1
|
Toader C, Tataru CP, Florian IA, Covache-Busuioc RA, Bratu BG, Glavan LA, Bordeianu A, Dumitrascu DI, Ciurea AV. Cognitive Crescendo: How Music Shapes the Brain's Structure and Function. Brain Sci 2023; 13:1390. [PMID: 37891759 PMCID: PMC10605363 DOI: 10.3390/brainsci13101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Music is a complex phenomenon with multiple brain areas and neural connections being implicated. Centuries ago, music was discovered as an efficient modality for psychological status enrichment and even for the treatment of multiple pathologies. Modern research investigations give a new avenue for music perception and the understanding of the underlying neurological mechanisms, using neuroimaging, especially magnetic resonance imaging. Multiple brain areas were depicted in the last decades as being of high value for music processing, and further analyses in the neuropsychology field uncover the implications in emotional and cognitive activities. Music listening improves cognitive functions such as memory, attention span, and behavioral augmentation. In rehabilitation, music-based therapies have a high rate of success for the treatment of depression and anxiety and even in neurological disorders such as regaining the body integrity after a stroke episode. Our review focused on the neurological and psychological implications of music, as well as presenting the significant clinical relevance of therapies using music.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (B.-G.B.); (L.A.G.); (A.B.); (D.-I.D.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (B.-G.B.); (L.A.G.); (A.B.); (D.-I.D.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (B.-G.B.); (L.A.G.); (A.B.); (D.-I.D.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (B.-G.B.); (L.A.G.); (A.B.); (D.-I.D.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (B.-G.B.); (L.A.G.); (A.B.); (D.-I.D.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (B.-G.B.); (L.A.G.); (A.B.); (D.-I.D.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (B.-G.B.); (L.A.G.); (A.B.); (D.-I.D.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
2
|
Izen SC, Cassano-Coleman RY, Piazza EA. Music as a window into real-world communication. Front Psychol 2023; 14:1012839. [PMID: 37496799 PMCID: PMC10368476 DOI: 10.3389/fpsyg.2023.1012839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 06/06/2023] [Indexed: 07/28/2023] Open
Abstract
Communication has been studied extensively in the context of speech and language. While speech is tremendously effective at transferring ideas between people, music is another communicative mode that has a unique power to bring people together and transmit a rich tapestry of emotions, through joint music-making and listening in a variety of everyday contexts. Research has begun to examine the behavioral and neural correlates of the joint action required for successful musical interactions, but it has yet to fully account for the rich, dynamic, multimodal nature of musical communication. We review the current literature in this area and propose that naturalistic musical paradigms will open up new ways to study communication more broadly.
Collapse
|
3
|
Roman IR, Roman AS, Kim JC, Large EW. Hebbian learning with elasticity explains how the spontaneous motor tempo affects music performance synchronization. PLoS Comput Biol 2023; 19:e1011154. [PMID: 37285380 DOI: 10.1371/journal.pcbi.1011154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
A musician's spontaneous rate of movement, called spontaneous motor tempo (SMT), can be measured while spontaneously playing a simple melody. Data shows that the SMT influences the musician's tempo and synchronization. In this study we present a model that captures these phenomena. We review the results from three previously-published studies: solo musical performance with a pacing metronome tempo that is different from the SMT, solo musical performance without a metronome at a tempo that is faster or slower than the SMT, and duet musical performance between musicians with matching or mismatching SMTs. These studies showed, respectively, that the asynchrony between the pacing metronome and the musician's tempo grew as a function of the difference between the metronome tempo and the musician's SMT, musicians drifted away from the initial tempo toward the SMT, and the absolute asynchronies were smaller if musicians had matching SMTs. We hypothesize that the SMT constantly acts as a pulling force affecting musical actions at a tempo different from a musician's SMT. To test our hypothesis, we developed a model consisting of a non-linear oscillator with Hebbian tempo learning and a pulling force to the model's spontaneous frequency. While the model's spontaneous frequency emulates the SMT, elastic Hebbian learning allows for frequency learning to match a stimulus' frequency. To test our hypothesis, we first fit model parameters to match the data in the first of the three studies and asked whether this same model would explain the data the remaining two studies without further tuning. Results showed that the model's dynamics allowed it to explain all three experiments with the same set of parameters. Our theory offers a dynamical-systems explanation of how an individual's SMT affects synchronization in realistic music performance settings, and the model also enables predictions about performance settings not yet tested.
Collapse
Affiliation(s)
- Iran R Roman
- Center for Computer Research in Music and Acoustics, Department of Music, Stanford University, Stanford, California, United States of America
| | - Adrian S Roman
- Department of Mathematics, University of California Davis, Davis, California, United States of America
| | - Ji Chul Kim
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Edward W Large
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Physics, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
4
|
Klein L, Wood EA, Bosnyak D, Trainor LJ. Follow the sound of my violin: Granger causality reflects information flow in sound. Front Hum Neurosci 2022; 16:982177. [DOI: 10.3389/fnhum.2022.982177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Recent research into how musicians coordinate their expressive timing, phrasing, articulation, dynamics, and other stylistic characteristics during performances has highlighted the role of predictive processes, as musicians must anticipate how their partners will play in order to be together. Several studies have used information flow techniques such as Granger causality to show that upcoming movements of a musician can be predicted from immediate past movements of fellow musicians. Although musicians must move to play their instruments, a major goal of music making is to create a joint interpretation through the sounds they produce. Yet, information flow techniques have not been applied previously to examine the role that fellow musicians' sound output plays in these predictive processes and whether this changes as they learn to play together. In the present experiment, we asked professional violinists to play along with recordings of two folk pieces, each eight times in succession, and compared the amplitude envelopes of their performances with those of the recordings using Granger causality to measure information flow and cross-correlation to measure similarity and synchronization. In line with our hypotheses, our measure of information flow was higher from the recordings to the performances than vice versa, and decreased as the violinists became more familiar with the recordings over trials. This decline in information flow is consistent with a gradual shift from relying on auditory cues to predict the recording to relying on an internally-based (learned) model built through repetition. There was also evidence that violinists became more synchronized with the recordings over trials. These results shed light on the planning and learning processes involved in the aligning of expressive intentions in group music performance and lay the groundwork for the application of Granger causality to investigate information flow through sound in more complex musical interactions.
Collapse
|
5
|
Liu T, Schultz BG, Dai D, Liu C, Lense MD. Parent-Child Nonverbal Engagement During Read Versus Sung Book-Sharing in Preschoolers with and without ASD. PSYCHOLOGY OF MUSIC 2022; 50:1721-1739. [PMID: 36381385 PMCID: PMC9648075 DOI: 10.1177/03057356211058781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Providing natural opportunities that scaffold interpersonal engagement is important for supporting social interactions for young children with Autism spectrum disorder (ASD). Musical activities are often motivating, familiar, and predictable, and may support both children and their interaction partners by providing opportunities for shared social engagement. We assessed multiple facets of nonverbal social engagement - child and caregiver visual attention and interpersonal movement coordination - during musical (song) and non-musical (picture) book-sharing contexts in caregiver-child dyads of preschoolers with (n = 13) and without (n = 16) ASD. Overall, children with ASD demonstrated reduced visual attention during the book sharing activity, as well as reduced movement coordination with their caregivers, compared to children with typical development. Children in both diagnostic groups, as well as caregivers, demonstrated greater visual attention (gaze toward the activity and/or social partner) during song books compared to picture books. Visual attention behavior was correlated between children and caregivers in the ASD group but only in the song book condition. Findings highlight the importance of considering how musical contexts impact the behavior of both partners in the interaction. Musical activities may support social engagement by modulating the behavior of both children and caregivers.
Collapse
Affiliation(s)
- Talia Liu
- Department of Otolaryngology–Head and Neck Surgery, Vanderbilt University Medical Center
| | | | - Danielle Dai
- Department of Otolaryngology–Head and Neck Surgery, Vanderbilt University Medical Center
| | - Christina Liu
- Department of Otolaryngology–Head and Neck Surgery, Vanderbilt University Medical Center
| | - Miriam D. Lense
- Department of Otolaryngology–Head and Neck Surgery, Vanderbilt University Medical Center
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center
- The Curb Center for Art, Enterprise, and Public Policy, Vanderbilt University
| |
Collapse
|
6
|
Fink LK, Alexander PC, Janata P. The Groove Enhancement Machine (GEM): A Multi-Person Adaptive Metronome to Manipulate Sensorimotor Synchronization and Subjective Enjoyment. Front Hum Neurosci 2022; 16:916551. [PMID: 35782041 PMCID: PMC9240653 DOI: 10.3389/fnhum.2022.916551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022] Open
Abstract
Synchronization of movement enhances cooperation and trust between people. However, the degree to which individuals can synchronize with each other depends on their ability to perceive the timing of others’ actions and produce movements accordingly. Here, we introduce an assistive device—a multi-person adaptive metronome—to facilitate synchronization abilities. The adaptive metronome is implemented on Arduino Uno circuit boards, allowing for negligible temporal latency between tapper input and adaptive sonic output. Across five experiments—two single-tapper, and three group (four tapper) experiments, we analyzed the effects of metronome adaptivity (percent correction based on the immediately preceding tap-metronome asynchrony) and auditory feedback on tapping performance and subjective ratings. In all experiments, tapper synchronization with the metronome was significantly enhanced with 25–50% adaptivity, compared to no adaptation. In group experiments with auditory feedback, synchrony remained enhanced even at 70–100% adaptivity; without feedback, synchrony at these high adaptivity levels returned to near baseline. Subjective ratings of being in the groove, in synchrony with the metronome, in synchrony with others, liking the task, and difficulty all reduced to one latent factor, which we termed enjoyment. This same factor structure replicated across all experiments. In predicting enjoyment, we found an interaction between auditory feedback and metronome adaptivity, with increased enjoyment at optimal levels of adaptivity only with auditory feedback and a severe decrease in enjoyment at higher levels of adaptivity, especially without feedback. Exploratory analyses relating person-level variables to tapping performance showed that musical sophistication and trait sadness contributed to the degree to which an individual differed in tapping stability from the group. Nonetheless, individuals and groups benefitted from adaptivity, regardless of their musical sophistication. Further, individuals who tapped less variably than the group (which only occurred ∼25% of the time) were more likely to feel “in the groove.” Overall, this work replicates previous single person adaptive metronome studies and extends them to group contexts, thereby contributing to our understanding of the temporal, auditory, psychological, and personal factors underlying interpersonal synchrony and subjective enjoyment during sensorimotor interaction. Further, it provides an open-source tool for studying such factors in a controlled way.
Collapse
Affiliation(s)
- Lauren K. Fink
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, United States
- Department of Music, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- Max Planck – NYU Center for Language, Music, and Emotion (CLaME), Frankfurt am Main, Germany
- *Correspondence: Lauren K. Fink,
| | - Prescott C. Alexander
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, United States
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Petr Janata
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
- Petr Janata,
| |
Collapse
|
7
|
Toiviainen P, Hartmann M. Analyzing multidimensional movement interaction with generalized cross-wavelet transform. Hum Mov Sci 2021; 81:102894. [PMID: 34798445 DOI: 10.1016/j.humov.2021.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Humans are able to synchronize with musical events whilst coordinating their movements with others. Interpersonal entrainment phenomena, such as dance, involve multiple body parts and movement directions. Along with being multidimensional, dance movement interaction is plurifrequential, since it can occur at different frequencies simultaneously. Moreover, it is prone to nonstationarity, due to, for instance, displacements around the dance floor. Various methodological approaches have been adopted for the study of human entrainment, but only spectrogram-based techniques allow for an integral analysis thereof. This article proposes an alternative approach based upon the cross-wavelet transform, a state-of-the-art technique for nonstationary and plurifrequential analysis of univariate interaction. The presented approach generalizes the cross-wavelet transform to multidimensional signals. It allows to identify, for different frequencies of movement, estimates of interaction and leader-follower dynamics across body parts and movement directions. Further, the generalized cross-wavelet transform can be used to quantify the frequency-wise contribution of individual body parts and movement directions to overall movement synchrony. Since both in- and anti-phase relationships are dominant modes of coordination, the proposed implementation ignores whether movements are identical or opposite in phase. The article provides a thorough mathematical description of the method and includes proofs of its invariance under translation, rotation, and reflection. Finally, its properties and performance are illustrated via four examples using simulated data and behavioral data collected through a mirror game task and a free dance movement task.
Collapse
Affiliation(s)
- Petri Toiviainen
- Department of Music, Art and Culture Studies, P.O.Box 35(M), 40014, University of Jyväskylä, Finland; Finnish Centre of Excellence in Music, Mind, Body and Brain, P.O. Box 35(M), 40014, University of Jyväskylä, Finland.
| | - Martín Hartmann
- Department of Music, Art and Culture Studies, P.O.Box 35(M), 40014, University of Jyväskylä, Finland; Finnish Centre of Excellence in Music, Mind, Body and Brain, P.O. Box 35(M), 40014, University of Jyväskylä, Finland.
| |
Collapse
|
8
|
A simple and cheap setup for timing tapping responses synchronized to auditory stimuli. Behav Res Methods 2021; 54:712-728. [PMID: 34346040 DOI: 10.3758/s13428-021-01653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/08/2022]
Abstract
Measuring human capabilities to synchronize in time, adapt to perturbations to timing sequences, or reproduce time intervals often requires experimental setups that allow recording response times with millisecond precision. Most setups present auditory stimuli using either MIDI devices or specialized hardware such as Arduino and are often expensive or require calibration and advanced programming skills. Here, we present in detail an experimental setup that only requires an external sound card and minor electronic skills, works on a conventional PC, is cheaper than alternatives, and requires almost no programming skills. It is intended for presenting any auditory stimuli and recording tapping response times with within 2-ms precision (up to - 2 ms lag). This paper shows why desired accuracy in recording response times against auditory stimuli is difficult to achieve in conventional computer setups, presents an experimental setup to overcome this, and explains in detail how to set it up and use the provided code. Finally, the code for analyzing the recorded tapping responses was evaluated, showing that no spurious or missing events were found in 94% of the analyzed recordings.
Collapse
|
9
|
Schiavio A, Stupacher J, Xypolitaki E, Parncutt R, Timmers R. Musical novices perform with equal accuracy when learning to drum alone or with a peer. Sci Rep 2021; 11:12422. [PMID: 34127707 PMCID: PMC8203685 DOI: 10.1038/s41598-021-91820-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
The capacity of expert musicians to coordinate with each other when playing in ensembles or rehearsing has been widely investigated. However, little is known about the ability of novices to achieve satisfactory coordinated behaviour when making music together. We tested whether performance accuracy differs when novices play a newly learned drumming pattern with another musically untrained individual (duo group) or alone (solo group). A comparison between musical outcomes of the two groups revealed no significant differences concerning performative accuracy. An additional, exploratory examination of the degree of mutual influence between members of the duos suggested that they reciprocally affected each other when playing together. These findings indicate that a responsive auditory feedback involving surprises introduced by human errors could be part of pedagogical settings that employ repetition or imitation, thereby facilitating coordination among novices in a less prescribed fashion.
Collapse
Affiliation(s)
- Andrea Schiavio
- Centre for Systematic Musicology, University of Graz, Glacisstraße 27a, 8010, Graz, Austria.
| | - Jan Stupacher
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Elli Xypolitaki
- Department of Music, The University of Sheffield, Sheffield, UK
| | - Richard Parncutt
- Centre for Systematic Musicology, University of Graz, Glacisstraße 27a, 8010, Graz, Austria
| | - Renee Timmers
- Department of Music, The University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Braun Janzen T, Schaffert N, Schlüter S, Ploigt R, Thaut MH. The effect of perceptual-motor continuity compatibility on the temporal control of continuous and discontinuous self-paced rhythmic movements. Hum Mov Sci 2021; 76:102761. [PMID: 33485154 DOI: 10.1016/j.humov.2021.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
One of the questions yet to be fully understood is to what extent the properties of the sensory and the movement information interact to facilitate sensorimotor integration. In this study, we examined the relative contribution of the continuity compatibility between motor goals and their sensory outcomes in timing variability. The variability of inter-response intervals was measured in a synchronization-continuation paradigm. Participants performed two repetitive movement tasks whereby they drew circles either using continuous or discontinuous self-paced movements while receiving discrete or continuous auditory feedback. The results demonstrated that the effect of perceptual-motor continuity compatibility may be limited in self-paced auditory-motor synchronization as timing variability was not significantly influenced by the continuity of the feedback or the continuity compatibility between feedback and the movement produced. In addition, results suggested that the presence of salient perceptual events marking the completion of the time intervals elicited a common timing process in both continuous and discontinuous circle drawing, regardless of the continuity of the auditory feedback. These findings open a new line of investigation into the role of the discriminability and reliability of the event-based information in determining the nature of the timing mechanisms engaged in continuous and discontinuous self-paced rhythmic movements.
Collapse
Affiliation(s)
- Thenille Braun Janzen
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC, Sao Bernardo do Campo, Brazil.
| | - Nina Schaffert
- Department of Movement and Training Science, Institute for Human Movement Science, University of Hamburg, Hamburg, Germany; BeSB GmbH Berlin, Sound Engineering, Berlin, Germany
| | | | - Roy Ploigt
- BeSB GmbH Berlin, Sound Engineering, Berlin, Germany
| | - Michael H Thaut
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Music and Metronomes Differentially Impact Motor Timing in People with and without Parkinson's Disease: Effects of Slow, Medium, and Fast Tempi on Entrainment and Synchronization Performances in Finger Tapping, Toe Tapping, and Stepping on the Spot Tasks. PARKINSONS DISEASE 2019; 2019:6530838. [PMID: 31531220 PMCID: PMC6721399 DOI: 10.1155/2019/6530838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/21/2019] [Accepted: 06/26/2019] [Indexed: 11/18/2022]
Abstract
Introduction Rhythmic auditory stimulation (RAS) has successfully helped regulate gait for people with Parkinson's disease. However, the way in which different auditory cues and types of movements affect entrainment, synchronization, and pacing stability has not been directly compared in different aged people with and without Parkinson's. Therefore, this study compared music and metronomes (cue types) in finger tapping, toe tapping, and stepping on the spot tasks to explore the potential of RAS training for general use. Methods Participants (aged 18–78 years) included people with Parkinson's (n = 30, Hoehn and Yahr mean = 1.78), older (n = 26), and younger adult controls (n = 36), as age may effect motor timing. Timed motor production was assessed using an extended synchronization-continuation task in cue type and movement conditions for slow, medium, and fast tempi (81, 116, and 140 mean beats per minute, respectively). Results Analyses revealed main effects of cue and movement type but no between-group interactions, suggesting no differences in motor timing between people with Parkinson's and controls. Music supported entrainment better than metronomes in medium and fast tempi, and stepping on the spot enabled better entrainment and less asynchrony, as well as more stable pacing compared to tapping in medium and fast tempi. Age was not confirmed as a factor, and no differences were observed in slow tempo. Conclusion This is the first study to directly compare how different external auditory cues and movement types affect motor timing. The music and the stepping enabled participants to maintain entrainment once the external pacing cue ceased, suggesting endogenous mechanisms continued to regulate the movements. The superior performance of stepping on the spot suggests embodied entrainment can occur during continuous movement, and this may be related to emergent timing in tempi above 600 ms. These findings can be applied therapeutically to manage and improve adaptive behaviours for people with Parkinson's.
Collapse
|