [PMID: 33912099 PMCID: PMC8071954 DOI: 10.3389/fpsyg.2021.597691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
The visual system is known to extract summary representations of visually similar objects which bias the perception of individual objects toward the ensemble average. Although vision plays a large role in guiding action, less is known about whether ensemble representation is informative for action. Motor behavior is tuned to the veridical dimensions of objects and generally considered resistant to perceptual biases. However, when the relevant grasp dimension is not available or is unconstrained, ensemble perception may be informative to behavior by providing gist information about surrounding objects. In the present study, we examined if summary representations of a surrounding ensemble display influenced grip aperture and orientation when participants reached-to-grasp a central circular target which had an explicit size but importantly no explicit orientation that the visuomotor system could selectively attend to. Maximum grip aperture and grip orientation were not biased by ensemble statistics during grasping, although participants were able to perceive and provide manual estimations of the average size and orientation of the ensemble display. Support vector machine classification of ensemble statistics achieved above-chance classification accuracy when trained on kinematic and electromyography data of the perceptual but not grasping conditions, supporting our univariate findings. These results suggest that even along unconstrained grasping dimensions, visually-guided behaviors toward real-world objects are not biased by ensemble processing.
Collapse
Affiliation(s)
- Annabel Wing-Yan Fan
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Lin Lawrence Guo
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Adam Frost
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Robert L. Whitwell
- The Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Matthias Niemeier
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Jonathan S. Cant
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
14
|
Whitwell RL, Katz NJ, Goodale MA, Enns JT. The Role of Haptic Expectations in Reaching to Grasp: From Pantomime to Natural Grasps and Back Again. Front Psychol 2020; 11:588428. [PMID: 33391110 PMCID: PMC7773727 DOI: 10.3389/fpsyg.2020.588428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
When we reach to pick up an object, our actions are effortlessly informed by the object's spatial information, the position of our limbs, stored knowledge of the object's material properties, and what we want to do with the object. A substantial body of evidence suggests that grasps are under the control of "automatic, unconscious" sensorimotor modules housed in the "dorsal stream" of the posterior parietal cortex. Visual online feedback has a strong effect on the hand's in-flight grasp aperture. Previous work of ours exploited this effect to show that grasps are refractory to cued expectations for visual feedback. Nonetheless, when we reach out to pretend to grasp an object (pantomime grasp), our actions are performed with greater cognitive effort and they engage structures outside of the dorsal stream, including the ventral stream. Here we ask whether our previous finding would extend to cued expectations for haptic feedback. Our method involved a mirror apparatus that allowed participants to see a "virtual" target cylinder as a reflection in the mirror at the start of all trials. On "haptic feedback" trials, participants reached behind the mirror to grasp a size-matched cylinder, spatially coincident with the virtual one. On "no-haptic feedback" trials, participants reached behind the mirror and grasped into "thin air" because no cylinder was present. To manipulate haptic expectation, we organized the haptic conditions into blocked, alternating, and randomized schedules with and without verbal cues about the availability of haptic feedback. Replicating earlier work, we found the strongest haptic effects with the blocked schedules and the weakest effects in the randomized uncued schedule. Crucially, the haptic effects in the cued randomized schedule was intermediate. An analysis of the influence of the upcoming and immediately preceding haptic feedback condition in the cued and uncued random schedules showed that cuing the upcoming haptic condition shifted the haptic influence on grip aperture from the immediately preceding trial to the upcoming trial. These findings indicate that, unlike cues to the availability of visual feedback, participants take advantage of cues to the availability of haptic feedback, flexibly engaging pantomime, and natural modes of grasping to optimize the movement.
Collapse
Affiliation(s)
- Robert L Whitwell
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Nathan J Katz
- Department of Psychology, Brain and Mind Institute, The University of Western Ontario, London, ON, Canada
| | - Melvyn A Goodale
- Department of Psychology, Brain and Mind Institute, The University of Western Ontario, London, ON, Canada
| | - James T Enns
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Ozana A, Berman S, Ganel T. Grasping Weber's Law in a Virtual Environment: The Effect of Haptic Feedback. Front Psychol 2020; 11:573352. [PMID: 33329216 PMCID: PMC7710620 DOI: 10.3389/fpsyg.2020.573352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Recent findings suggest that the functional separation between vision-for-action and vision-for-perception does not generalize to situations in which virtual objects are used as targets. For instance, unlike actions toward real objects that violate Weber's law, a basic law of visual perception, actions toward virtual objects presented on flat-screens, or in remote virtual environments, obey to Weber's law. These results suggest that actions in virtual environments are performed in an inefficient manner and are subjected to perceptual effects. It is unclear, however, whether this inefficiency reflects extensive variation in the way in which visual information is processed in virtual environments or more local aspects related to the settings of the virtual environment. In the current study, we focused on grasping performance in a state-of-the-art virtual reality system that provides an accurate representation of the 3D space. Within this environment, we tested the effect of haptic feedback on grasping trajectories. Participants were asked to perform bimanual grasping movements toward the edges of virtual targets. In the haptic feedback condition, physical stimuli of matching dimensions were embedded in the virtual environment. Haptic feedback was not provided in the no-feedback condition. The results showed that grasping trajectories in the feedback, but not in the no-feedback condition, could be performed more efficiently, and evade the influence of Weber's law. These findings are discussed in relevance to previous literature on 2D and 3D grasping.
Collapse
Affiliation(s)
- Aviad Ozana
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Zlotowski Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sigal Berman
- Zlotowski Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tzvi Ganel
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Zlotowski Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
16
|
Consciously monitored grasping is vulnerable to perceptual intrusions. Conscious Cogn 2020; 85:103019. [DOI: 10.1016/j.concog.2020.103019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/09/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022]
|
17
|
Ozana A, Ganel T. A double dissociation between action and perception in bimanual grasping: evidence from the Ponzo and the Wundt-Jastrow illusions. Sci Rep 2020; 10:14665. [PMID: 32887921 PMCID: PMC7473850 DOI: 10.1038/s41598-020-71734-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/24/2020] [Indexed: 11/11/2022] Open
Abstract
Research on visuomotor control suggests that visually guided actions toward objects rely on functionally distinct computations with respect to perception. For example, a double dissociation between grasping and between perceptual estimates was reported in previous experiments that pit real against illusory object size differences in the context of the Ponzo illusion. While most previous research on the relation between action and perception focused on one-handed grasping, everyday visuomotor interactions also entail the simultaneous use of both hands to grasp objects that are larger in size. Here, we examined whether this double dissociation extends to bimanual movement control. In Experiment 1, participants were presented with different-sized objects embedded in the Ponzo Illusion. In Experiment 2, we tested whether the dissociation between perception and action extends to a different illusion, the Wundt-Jastrow illusion, which has not been previously used in grasping experiments. In both experiments, bimanual grasping trajectories reflected the differences in physical size between the objects; At the same time, perceptual estimates reflected the differences in illusory size between the objects. These results suggest that the double dissociation between action and perception generalizes to bimanual movement control. Unlike conscious perception, bimanual grasping movements are tuned to real-world metrics, and can potentially resist irrelevant information on relative size and depth.
Collapse
Affiliation(s)
- Aviad Ozana
- Department of Psychology, Ben-Gurion University of the Negev, 8410500, Beer-Sheva, Israel
| | - Tzvi Ganel
- Department of Psychology, Ben-Gurion University of the Negev, 8410500, Beer-Sheva, Israel.
| |
Collapse
|
18
|
Langridge RW, Marotta JJ. Grasping a 2D virtual target: The influence of target position and movement on gaze and digit placement. Hum Mov Sci 2020; 71:102625. [PMID: 32452441 DOI: 10.1016/j.humov.2020.102625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/06/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
While much has been learned about the visual pursuit and motor strategies used to intercept a moving object, less research has focused on the coordination of gaze and digit placement when grasping moving stimuli. Participants grasped 2D computer generated square targets that either encouraged placement of the index finger and thumb along the horizontal midline (Control targets) or had narrow "notches" in the top and bottom surfaces of the target, intended to discourage digit placement near the midline (Experimental targets). In Experiment 1, targets remained stationary at the left, middle, or right side of the screen. Gaze and digit placement were biased toward the closest side of non-central targets, and toward the midline of center targets. These locations were shifted rightward when grasping Experimental targets, suggesting participants prioritized visibility of the target. In Experiment 2, participants grasped horizontally translating targets at early, middle, or late stages of travel. Average gaze and digit placement were consistently positioned behind the moving target's horizontal midline when grasping. Gaze was directed farther behind the midline of Experimental targets, suggesting the absence of a flat central grasp location pulled participants' gaze toward the trailing edge. Participants placed their digits at positions closer to the horizontal midline of leftward moving targets, suggesting participants were compensating for the added mechanical constraints associated with grasping targets moving in a direction contralateral to the grasping hand. These results suggest participants minimize the effort associated with reaching to non-central targets by grasping the nearest side when the target is stationary, but grasp the trailing side of moving targets, even if this means placing the digits at locations on the far side of the target, potentially limiting visibility of the target.
Collapse
Affiliation(s)
- Ryan W Langridge
- Perception and Action Lab, Department of Psychology, 190 Dysart Rd, University of Manitoba, Winnipeg, MB R3T-2N2, Canada.
| | - Jonathan J Marotta
- Perception and Action Lab, Department of Psychology, 190 Dysart Rd, University of Manitoba, Winnipeg, MB R3T-2N2, Canada.
| |
Collapse
|
19
|
Smeets JBJ, van der Kooij K, Brenner E. A review of grasping as the movements of digits in space. J Neurophysiol 2019; 122:1578-1597. [DOI: 10.1152/jn.00123.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is tempting to describe human reach-to-grasp movements in terms of two, more or less independent visuomotor channels, one relating hand transport to the object’s location and the other relating grip aperture to the object’s size. Our review of experimental work questions this framework for reasons that go beyond noting the dependence between the two channels. Both the lack of effect of size illusions on grip aperture and the finding that the variability in grip aperture does not depend on the object’s size indicate that size information is not used to control grip aperture. An alternative is to describe grip formation as emerging from controlling the movements of the digits in space. Each digit’s trajectory when grasping an object is remarkably similar to its trajectory when moving to tap the same position on its own. The similarity is also evident in the fast responses when the object is displaced. This review develops a new description of the speed-accuracy trade-off for multiple effectors that is applied to grasping. The most direct support for the digit-in-space framework is that prism-induced adaptation of each digit’s tapping movements transfers to that digit’s movements when grasping, leading to changes in grip aperture for adaptation in opposite directions for the two digits. We conclude that although grip aperture and hand transport are convenient variables to describe grasping, treating grasping as movements of the digits in space is a more suitable basis for understanding the neural control of grasping.
Collapse
Affiliation(s)
- Jeroen B. J. Smeets
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Katinka van der Kooij
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eli Brenner
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Ganel T, Ozana A, Goodale MA. When perception intrudes on 2D grasping: evidence from Garner interference. PSYCHOLOGICAL RESEARCH 2019; 84:2138-2143. [PMID: 31201534 DOI: 10.1007/s00426-019-01216-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/08/2019] [Indexed: 11/28/2022]
Abstract
When participants reach out to pick up a real 3-D object, their grip aperture reflects the size of the object well before contact is made. At the same time, the classical psychophysical laws and principles of relative size and shape that govern visual perception do not appear to intrude into the control of such movements, which are instead tuned only to the relevant dimension for grasping. In contrast, accumulating evidence suggests that grasps directed at flat 2D objects are not immune to perceptual effects. Thus, in 2D but not 3D grasping, the aperture of the fingers has been shown to be affected by relative and contextual information about the size and shape of the target object. A notable example of this dissociation comes from studies of Garner interference, which signals holistic processing of shape. Previous research has shown that 3D grasping shows no evidence for Garner interference but 2D grasping does (Freud & Ganel, 2015). In a recent study published in this journal (Löhr-Limpens et al., 2019), participants were presented with 2D objects in a Garner paradigm. The pattern of results closely replicated the previously published results with 2D grasping. Unfortunately, the authors, who appear to be unaware the potential differences between 2D and 3D grasping, used their findings to draw an overgeneralized and unwarranted conclusion about the relation between 3D grasping and perception. In this short methodological commentary, we discuss current literature on aperture shaping during 2D grasping and suggest that researchers should play close attention to the nature of the target stimuli they use before drawing conclusions about visual processing for perception and action.
Collapse
Affiliation(s)
- Tzvi Ganel
- Psychology Department, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| | - Aviad Ozana
- Psychology Department, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Melvyn A Goodale
- The Brain and Mind Institute, The University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
21
|
Active visuomotor interactions with virtual objects on touchscreens adhere to Weber's law. PSYCHOLOGICAL RESEARCH 2019; 84:2144-2156. [PMID: 31203455 DOI: 10.1007/s00426-019-01210-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Recent findings suggest that the functional separation between vision-for-action and vision-for-perception does not generalize to situations in which two-dimensional (2D), virtual objects, are used as targets. For example, unlike grasping movements directed at real, three-dimensional (3D) objects, the trajectories of grasping movements directed at 2D objects adhere to the psychophysical principle of Weber's law, indicating relative and less efficient processing of their size. Such inefficiency could be attributed to the fact that everyday interactions with touchscreens do not usually entail grasping movements. It is possible, therefore, that more typical interactions with virtual objects, which involve active manipulation of their size or location on a touchscreen, could be performed efficiently and in an absolute manner, and would violate Weber's law. We examined this hypothesis in three experiments in which participants performed active interactions with virtual objects. In Experiment 1, participants made swiping gestures to move virtual objects across the touchscreen. In Experiment 2, participants touched the edges of virtual objects to enlarge their size. In Experiment 3, participants freely enlarged the size of virtual objects, without being required to touch their edges upon contact. In all experiments, the resolution of grip aperture decreased with the size of the target object, adhering to Weber's law. These results suggest that active interactions with 2D objects on touchscreens are not performed in a natural, absolute manner which characterize visuomotor control of real objects.
Collapse
|
22
|
Ozana A, Ganel T. Obeying the law: speed-precision tradeoffs and the adherence to Weber's law in 2D grasping. Exp Brain Res 2019; 237:2011-2021. [PMID: 31161415 DOI: 10.1007/s00221-019-05572-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/29/2019] [Indexed: 11/30/2022]
Abstract
Visually guided actions toward two-dimensional (2D) and three-dimensional (3D) objects show different patterns of adherence to Weber's law. In 3D grasping, Just Noticeable Differences (JNDs) do not scale with object size, violating Weber's law. Conversely, JNDs in 2D grasping increase with size, showing a pattern of scaler variability between aperture and JND, as predicted by Weber's law. In the current study, we tested whether such scaler variability in 2D grasping reflects genuine adherence to Weber's law. Alternatively, it could be potentially accounted for by a speed-precision tradeoff effect due to an increase in aperture velocity with size. In two experiments, we modified the relation between aperture velocity and size in 2D grasping and tested whether movement trajectories still adhere to Weber's law. In Experiment 1, we aimed to equate aperture velocities between different-sized objects by pre-adjusting the initial finger aperture to match the target's size. In Experiment 2, we reversed the relation between size and velocity by asking participants to hold their fingers wide open prior to grasp, resulting in faster velocities for smaller rather than for larger objects. The results of the two experiments showed that although aperture velocities did not increase with size, adherence to Weber's law was still maintained. These results indicate that the adherence to Weber's law during 2D grasping cannot be accounted for by a speed-precision tradeoff effect, but rather represents genuine reliance on relative, perceptually based computations in visuomotor interactions with 2D objects.
Collapse
Affiliation(s)
- Aviad Ozana
- Department of Psychology, Ben-Gurion University of the Negev, 8410500, Beer-Sheva, Israel
| | - Tzvi Ganel
- Department of Psychology, Ben-Gurion University of the Negev, 8410500, Beer-Sheva, Israel.
| |
Collapse
|
23
|
Freud E, Culham JC, Namdar G, Behrmann M. Object complexity modulates the association between action and perception in childhood. J Exp Child Psychol 2018; 179:56-72. [PMID: 30476695 DOI: 10.1016/j.jecp.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 11/17/2022]
Abstract
Vision for action and vision for perception both rely on shape representations derived within the visual system. Whether the same psychological and neural mechanisms underlie both forms of behavior remains hotly contested, and whether this arrangement is equivalent in adults and children is controversial as well. To address these outstanding questions, we used an established psychophysical heuristic, Weber's law, which, in adults, has typically been observed for perceptual judgment tasks but not for actions such as grasping. We examined whether this perception-action dissociation in Weber's law was present in childhood as it is in adulthood and whether it was modulated by stimulus complexity. Two major results emerged. First, although adults evinced visuomotor behavior that violated Weber's law, young children (4.5-6.5 years) adhered to Weber's law when they grasped complex objects ("Efron" blocks), which varied along both the graspable and non-graspable dimensions to maintain a constant surface area, but not when they grasped simple objects, which varied only along the graspable dimension. Second, adherence to Weber's law was found across all ages in the context of a perceptual task. Together, these findings suggest that, in early childhood, visuomotor representations are modulated by perceptual representations, particularly when a refined description of object shape is needed.
Collapse
Affiliation(s)
- Erez Freud
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada; Vision: Science to Applications (VISTA) Program, York University, Toronto, Ontario M3J 1P3, Canada; Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Jody C Culham
- Department of Psychology, University of Western Ontario, London, Ontario N6A 3K7, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada; Neuroscience Program, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Gal Namdar
- Department of Psychology, Ben-Gurion University of the Negev, Beersheba 8410501, Israel
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
24
|
Grasping trajectories in a virtual environment adhere to Weber’s law. Exp Brain Res 2018; 236:1775-1787. [DOI: 10.1007/s00221-018-5265-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
25
|
|
26
|
Afgin O, Sagi N, Nisky I, Ganel T, Berman S. Visuomotor Resolution in Telerobotic Grasping with Transmission Delays. Front Robot AI 2017. [DOI: 10.3389/frobt.2017.00054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|