1
|
Hansen CL, Pelegri F. Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction. Front Cell Dev Biol 2021; 9:730332. [PMID: 34604230 PMCID: PMC8481613 DOI: 10.3389/fcell.2021.730332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The differentiation of primordial germ cells (PGCs) occurs during early embryonic development and is critical for the survival and fitness of sexually reproducing species. Here, we review the two main mechanisms of PGC specification, induction, and preformation, in the context of four model vertebrate species: mouse, axolotl, Xenopus frogs, and zebrafish. We additionally discuss some notable molecular characteristics shared across PGC specification pathways, including the shared expression of products from three conserved germline gene families, DAZ (Deleted in Azoospermia) genes, nanos-related genes, and DEAD-box RNA helicases. Then, we summarize the current state of knowledge of the distribution of germ cell determination systems across kingdom Animalia, with particular attention to vertebrate species, but include several categories of invertebrates - ranging from the "proto-vertebrate" cephalochordates to arthropods, cnidarians, and ctenophores. We also briefly highlight ongoing investigations and potential lines of inquiry that aim to understand the evolutionary relationships between these modes of specification.
Collapse
Affiliation(s)
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
2
|
Identification and expression analysis of Dazl homologue in Cynops cyanurus. ZYGOTE 2021; 30:221-226. [PMID: 34315561 DOI: 10.1017/s0967199421000538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Dazl (deleted in azoospermia-like) gene encodes an RNA-binding protein containing an RNA recognition motif (RRM) and a DAZ motif. Dazl is essential for gametogenesis in vertebrates. In this study, we report the cloning of Dazl cDNA from Cynops cyanurus. Ccdazl mRNA showed a germline-specific expression pattern as expected. Ccdazl expression gradually decreased during oogenesis, suggesting that it may be involved in oocyte development. Phylogenetic analysis revealed that the Ccdazl protein shares conserved motifs/domains with Dazl proteins from other species. Cloning of Ccdazl provides a new tool to carry out comparative studies of germ cell development in amphibians.
Collapse
|
3
|
Liu X, Tang Z, Zhang P, Zhu X, Chu Z, Li W, Xu H. Identification and characterization of DAZ family genes in Chinese soft-shell turtle (Pelodiscus sinensis). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:258-268. [PMID: 31531931 DOI: 10.1002/jez.b.22900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 11/12/2022]
Abstract
The DAZ family genes, including boule, dazl, and daz, play pivotal roles in germ cell development and differentiation during gametogenesis in organisms, which have been widely studied in mammals, reptiles, or fishes. Dazl was bisexual expressed in both mitotic and meiotic germ cells, daz was male premeiotic expressed, whereas boule exhibits largely in unisexual meiotic germ cells but bisexual expression in several fishes, however, there is lack of report on boule gene and the evolutionary conservation and divergence of dazl and boule in reptile. Here, both boule and dazl genes were characterized in Pelodiscus sinensis. The quantitative real-time polymerase chain reaction analysis showed that boule and dazl were abundantly expressed in adult ovary and testis but barely in somatic tissues, such as heart, brain, liver, spleen, and kidney. Moreover, through fluorescent in situ hybridization, bisexual and germline-specific expression profiles of boule and dazl messenger RNAs (mRNAs) were demonstrated. Boule mRNA exhibited a maximal meiotic expression in spermatocytes, and a relatively low, but distinct expression in oocytes at meiotic stages in P. sinensis, similar to the expression profile of human boule in ovary. However, dazl mRNA was richly distributed in male germ cells at almost all stages during spermatogenesis, and predominantly expressed in most of stages of oocytes including premeiotic and meiotic stages. These findings imply that boule and dazl would play distinct roles in the sexual differentiation of germ cells during turtle gametogenesis, and the major functions of daz family members involved in germ cell differentiation would be conserved across species including P. sinensis.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhoukai Tang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Fishery School of Zhejiang Ocean University, Zhoushan, China
| | - Piaoyi Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xinping Zhu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhangjie Chu
- Fishery School of Zhejiang Ocean University, Zhoushan, China
| | - Wei Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongyan Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
4
|
Matsunami M, Suzuki M, Haramoto Y, Fukui A, Inoue T, Yamaguchi K, Uchiyama I, Mori K, Tashiro K, Ito Y, Takeuchi T, Suzuki KIT, Agata K, Shigenobu S, Hayashi T. A comprehensive reference transcriptome resource for the Iberian ribbed newt Pleurodeles waltl, an emerging model for developmental and regeneration biology. DNA Res 2019; 26:217-229. [PMID: 31006799 PMCID: PMC6589553 DOI: 10.1093/dnares/dsz003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
Urodele newts have unique biological properties, notably including prominent regeneration ability. The Iberian ribbed newt, Pleurodeles waltl, is a promising model amphibian distinguished by ease of breeding and efficient transgenic and genome editing methods. However, limited genetic information is available for P. waltl. We conducted an intensive transcriptome analysis of P. waltl using RNA-sequencing to build and annotate gene models. We generated 1.2 billion Illumina reads from a wide variety of samples across 12 different tissues/organs, unfertilized egg, and embryos at eight different developmental stages. These reads were assembled into 1,395,387 contigs, from which 202,788 non-redundant ORF models were constructed. The set is expected to cover a large fraction of P. waltl protein-coding genes, as confirmed by BUSCO analysis, where 98% of universal single-copy orthologs were identified. Ortholog analyses revealed the gene repertoire evolution of urodele amphibians. Using the gene set as a reference, gene network analysis identified regeneration-, developmental-stage-, and tissue-specific co-expressed gene modules. Our transcriptome resource is expected to enhance future research employing this emerging model animal for regeneration research as well as for investigations in other areas including developmental biology, stem cell biology, and cancer research. These data are available via our portal website, iNewt (http://www.nibb.ac.jp/imori/main/).
Collapse
Affiliation(s)
- Masatoshi Matsunami
- Department of Advanced Genomics and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Okinawa, Japan
| | - Miyuki Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Yoshikazu Haramoto
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Akimasa Fukui
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-Ku, Tokyo, Japan
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-Ku, Tokyo, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Ikuo Uchiyama
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kazuki Mori
- Computational Bio Big-Data Open Innovation Lab. (CBBD-OIL), Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Shinjuku-Ku, Tokyo, Japan
| | - Kosuke Tashiro
- Laboratory of Molecular Gene Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takashi Takeuchi
- Department of Biomedical Sciences, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Ken-ichi T Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan
- Center for the Development of New Model Organisms, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyokazu Agata
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-Ku, Tokyo, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Toshinori Hayashi
- Department of Biomedical Sciences, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
5
|
Erler P, Sweeney A, Monaghan JR. Regulation of Injury-Induced Ovarian Regeneration by Activation of Oogonial Stem Cells. Stem Cells 2016; 35:236-247. [PMID: 28028909 DOI: 10.1002/stem.2504] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 01/14/2023]
Abstract
Some animals have the ability to generate large numbers of oocytes throughout life. This raises the question whether persistent adult germline stem cell populations drive continuous oogenesis and whether they are capable of mounting a regenerative response after injury. Here we demonstrate the presence of adult oogonial stem cells (OSCs) in the adult axolotl salamander ovary and show that ovarian injury induces OSC activation and functional regeneration of the ovaries to reproductive capability. Cells that have morphological similarities to germ cells were identified in the developing and adult ovaries via histological analysis. Genes involved in germ cell maintenance including Vasa, Oct4, Sox2, Nanog, Bmp15, Piwil1, Piwil2, Dazl, and Lhx8 were expressed in the presumptive OSCs. Colocalization of Vasa protein with H3 mitotic marker showed that both oogonial and spermatogonial adult stem cells were mitotically active. Providing evidence of stemness and viability of adult OSCs, enhanced green fluorescent protein (EGFP) adult OSCs grafted into white juvenile host gonads gave rise to EGFP OSCs, and oocytes. Last, the axolotl ovaries completely regenerated after partial ovariectomy injury. During regeneration, OSC activation resulted in rapid differentiation into new oocytes, which was demonstrated by Vasa+ /BrdU+ coexpression. Furthermore, follicle cell proliferation promoted follicle maturation during ovarian regeneration. Overall, these results show that adult oogenesis occurs via proliferation of endogenous OSCs in a tetrapod and mediates ovarian regeneration. This study lays the foundations to elucidate mechanisms of ovarian regeneration that will assist regenerative medicine in treating premature ovarian failure and reduced fertility. Stem Cells 2017;35:236-247.
Collapse
Affiliation(s)
- Piril Erler
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Alexandra Sweeney
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Škugor A, Tveiten H, Johnsen H, Andersen Ø. Multiplicity of Buc copies in Atlantic salmon contrasts with loss of the germ cell determinant in primates, rodents and axolotl. BMC Evol Biol 2016; 16:232. [PMID: 27784263 PMCID: PMC5080839 DOI: 10.1186/s12862-016-0809-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/14/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The primordial germ cells (PGCs) giving rise to gametes are determined by two different mechanisms in vertebrates. While the germ cell fate in mammals and salamanders is induced by zygotic signals, maternally delivered germ cell determinants specify the PGCs in birds, frogs and teleost fish. Assembly of the germ plasm in the oocyte is organized by the single Buc in zebrafish, named Velo1 in Xenopus, and by Oskar in Drosophila. Secondary loss of oskar in several insect lineages coincides with changes in germline determination strategies, while the presence of buc in mammals suggests functions not associated with germline formation. RESULTS To clarify the evolutionary history of buc we searched for the gene in genomes available from various chordates. No buc sequence was found in lamprey and chordate invertebrates, while the gene was identified in a conserved syntenic region in elephant shark, spotted gar, teleosts, Comoran coelacanth and most tetrapods. Rodents have probably lost the buc gene, while a premature translation stop was found in primates and in Mexican axolotl lacking germ plasm. In contrast, several buc and buc-like (bucL) paralogs were identified in the teleosts examined, including zebrafish, and the tetraploid genome of Atlantic salmon harbors seven buc and bucL genes. Maternal salmon buc1a, buc2a and buc2b mRNAs were abundant in unfertilized eggs together with dnd and vasa mRNAs. Immunostained salmon Buc1a was restricted to cleavage furrows in 4-cell stage embryos similar to a fluorescent zebrafish Buc construct injected in salmon embryos. Salmon Buc1a and Buc2a localized together with DnD, Vasa and Dazl within the Balbiani body of early oocytes. CONCLUSIONS Buc probably originated more than 400 million years ago and might have played an ancestral role in assembling germ plasm. Functional redundancy or subfunctionalization of salmon Buc paralogs in germline formation is suggested by the maternally inherited mRNAs of three salmon buc genes, the localized Buc1a in the cleavage furrows and the distribution of Buc1a and Buc2a in the Balbiani body during oogenesis. The extra-ovarian expression of salmon buc genes and the presence of a second zebrafish bucL gene suggest additional functions not related to germ cell specification.
Collapse
Affiliation(s)
- Adrijana Škugor
- Norwegian University of Life Sciences (NMBU), PO Box 5003, N-1430, Ås, Norway
| | | | | | - Øivind Andersen
- Norwegian University of Life Sciences (NMBU), PO Box 5003, N-1430, Ås, Norway. .,Nofima, PO Box 5010, N-1430, Ås, Norway.
| |
Collapse
|
7
|
Dazl is a critical player for primordial germ cell formation in medaka. Sci Rep 2016; 6:28317. [PMID: 27328644 PMCID: PMC4916430 DOI: 10.1038/srep28317] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/01/2016] [Indexed: 11/27/2022] Open
Abstract
The DAZ family genes boule, daz and dazl have conserved functions in primordial germ cell (PGC) migration, germ stem cell proliferation, differentiation and meiosis progression. It has remained unknown whether this family is required for PGC formation in developing embryos. Our recent study in the fish medaka (Oryzias latipes) has defined dnd as the critical PGC specifier and predicted the presence of additional factors essential for PGC formation. Here we report that dazl is a second key player for medaka PGC formation. Dazl knockdown did not prevent PGC formation even in the absence of normal somatic structures. It turned out that a high level of Dazl protein was maternally supplied and persisted until gastrulation, and hardly affected by two antisense morpholino oligos targeting the dazl RNA translation. Importantly, microinjection of a Dazl antibody remarkably reduced the number of PGCs and even completely abolished PGC formation without causing detectable somatic abnormality. Therefore, medaka PGC formation requires the Dazl protein as maternal germ plasm component, offering first evidence that dazl is a critical player in PGC formation in vivo. Our results demonstrate that antibody neutralization is a powerful tool to study the roles of maternal protein factors in PGC development in vivo.
Collapse
|
8
|
Janssenswillen S, Willaert B, Treer D, Vandebergh W, Bossuyt F, Van Bocxlaer I. High pheromone diversity in the male cheek gland of the red-spotted newt Notophthalmus viridescens (Salamandridae). BMC Evol Biol 2015; 15:54. [PMID: 25888438 PMCID: PMC4379952 DOI: 10.1186/s12862-015-0333-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/09/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Male salamanders (Urodela) often make use of pheromones that are produced in sexually dimorphic glands to persuade the female into courtship and mating. The mental gland of lungless salamanders (Plethodontidae) and dorsal cloacal glands (or abdominal glands) of newts (Salamandridae) have been particularly well studied in that respect. In both families, sodefrin precursor-like factor (SPF) proteins have been identified as major components of the courtship pheromone system. However, similar to plethodontids, some newts also make use of subtle head glands during courtship, but few pheromones have been characterized from such structures. Males of red-spotted newts (Notophthalmus viridescens, Salamandridae) have both cloacal and cheek (genial) glands, and are known to apply secretions to the female's nose by both tail-fanning and cheek-rubbing. Here we combined transcriptomic and phylogenetic analyses to investigate the presence, diversity and evolution of SPF proteins in the cloacal and cheek glands of this species. RESULTS Our analyses indicate that the cheek glands of male N. viridescens produce a similar amount and diversity of SPF isoforms as the cloacal glands in this species. Expression in other tissues was much lower, suggesting that both male-specific courtship glands secrete SPF pheromones during courtship. Our phylogenetic analyses show that N. viridescens expresses a combination of isoforms that stem from four highly diverged evolutionary lineages of SPF variants, that together form a basis for the broad diversity of SPF precursors in the breeding glands. CONCLUSIONS The similar SPF expression of cheek and cloacal glands suggests that this protein family is used for pheromone signalling through cheek rubbing in the red-spotted newt. Since several male salamandrids in other genera have comparable head glands, SPF application via other glands than the cloacal glands may be more widespread than currently appreciated in salamandrids.
Collapse
Affiliation(s)
- Sunita Janssenswillen
- Biology Department, Amphibian Evolution Lab, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Bert Willaert
- Biology Department, Amphibian Evolution Lab, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Dag Treer
- Biology Department, Amphibian Evolution Lab, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Wim Vandebergh
- Biology Department, Amphibian Evolution Lab, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Franky Bossuyt
- Biology Department, Amphibian Evolution Lab, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Ines Van Bocxlaer
- Biology Department, Amphibian Evolution Lab, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium.
| |
Collapse
|
9
|
Chatfield J, O'Reilly MA, Bachvarova RF, Ferjentsik Z, Redwood C, Walmsley M, Patient R, Loose M, Johnson AD. Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos. Development 2014; 141:2429-40. [PMID: 24917499 PMCID: PMC4050694 DOI: 10.1242/dev.105346] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/22/2014] [Indexed: 01/18/2023]
Abstract
A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates.
Collapse
Affiliation(s)
- Jodie Chatfield
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Marie-Anne O'Reilly
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Rosemary F Bachvarova
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Zoltan Ferjentsik
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Catherine Redwood
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Maggie Walmsley
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Roger Patient
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Mathew Loose
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Andrew D Johnson
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
10
|
Maternally localized germ plasm mRNAs and germ cell/stem cell formation in the cnidarian Clytia. Dev Biol 2012; 364:236-48. [DOI: 10.1016/j.ydbio.2012.01.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/11/2012] [Accepted: 01/20/2012] [Indexed: 01/07/2023]
|
11
|
Elinson RP, Sabo MC, Fisher C, Yamaguchi T, Orii H, Nath K. Germ plasm in Eleutherodactylus coqui, a direct developing frog with large eggs. EvoDevo 2011; 2:20. [PMID: 21978790 PMCID: PMC3196704 DOI: 10.1186/2041-9139-2-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/06/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND RNAs for embryo patterning and for germ cell specification are localized to the vegetal cortex of the oocyte of Xenopus laevis. In oocytes of the direct developing frog Eleutherodactylus coqui, orthologous RNAs for patterning are not localized, raising the question as to whether RNAs and other components of germ plasm are localized in this species. METHODS To identify germ plasm, E. coqui embryos were stained with DiOC6(3) or examined by in situ hybridization for dazl and DEADSouth RNAs. The cDNAs for the E. coqui orthologues were cloned by RT-PCR using degenerate primers. To examine activity of the E. coqui orthologues, RNAs, made from constructs of their 3'UTRs with mCherry, were injected into X. laevis embryos. RESULTS Both DiOC6(3) and dazl and DEADSouth in situs identified many small islands at the vegetal surface of cleaving E. coqui embryos, indicative of germ plasm. Dazl was also expressed in primordial germ cells in the genital ridge. The 3'UTRs of E. coqui dazl and DEADSouth directed primordial germ cell specific protein synthesis in X. laevis. CONCLUSIONS E. coqui utilizes germ plasm with RNAs localized to the vegetal cortex to specify primordial germ cells. The large number of germ plasm islands suggests that an increase in the amount of germ plasm was important in the evolution of the large E. coqui egg.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh PA 15282, USA
| | - Michelle C Sabo
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh PA 15282, USA
| | - Cara Fisher
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh PA 15282, USA
| | - Takeshi Yamaguchi
- Laboratory of Regeneration Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou-gun, Hyogo 678-1297, Japan
| | - Hidefumi Orii
- Laboratory of Regeneration Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou-gun, Hyogo 678-1297, Japan
| | - Kimberly Nath
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh PA 15282, USA
| |
Collapse
|
12
|
Liu Z, Li Q, Pan Z, Qu X, Zhang C, Xie Z. Comparative analysis on mRNA expression level and methylation status of DAZL gene between cattle-yaks and their parents. Anim Reprod Sci 2011; 126:258-64. [PMID: 21724343 DOI: 10.1016/j.anireprosci.2011.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 05/20/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
Abstract
The autosomal gene Deleted in Azoospermia Like (DAZL) is essential for spermatogenesis. The absence of DAZL gene will lead to meiotic arrest, spermatogenetic failure and male infertility, and so it was usually considered as a candidate gene for male infertility in cattle-yaks. To study the regulatory mechanism of DAZL expression in cattle-yaks, DAZL mRNA expression and DAZL gene methylation patterns in testes of cattle, yaks and cattle-yaks were examined using real-time PCR and bisulfite sequencing. The results showed that DAZL mRNA expression in testes of cattle-yaks was lower than that in cattle and yak (about 1/2-1/3 of cattle and yak). The methylation level of DAZL in cattle-yaks (85.6%) was significantly higher than that in cattle (69.8%) and yaks (71.4%) (P<0.01). The methylation and mRNA expression level of DAZL was significantly negatively correlated in the testes of cattle-yaks and their parents (P<0.01). We propose that the methylation of DAZL gene plays an important role in DAZL transcriptional regulation and maybe have a severe effect on spermatogenesis and male sterility in cattle-yaks.
Collapse
Affiliation(s)
- Zhenshan Liu
- Laboratory of Animal Reproductive Genetics and Molecular Evolution, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
13
|
Marracci S, Michelotti V, Casola C, Giacoma C, Ragghianti M. Daz- and pumilio-like genes are asymmetrically localized in Pelophylax (Rana) oocytes and are expressed during early spermatogenesis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:330-8. [PMID: 21344644 DOI: 10.1002/jez.b.21405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 12/22/2010] [Accepted: 01/01/2011] [Indexed: 12/14/2022]
Abstract
In many organisms, the specification of cell fate and the formation of embryonic axes depend on a proper distribution of maternal mRNAs during oogenesis. Asymmetrically localized determinants are required both for embryonic axes and germline determination in anuran amphibians. As a model system of these processes, we have used a species complex of the genus Pelophylax (Rana), characterized by a hybridogenetic reproduction that involves events of genome exclusion and endoreduplication during meiosis in both sexes. With the aim of characterizing the still largely unknown molecular events regulating Pelophylax gametogenesis, we have isolated in this animal model homologues of the deleted in AZoospermia-like (DAZl) and pumilio gene families (named RlDazl and RlPum1, respectively), which encode posttranscriptional regulators. Expression pattern analysis of these genes showed that RlDazl is exclusively expressed in gonadal tissues, whereas RlPum1 is expressed in both somatic tissues and gonads. In situ hybridization carried out on gonads revealed that the two transcripts were asymmetrically localized along the animal-vegetal (A-V) axis of oocytes. In particular, the RlDazl transcript progressively collected to the vegetal pole during oogenesis, whereas the RlPum1 mRNA was preferentially enriched at the animal hemisphere. In adult testes, RlDazl and RlPum1 were expressed in specific phases of spermatogenetic divisions as shown by immunostaining with anti-H3 phosphohistone antibody. Our results indicate that RlDazl and RlPum1 represent two early indicators of oocyte polarity in this hybridogenetic vertebrate model. Additionally, RlDazl share with vertebrate DAZ- like genes a germ cell-specific expression pattern.
Collapse
Affiliation(s)
- Silvia Marracci
- Laboratory of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy.
| | | | | | | | | |
Collapse
|
14
|
Peng JX, Xie JL, Zhou L, Hong YH, Gui JF. Evolutionary conservation of Dazl genomic organization and its continuous and dynamic distribution throughout germline development in gynogenetic gibel carp. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 312:855-71. [PMID: 19504540 DOI: 10.1002/jez.b.21301] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To investigate germline development and germ cell specification, we identified a Dazl homolog (CagDazl) from gynogenetic gibel carp (Carassius auratus gibelio). Its cDNA sequence and BAC clone sequence analyses revealed the genomic organization conservation and conserved synteny of the Dazl family members and their neighborhood genes among vertebrates, especially in fish. Moreover, a polyclonal antibody specific to CagDazl was produced and used to examine its expression and distribution throughout germline development at protein level. Firstly, ovary-specific expression pattern of CagDazl was confirmed in adult tissues by RT-PCR and Western blot. In addition, in situ hybridization and immunofluorescence localization demonstrated its specific expression in germ cells, and both its transcript and protein were localized to germ plasm. Then, co-localization of CagDazl and mitochondrial cloud was found, confirming that CagDazl transcript and its protein are germ plasm component and move via METRO pathway during oogenesis. Furthermore, the CagDazl is abundant and continuous throughout germline development and germ cell specification including primordial germ cell (PGC) formation, oogonium differentiation, oocyte development, and embryogenesis, and the dynamic distribution occurs at different development stages. The data suggest that maternal CagDazl might play an important role in gibel carp PGC formation. Therefore, CagDazl is a useful and specific marker for tracing germ plasm and germ cell development in the gynogenetic gibel carp. In addition, in comparison with previous studies in sexual reproduction species, the continuous and dynamic distribution of CagDazl protein in the germ plasm throughout the life cycle seems to have significant implication in sex evolution of vertebrates.
Collapse
Affiliation(s)
- Jin-Xia Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | |
Collapse
|
15
|
Elinson RP. Nutritional endoderm: a way to breach the holoblastic-meroblastic barrier in tetrapods. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:526-32. [DOI: 10.1002/jez.b.21218] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Xu H, Li M, Gui J, Hong Y. Cloning and expression of medaka dazl during embryogenesis and gametogenesis. Gene Expr Patterns 2007; 7:332-8. [PMID: 16979959 DOI: 10.1016/j.modgep.2006.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 08/07/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
The Deleted in azoospermia family consists of RNA-binding proteins Boule, Daz, and Daz-like (Dazl) that are expressed in the germline. Here, we report the cloning and expression of the medakafish (Oryzias latipes) dazl gene (odazl). Interestingly, although the predicted medaka Dazl protein (oDazl) contains a RRM motif and a DAZ repeat characteristic of its mammalian homologs, it lacks 80 aa at the C-terminus. By RT-PCR, RNA in situ hybridization, Western blotting and fluorescent immunohistochemistry using a rabbit anti-Dazl antibody (alphaDazl), we analyzed the expression patterns of odazl and its protein. The odazl transcript persists throughout embryogenesis and delineates with primordial germ cells. In adults, the expression of odazl RNA and its protein is restricted to germ cells of both the testis and ovary. We observed differential expression of RNA and protein at critical stages of gametogenesis. In the testis, the odazl RNA is low at premeiotic stages, abundant at meiotic stages, but absent in postmeiotic stages; whereas the oDazl protein is rich in premeiotic stages, reduced at meiotic stages, becomes barely detectable or absent in postmeiotic round spermatids or sperm, respectively. This is in sharp contrast to the human situation where the Dazl transcript and protein are present in mature spermatozoa. In the ovary, the odazl RNA and protein persist throughout oogenesis and also show differential expression at premeiotic, meiotic and postmeiotic stages. Thus, the odazl or its protein is a marker for germ cells during embryogenesis and at critical stages of gametogenesis in both sexes of medaka.
Collapse
Affiliation(s)
- Hongyan Xu
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | | | | | | |
Collapse
|