1
|
Brenneis G, Schwentner M, Giribet G, Beltz BS. Insights into the genetic regulatory network underlying neurogenesis in the parthenogenetic marbled crayfish Procambarus virginalis. Dev Neurobiol 2021; 81:939-974. [PMID: 34554654 DOI: 10.1002/dneu.22852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022]
Abstract
Nervous system development has been intensely studied in insects (especially Drosophila melanogaster), providing detailed insights into the genetic regulatory network governing the formation and maintenance of the neural stem cells (neuroblasts) and the differentiation of their progeny. Despite notable advances over the last two decades, neurogenesis in other arthropod groups remains by comparison less well understood, hampering finer resolution of evolutionary cell type transformations and changes in the genetic regulatory network in some branches of the arthropod tree of life. Although the neurogenic cellular machinery in malacostracan crustaceans is well described morphologically, its genetic molecular characterization is pending. To address this, we established an in situ hybridization protocol for the crayfish Procambarus virginalis and studied embryonic expression patterns of a suite of key genes, encompassing three SoxB group transcription factors, two achaete-scute homologs, a Snail family member, the differentiation determinants Prospero and Brain tumor, and the neuron marker Elav. We document cell type expression patterns with notable similarities to insects and branchiopod crustaceans, lending further support to the homology of hexapod-crustacean neuroblasts and their cell lineages. Remarkably, in the crayfish head region, cell emigration from the neuroectoderm coupled with gene expression data points to a neuroblast-independent initial phase of brain neurogenesis. Further, SoxB group expression patterns suggest an involvement of Dichaete in segmentation, in concordance with insects. Our target gene set is a promising starting point for further embryonic studies, as well as for the molecular genetic characterization of subregions and cell types in the neurogenic systems in the adult crayfish brain.
Collapse
Affiliation(s)
- Georg Brenneis
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts, USA.,Zoologisches Institut und Museum, Universität Greifswald, Greifswald, Germany
| | - Martin Schwentner
- Naturhistorisches Museum Wien, Vienna, Austria.,Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Barbara S Beltz
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts, USA
| |
Collapse
|
2
|
Klann M, Schacht MI, Benton MA, Stollewerk A. Functional analysis of sense organ specification in the Tribolium castaneum larva reveals divergent mechanisms in insects. BMC Biol 2021; 19:22. [PMID: 33546687 PMCID: PMC7866635 DOI: 10.1186/s12915-021-00948-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
Abstract Insects and other arthropods utilise external sensory structures for mechanosensory, olfactory, and gustatory reception. These sense organs have characteristic shapes related to their function, and in many cases are distributed in a fixed pattern so that they are identifiable individually. In Drosophila melanogaster, the identity of sense organs is regulated by specific combinations of transcription factors. In other arthropods, however, sense organ subtypes cannot be linked to the same code of gene expression. This raises the questions of how sense organ diversity has evolved and whether the principles underlying subtype identity in D. melanogaster are representative of other insects. Here, we provide evidence that such principles cannot be generalised, and suggest that sensory organ diversification followed the recruitment of sensory genes to distinct sensory organ specification mechanism. Results We analysed sense organ development in a nondipteran insect, the flour beetle Tribolium castaneum, by gene expression and RNA interference studies. We show that in contrast to D. melanogaster, T. castaneum sense organs cannot be categorised based on the expression or their requirement for individual or combinations of conserved sense organ transcription factors such as cut and pox neuro, or members of the Achaete-Scute (Tc ASH, Tc asense), Atonal (Tc atonal, Tc cato, Tc amos), and neurogenin families (Tc tap). Rather, our observations support an evolutionary scenario whereby these sensory genes are required for the specification of sense organ precursors and the development and differentiation of sensory cell types in diverse external sensilla which do not fall into specific morphological and functional classes. Conclusions Based on our findings and past research, we present an evolutionary scenario suggesting that sense organ subtype identity has evolved by recruitment of a flexible sensory gene network to the different sense organ specification processes. A dominant role of these genes in subtype identity has evolved as a secondary effect of the function of these genes in individual or subsets of sense organs, probably modulated by positional cues. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00948-y.
Collapse
Affiliation(s)
- Marleen Klann
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.,Marine Eco-Evo-Devo Unit, Okinawa Institute for Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Magdalena Ines Schacht
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Matthew Alan Benton
- Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
3
|
Sur A, Renfro A, Bergmann PJ, Meyer NP. Investigating cellular and molecular mechanisms of neurogenesis in Capitella teleta sheds light on the ancestor of Annelida. BMC Evol Biol 2020; 20:84. [PMID: 32664907 PMCID: PMC7362552 DOI: 10.1186/s12862-020-01636-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diverse architectures of nervous systems (NSs) such as a plexus in cnidarians or a more centralized nervous system (CNS) in insects and vertebrates are present across Metazoa, but it is unclear what selection pressures drove evolution and diversification of NSs. One underlying aspect of this diversity lies in the cellular and molecular mechanisms driving neurogenesis, i.e. generation of neurons from neural precursor cells (NPCs). In cnidarians, vertebrates, and arthropods, homologs of SoxB and bHLH proneural genes control different steps of neurogenesis, suggesting that some neurogenic mechanisms may be conserved. However, data are lacking for spiralian taxa. RESULTS To that end, we characterized NPCs and their daughters at different stages of neurogenesis in the spiralian annelid Capitella teleta. We assessed cellular division patterns in the neuroectoderm using static and pulse-chase labeling with thymidine analogs (EdU and BrdU), which enabled identification of NPCs that underwent multiple rounds of division. Actively-dividing brain NPCs were found to be apically-localized, whereas actively-dividing NPCs for the ventral nerve cord (VNC) were found apically, basally, and closer to the ventral midline. We used lineage tracing to characterize the changing boundary of the trunk neuroectoderm. Finally, to start to generate a genetic hierarchy, we performed double-fluorescent in-situ hybridization (FISH) and single-FISH plus EdU labeling for neurogenic gene homologs. In the brain and VNC, Ct-soxB1 and Ct-neurogenin were expressed in a large proportion of apically-localized, EdU+ NPCs. In contrast, Ct-ash1 was expressed in a small subset of apically-localized, EdU+ NPCs and subsurface, EdU- cells, but not in Ct-neuroD+ or Ct-elav1+ cells, which also were subsurface. CONCLUSIONS Our data suggest a putative genetic hierarchy with Ct-soxB1 and Ct-neurogenin at the top, followed by Ct-ash1, then Ct-neuroD, and finally Ct-elav1. Comparison of our data with that from Platynereis dumerilii revealed expression of neurogenin homologs in proliferating NPCs in annelids, which appears different than the expression of vertebrate neurogenin homologs in cells that are exiting the cell cycle. Furthermore, differences between neurogenesis in the head versus trunk of C. teleta suggest that these two tissues may be independent developmental modules, possibly with differing evolutionary trajectories.
Collapse
Affiliation(s)
- A. Sur
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - A. Renfro
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - P. J. Bergmann
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - N. P. Meyer
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| |
Collapse
|
4
|
Brenneis G, Beltz BS. Adult neurogenesis in crayfish: Origin, expansion, and migration of neural progenitor lineages in a pseudostratified neuroepithelium. J Comp Neurol 2019; 528:1459-1485. [PMID: 31743442 DOI: 10.1002/cne.24820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 02/04/2023]
Abstract
Two decades after the discovery of adult-born neurons in the brains of decapod crustaceans, the deutocerebral proliferative system (DPS) producing these neural lineages has become a model of adult neurogenesis in invertebrates. Studies on crayfish have provided substantial insights into the anatomy, cellular dynamics, and regulation of the DPS. Contrary to traditional thinking, recent evidence suggests that the neurogenic niche in the crayfish DPS lacks self-renewing stem cells, its cell pool being instead sustained via integration of hemocytes generated by the innate immune system. Here, we investigated the origin, division and migration patterns of the adult-born neural progenitor (NP) lineages in detail. We show that the niche cell pool is not only replenished by hemocyte integration but also by limited numbers of symmetric cell divisions with some characteristics reminiscent of interkinetic nuclear migration. Once specified in the niche, first generation NPs act as transit-amplifying intermediate NPs that eventually exit and produce multicellular clones as they move along migratory streams toward target brain areas. Different clones may migrate simultaneously in the streams but occupy separate tracks and show spatio-temporally flexible division patterns. Based on this, we propose an extended DPS model that emphasizes structural similarities to pseudostratified neuroepithelia in other arthropods and vertebrates. This model includes hemocyte integration and intrinsic cell proliferation to synergistically counteract niche cell pool depletion during the animal's lifespan. Further, we discuss parallels to recent findings on mammalian adult neurogenesis, as both systems seem to exhibit a similar decoupling of proliferative replenishment divisions and consuming neurogenic divisions.
Collapse
Affiliation(s)
- Georg Brenneis
- Wellesley College, Neuroscience Program, Wellesley, Massachusetts, USA.,Universität Greifswald, Zoologisches Institut und Museum, AG Cytologie und Evolutionsbiologie, Greifswald, Germany
| | - Barbara S Beltz
- Wellesley College, Neuroscience Program, Wellesley, Massachusetts, USA
| |
Collapse
|
5
|
Jiang L, Bi D, Ding H, Wu X, Zhu R, Zeng J, Yang X, Kan X. Systematic Identification and Evolution Analysis of Sox Genes in Coturnix japonica Based on Comparative Genomics. Genes (Basel) 2019; 10:genes10040314. [PMID: 31013663 PMCID: PMC6523956 DOI: 10.3390/genes10040314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 01/04/2023] Open
Abstract
Coturnix japonica (Japanese quail) has been extensively used as a model animal for biological studies. The Sox gene family, which was systematically characterized by a high-mobility group (HMG-box) in many animal species, encodes transcription factors that play central roles during multiple developmental processes. However, genome-wide investigations on the Sox gene family in birds are scarce. In the current study, we first performed a genome-wide study to explore the Sox gene family in galliform birds. Based on available genomic sequences retrieved from the NCBI database, we focused on the global identification of the Sox gene family in C. japonica and other species in Galliformes, and the evolutionary relationships of Sox genes. In our result, a total of 35 Sox genes in seven groups were identified in the C. japonica genome. Our results also revealed that dispersed gene duplications contributed the most to the expansion of the Sox gene family in Galliform birds. Evolutionary analyses indicated that Sox genes are an ancient gene family, and strong purifying selections played key roles in the evolution of CjSox genes of C. japonica. More interestingly, we observed that most Sox genes exhibited highly embryo-specific expression in both gonads. Our findings provided new insights into the molecular function and phylogeny of Sox gene family in birds.
Collapse
Affiliation(s)
- Lan Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650000, China.
| | - De Bi
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Hengwu Ding
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, 241000, China.
| | - Xuan Wu
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Ran Zhu
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Juhua Zeng
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Xiaojun Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650000, China.
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, 241000, China.
| |
Collapse
|
6
|
Bonatto Paese CL, Leite DJ, Schönauer A, McGregor AP, Russell S. Duplication and expression of Sox genes in spiders. BMC Evol Biol 2018; 18:205. [PMID: 30587109 PMCID: PMC6307133 DOI: 10.1186/s12862-018-1337-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/17/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The Sox family of transcription factors is an important part of the genetic 'toolbox' of all metazoans examined to date and is known to play important developmental roles in vertebrates and insects. However, outside the commonly studied Drosophila model little is known about the repertoire of Sox family transcription factors in other arthropod species. Here we characterise the Sox family in two chelicerate species, the spiders Parasteatoda tepidariorum and Stegodyphus mimosarum, which have experienced a whole genome duplication (WGD) in their evolutionary history. RESULTS We find that virtually all of the duplicate Sox genes have been retained in these spiders after the WGD. Analysis of the expression of Sox genes in P. tepidariorum embryos suggests that it is likely that some of these genes have neofunctionalised after duplication. Our expression analysis also strengthens the view that an orthologue of vertebrate Group B1 genes, SoxNeuro, is implicated in the earliest events of CNS specification in both vertebrates and invertebrates. In addition, a gene in the Dichaete/Sox21b class is dynamically expressed in the spider segment addition zone, suggestive of an ancient regulatory mechanism controlling arthropod segmentation as recently suggested for flies and beetles. Together with the recent analysis of Sox gene expression in the embryos of other arthropods, our findings support the idea of conserved functions for some of these genes, including a potential role for SoxC and SoxD genes in CNS development and SoxF in limb development. CONCLUSIONS Our study provides a new chelicerate perspective to understanding the evolution and function of Sox genes and how the retention of duplicates of such important tool-box genes after WGD has contributed to different aspects of spider embryogenesis. Future characterisation of the function of these genes in spiders will help us to better understand the evolution of the regulation of important developmental processes in arthropods and other metazoans including neurogenesis and segmentation.
Collapse
Affiliation(s)
- Christian L Bonatto Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| | - Steven Russell
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
7
|
Janssen R, Andersson E, Betnér E, Bijl S, Fowler W, Höök L, Leyhr J, Mannelqvist A, Panara V, Smith K, Tiemann S. Embryonic expression patterns and phylogenetic analysis of panarthropod sox genes: insight into nervous system development, segmentation and gonadogenesis. BMC Evol Biol 2018; 18:88. [PMID: 29884143 PMCID: PMC5994082 DOI: 10.1186/s12862-018-1196-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/18/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sox (Sry-related high-mobility-group box) genes represent important factors in animal development. Relatively little, however, is known about the embryonic expression patterns and thus possible function(s) of Sox genes during ontogenesis in panarthropods (Arthropoda+Tardigrada+Onychophora). To date, studies have been restricted exclusively to higher insects, including the model system Drosophila melanogaster, with no comprehensive data available for any other arthropod group, or any tardigrade or onychophoran. RESULTS This study provides a phylogenetic analysis of panarthropod Sox genes and presents the first comprehensive analysis of embryonic expression patterns in the flour beetle Tribolium castaneum (Hexapoda), the pill millipede Glomeris marginata (Myriapoda), and the velvet worm, Euperipatoides kanangrensis (Onychophora). 24 Sox genes were identified and investigated: 7 in Euperipatoides, 8 in Glomeris, and 9 in Tribolium. Each species possesses at least one ortholog of each of the five expected Sox gene families, B, C, D, E, and F, many of which are differentially expressed during ontogenesis. CONCLUSION Sox gene expression (and potentially function) is highly conserved in arthropods and their closest relatives, the onychophorans. Sox B, C and D class genes appear to be crucial for nervous system development, while the Sox B genes Dichaete (D) and Sox21b likely play an additional conserved role in panarthropod segmentation. The Sox B gene Sox21a likely has a conserved function in foregut and Malpighian tubule development, at least in Hexapoda. The data further suggest that Sox D and E genes are involved in mesoderm differentiation, and that Sox E genes are involved in gonadal development. The new data expand our knowledge about the expression and implied function of Sox genes to Mandibulata (Myriapoda+Pancrustacea) and Panarthropoda (Arthropoda+Onychophora).
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Emil Andersson
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Ellinor Betnér
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Sifra Bijl
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Will Fowler
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Lars Höök
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Jake Leyhr
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Alexander Mannelqvist
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Virginia Panara
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Kate Smith
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Sydney Tiemann
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| |
Collapse
|
8
|
Sur A, Magie CR, Seaver EC, Meyer NP. Spatiotemporal regulation of nervous system development in the annelid Capitella teleta. EvoDevo 2017; 8:13. [PMID: 28775832 PMCID: PMC5539756 DOI: 10.1186/s13227-017-0076-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/20/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND How nervous systems evolved remains an unresolved question. Previous studies in vertebrates and arthropods revealed that homologous genes regulate important neurogenic processes such as cell proliferation and differentiation. However, the mechanisms through which such homologs regulate neurogenesis across different bilaterian clades are variable, making inferences about nervous system evolution difficult. A better understanding of neurogenesis in the third major bilaterian clade, Spiralia, would greatly contribute to our ability to deduce the ancestral mechanism of neurogenesis. RESULTS Using whole-mount in situ hybridization, we examined spatiotemporal gene expression for homologs of soxB, musashi, prospero, achaete-scute, neurogenin, and neuroD in embryos and larvae of the spiralian annelid Capitella teleta, which has a central nervous system (CNS) comprising a brain and ventral nerve cord. For all homologs examined, we found expression in the neuroectoderm and/or CNS during neurogenesis. Furthermore, the onset of expression and localization within the developing neural tissue for each of these genes indicates putative roles in separate phases of neurogenesis, e.g., in neural precursor cells (NPCs) versus in cells that have exited the cell cycle. Ct-soxB1, Ct-soxB, and Ct-ngn are the earliest genes expressed in surface cells in the anterior and ventral neuroectoderm, while Ct-ash1 expression initiates slightly later in surface neuroectoderm. Ct-pros is expressed in single cells in neural and non-neural ectoderm, while Ct-msi and Ct-neuroD are localized to differentiating neural cells in the brain and ventral nerve cord. CONCLUSIONS These results suggest that the genes investigated in this article are involved in a neurogenic gene regulatory network in C. teleta. We propose that Ct-SoxB1, Ct-SoxB, and Ct-Ngn are involved in maintaining NPCs in a proliferative state. Ct-Pros may function in division of NPCs, Ct-Ash1 may promote cell cycle exit and ingression of NPC daughter cells, and Ct-NeuroD and Ct-Msi may control neuronal differentiation. Our results support the idea of a common genetic toolkit driving neural development whose molecular architecture has been rearranged within and across clades during evolution. Future functional studies should help elucidate the role of these homologs during C. teleta neurogenesis and identify which aspects of bilaterian neurogenesis may have been ancestral or were derived within Spiralia.
Collapse
Affiliation(s)
- Abhinav Sur
- Biology Department, Clark University, 950 Main St., Worcester, MA 01610-1400 USA
| | - Craig R. Magie
- Department of Biological Sciences, Quinnipiac University, 275 Mount Carmel Ave., Hamden, CT 06518-1905 USA
| | - Elaine C. Seaver
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Blvd., St. Augustine, FL 32080-8610 USA
| | - Néva P. Meyer
- Biology Department, Clark University, 950 Main St., Worcester, MA 01610-1400 USA
| |
Collapse
|
9
|
Evolutionary variation in neural gene expression in the developing sense organs of the crustacean Daphnia magna. Dev Biol 2017; 424:50-61. [PMID: 28238736 DOI: 10.1016/j.ydbio.2017.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/21/2016] [Accepted: 02/17/2017] [Indexed: 11/23/2022]
Abstract
Arthropods have numerous sense organs, which are adapted to their habitat. While some sense organs are similar in structure and function in all arthropod groups, structural differences in functionally related sense organs have been described, as well as the absence of particular sense organ subtypes in individual arthropod groups. Here we address the question of how the diverse structures of arthropod sense organs have evolved by analysing the underlying molecular developmental processes in a crustacean, an arthropod group that has been neglected so far. We have investigated the development of four types of chemo- and mechanosensory sense organs in the branchiopod Daphnia magna (Cladocera) that either cannot be found in arthropods other than crustaceans or represent adaptations to an aquatic environment. The formation of the sensory organ precursors shows greater similarity to the arthropod taxa Chelicerata and Myriapoda than to the more closely related insects. All analysed sense organ types co-express the proneural genes ASH and atonal regardless of their structure and function. In contrast, in Drosophila melanogaster, ASH and atonal expression does not overlap and the genes confer different sense organ subtype identities. We performed experimental co-expression studies in D. melanogaster and found that the combinatorial expression of ato and ASH can change the external structure of sense organs. Our results indicate a central role for ASH and Atonal family members in the emergence of structural variations in arthropod sense organs.
Collapse
|
10
|
Stollewerk A. A flexible genetic toolkit for arthropod neurogenesis. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150044. [PMID: 26598727 DOI: 10.1098/rstb.2015.0044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arthropods show considerable variations in early neurogenesis. This includes the pattern of specification, division and movement of neural precursors and progenitors. In all metazoans with nervous systems, including arthropods, conserved genes regulate neurogenesis, which raises the question of how the various morphological mechanisms have emerged and how the same genetic toolkit might generate different morphological outcomes. Here I address this question by comparing neurogenesis across arthropods and show how variations in the regulation and function of the neural genes might explain this phenomenon and how they might have facilitated the evolution of the diverse morphological mechanisms of neurogenesis.
Collapse
Affiliation(s)
- Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
11
|
Richards GS, Rentzsch F. Regulation of Nematostella neural progenitors by SoxB, Notch and bHLH genes. Development 2016; 142:3332-42. [PMID: 26443634 PMCID: PMC4631755 DOI: 10.1242/dev.123745] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Notch signalling, SoxB and Group A bHLH 'proneural' genes are conserved regulators of the neurogenic program in many bilaterians. However, the ancestry of their functions and interactions is not well understood. We address this question in the sea anemone Nematostella vectensis, a representative of the Cnidaria, the sister clade to the Bilateria. It has previously been found that the SoxB orthologue NvSoxB(2) is expressed in neural progenitor cells (NPCs) in Nematostella and promotes the development of both neurons and nematocytes, whereas Notch signalling has been implicated in the negative regulation of neurons and the positive regulation of nematocytes. Here, we clarify the role of Notch by reporting that inhibition of Notch signalling increases the numbers of both neurons and nematocytes, as well as increasing the number of NvSoxB(2)-expressing cells. This suggests that Notch restricts neurogenesis by limiting the generation of NPCs. We then characterise NvAth-like (Atonal/Neurogenin family) as a positive regulator of neurogenesis that is co-expressed with NvSoxB(2) in a subset of dividing NPCs, while we find that NvAshA (Achaete-scute family) and NvSoxB(2) are co-expressed in non-dividing cells only. Reciprocal knockdown experiments reveal a mutual requirement for NvSoxB(2) and NvAth-like in neural differentiation; however, the primary expression of each gene is independent of the other. Together, these data demonstrate that Notch signalling and NvSoxB(2) regulate Nematostella neural progenitors via parallel yet interacting mechanisms; with different aspects of these interactions being shared with Drosophila and/or vertebrate neurogenesis.
Collapse
Affiliation(s)
- Gemma Sian Richards
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen N-5008, Norway
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen N-5008, Norway
| |
Collapse
|
12
|
Abstract
The foundation of the diverse metazoan nervous systems is laid by embryonic patterning mechanisms, involving the generation and movement of neural progenitors and their progeny. Here we divide early neurogenesis into discrete elements, including origin, pattern, proliferation, and movement of neuronal progenitors, which are controlled by conserved gene cassettes. We review these neurogenetic mechanisms in representatives of the different metazoan clades, with the goal to build a conceptual framework in which one can ask specific questions, such as which of these mechanisms potentially formed part of the developmental "toolkit" of the bilaterian ancestor and which evolved later.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
13
|
Schlosser G, Patthey C, Shimeld SM. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Dev Biol 2014; 389:98-119. [PMID: 24491817 DOI: 10.1016/j.ydbio.2014.01.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/12/2022]
Abstract
Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Department of Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, University Road, Galway, Ireland.
| | - Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
14
|
Brenneis G, Stollewerk A, Scholtz G. Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups. EvoDevo 2013; 4:32. [PMID: 24289241 PMCID: PMC3879066 DOI: 10.1186/2041-9139-4-32] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/08/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Studies on early neurogenesis have had considerable impact on the discussion of the phylogenetic relationships of arthropods, having revealed striking similarities and differences between the major lineages. In Hexapoda and crustaceans, neurogenesis involves the neuroblast, a type of neural stem cell. In each hemi-segment, a set of neuroblasts produces neural cells by repeated asymmetrical and interiorly directed divisions. In Euchelicerata and Myriapoda, neurogenesis lacks neural stem cells, featuring instead direct immigration of neural cell groups from fixed sites in the neuroectoderm. Accordingly, neural stem cells were hitherto assumed to be an evolutionary novelty of the Tetraconata (Hexapoda + crustaceans). To further test this hypothesis, we investigated neurogenesis in Pycnogonida, or sea spiders, a group of marine arthropods with close affinities to euchelicerates. RESULTS We studied neurogenesis during embryonic development of Pseudopallene sp. (Callipallenidae), using fluorescent histochemical staining and immunolabelling. Embryonic neurogenesis has two phases. The first phase shows notable similarities to euchelicerates and myriapods. These include i) the lack of morphologically different cell types in the neuroectoderm; ii) the formation of transiently identifiable, stereotypically arranged cell internalization sites; iii) immigration of predominantly post-mitotic ganglion cells; and iv) restriction of tangentially oriented cell proliferation to the apical cell layer. However, in the second phase, the formation of a central invagination in each hemi-neuromere is accompanied by the differentiation of apical neural stem cells. The latter grow in size, show high mitotic activity and an asymmetrical division mode. A marked increase of ganglion cell numbers follows their differentiation. Directly basal to the neural stem cells, an additional type of intermediate neural precursor is found. CONCLUSIONS Embryonic neurogenesis of Pseudopallene sp. combines features of central nervous system development that have been hitherto described separately in different arthropod taxa. The two-phase character of pycnogonid neurogenesis calls for a thorough reinvestigation of other non-model arthropods over the entire course of neurogenesis. With the currently available data, a common origin of pycnogonid neural stem cells and tetraconate neuroblasts remains unresolved. To acknowledge this, we present two possible scenarios on the evolution of arthropod neurogenesis, whereby Myriapoda play a key role in the resolution of this issue.
Collapse
Affiliation(s)
- Georg Brenneis
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, Berlin 10115, Germany
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, Berlin 10115, Germany
| |
Collapse
|
15
|
Analysis of snail genes in the crustacean Parhyale hawaiensis: insight into snail gene family evolution. Dev Genes Evol 2012; 222:139-51. [PMID: 22466422 DOI: 10.1007/s00427-012-0396-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/11/2012] [Indexed: 01/03/2023]
Abstract
The transcriptional repressor snail was first discovered in Drosophila melanogaster, where it initially plays a role in gastrulation and mesoderm formation, and later plays a role in neurogenesis. Among arthropods, this role of snail appears to be conserved in the insects Tribolium and Anopheles gambiae, but not in the chelicerates Cupiennius salei and Achaearanea tepidariorum, the myriapod Glomeris marginata, or the Branchiopod crustacean Daphnia magna. These data imply that within arthropoda, snail acquired its role in gastrulation and mesoderm formation in the insect lineage. However, crustaceans are a diverse group with several major taxa, making analysis of more crustaceans necessary to potentially understand the ancestral role of snail in Pancrustacea (crustaceans + insects) and thus in the ancestor of insects as well. To address these questions, we examined the snail family in the Malacostracan crustacean Parhyale hawaiensis. We found three snail homologs, Ph-snail1, Ph-snail2 and Ph-snail3, and one scratch homolog, Ph-scratch. Parhyale snail genes are expressed after gastrulation, during germband formation and elongation. Ph-snail1, Ph-snail2, and Ph-snail3 are expressed in distinct patterns in the neuroectoderm. Ph-snail1 is the only Parhyale snail gene expressed in the mesoderm, where its expression cycles in the mesodermal stem cells, called mesoteloblasts. The mesoteloblasts go through a series of cycles, where each cycle is composed of a migration phase and a division phase. Ph-snail1 is expressed during the migration phase, but not during the division phase. We found that as each mesoteloblast division produces one segment's worth of mesoderm, Ph-snail1 expression is linked to both the cell cycle and the segmental production of mesoderm.
Collapse
|
16
|
Single-minded and the evolution of the ventral midline in arthropods. Dev Biol 2012; 364:66-76. [PMID: 22306923 DOI: 10.1016/j.ydbio.2012.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 11/22/2022]
Abstract
In insects and crustaceans, ventral midline cells are present that subdivide the CNS into bilateral symmetric halves. In both arthropod groups unpaired midline neurons and glial cells have been identified that contribute to the embryonic patterning mechanisms. In the fruitfly Drosophila melanogaster, for example, the midline cells are involved in neural cell fate specification along the dorso-ventral axis but also in axonal pathfinding and organisation of the axonal scaffold. Both in insects and malacostracan crustaceans, the bHLH-PAS transcription factor single-minded is the master regulator of ventral midline development and homology has been suggested for individual midline precursors in these groups. The conserved arrangement of the axonal scaffold as well as the regular pattern of neural precursors in all euarthropod groups raises the question whether the ventral midline system is conserved in this phylum. In the remaining euarthropod groups, the chelicerates and myriapods, a single-minded homologue has been identified in the spider Achaearanea tepidariorum (chelicerate), however, the gene is not expressed in the ventral midline but in the median area of the ventral neuroectoderm. Here we show that At-sim is not required for ventral midline development. Furthermore, we identify sim homologues in representatives of arthropods that have not yet been analysed: the myriapod Strigamia maritima and a representative of an outgroup to the euarthropods, the onychophoran Euperipatoides kanangrensis. We compare the expression patterns to the A. tepidariorum sim homologue expression and furthermore analyse the nature of the arthropod midline cells. Our data suggest that in arthropods unpaired midline precursors evolved from the bilateral median domain of the ventral neuroectoderm in the last common ancestor of Mandibulata (insects, crustaceans, myriapods). We hypothesize that sim was expressed in this domain and recruited to ventral midline development. Subsequently, sim function has evolved in parallel to the evolution of midline cell function in the individual Mandibulata lineages.
Collapse
|
17
|
Abstract
Arthropods are the most diverse group of animals and have been so since the Cambrian radiation. They belong to the protostome clade Ecdysozoa, with Onychophora (velvet worms) as their most likely sister group and tardigrades (water bears) the next closest relative. The arthropod tree of life can be interpreted as a five-taxon network, containing Pycnogonida, Euchelicerata, Myriapoda, Crustacea, and Hexapoda, the last two forming the clade Tetraconata or Pancrustacea. The unrooted relationship of Tetraconata to the three other lineages is well established, but of three possible rooting positions the Mandibulata hypothesis receives the most support. Novel approaches to studying anatomy with noninvasive three-dimensional reconstruction techniques, the application of these techniques to new and old fossils, and the so-called next-generation sequencing techniques are at the forefront of understanding arthropod relationships. Cambrian fossils assigned to the arthropod stem group inform on the origin of arthropod characters from a lobopodian ancestry. Monophyly of Pycnogonida, Euchelicerata, Myriapoda, Tetraconata, and Hexapoda is well supported, but the interrelationships of arachnid orders and the details of crustacean paraphyly with respect to Hexapoda remain the major unsolved phylogenetic problems.
Collapse
Affiliation(s)
- Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
18
|
Linne V, Stollewerk A. Conserved and novel functions for Netrin in the formation of the axonal scaffold and glial sheath cells in spiders. Dev Biol 2011; 353:134-46. [PMID: 21334324 DOI: 10.1016/j.ydbio.2011.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/15/2022]
Abstract
Netrins are well known for their function as long-range chemotropic guidance cues, in particular in the ventral midline of vertebrates and invertebrates. Over the past years, publications are accumulating that support an additional short-range function for Netrins in diverse developmental processes such as axonal pathfinding and cell adhesion. We describe here the formation of the axonal scaffold in the spiders Cupiennius salei and Achaearanea tepidariorum and show that axonal tract formation seems to follow the same sequence as in insects and crustaceans in both species. First, segmental neuropiles are established which then become connected by the longitudinal fascicles. Interestingly, the commissures are established at the same time as the longitudinal tracts despite the large gap between the corresponding hemi-neuromeres which results from the lateral movement of the germband halves during spider embryogenesis. We show that Netrin has a conserved function in the ventral midline in commissural axon guidance. This function is retained by an adaptation of the expression pattern to the specific morphology of the spider embryo. Furthermore, we demonstrate a novel function of netrin in the formation of glial sheath cells that has an impact on neural precursor differentiation. Loss of Netrin function leads to the absence of glial sheath cells which in turn results in premature segregation of neural precursors and overexpression of the early motor- and interneuronal marker islet. We suggest that Netrin is required in the differentiated sheath cells for establishing and maintaining the interaction between NPGs and sheath cells. This short-range adhesive interaction ensures that the neural precursors maintain their epithelial character and remain attached to the NPGs. Both the conserved and novel functions of Netrin seem to be required for the proper formation of the axonal scaffold.
Collapse
Affiliation(s)
- Viktoria Linne
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, Fogg Building, London E14NS, UK
| | | |
Collapse
|
19
|
Zhong L, Wang D, Gan X, Yang T, He S. Parallel expansions of Sox transcription factor group B predating the diversifications of the arthropods and jawed vertebrates. PLoS One 2011; 6:e16570. [PMID: 21305035 PMCID: PMC3029401 DOI: 10.1371/journal.pone.0016570] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/21/2010] [Indexed: 12/31/2022] Open
Abstract
Group B of the Sox transcription factor family is crucial in embryo development in the insects and vertebrates. Sox group B, unlike the other Sox groups, has an unusually enlarged functional repertoire in insects, but the timing and mechanism of the expansion of this group were unclear. We collected and analyzed data for Sox group B from 36 species of 12 phyla representing the major metazoan clades, with an emphasis on arthropods, to reconstruct the evolutionary history of SoxB in bilaterians and to date the expansion of Sox group B in insects. We found that the genome of the bilaterian last common ancestor probably contained one SoxB1 and one SoxB2 gene only and that tandem duplications of SoxB2 occurred before the arthropod diversification but after the arthropod-nematode divergence, resulting in the basal repertoire of Sox group B in diverse arthropod lineages. The arthropod Sox group B repertoire expanded differently from the vertebrate repertoire, which resulted from genome duplications. The parallel increases in the Sox group B repertoires of the arthropods and vertebrates are consistent with the parallel increases in the complexity and diversification of these two important organismal groups.
Collapse
Affiliation(s)
- Lei Zhong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Dengqiang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoni Gan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Tong Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Shunping He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
20
|
Eriksson BJ, Stollewerk A. Expression patterns of neural genes in Euperipatoides kanangrensis suggest divergent evolution of onychophoran and euarthropod neurogenesis. Proc Natl Acad Sci U S A 2010; 107:22576-81. [PMID: 21149708 PMCID: PMC3012506 DOI: 10.1073/pnas.1008822108] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
One of the controversial debates on euarthropod relationships centers on the question as to whether insects, crustaceans, and myriapods (Mandibulata) share a common ancestor or whether myriapods group with the chelicerates (Myriochelata). The debate was stimulated recently by studies in chelicerates and myriapods that show that neural precursor groups (NPGs) segregate from the neuroectoderm generating the nervous system, whereas in insects and crustaceans the nervous tissue is produced by stem cells. Do the shared neural characters of myriapods and chelicerates represent derived characters that support the Myriochelata grouping? Or do they rather reflect the ancestral pattern? Analyses of neurogenesis in a group closely related to euarthropods, the onychophorans, show that, similar to insects and crustaceans, single neural precursors are formed in the neuroectoderm, potentially supporting the Myriochelata hypothesis. Here we show that the nature and the selection of onychophoran neural precursors are distinct from euarthropods. The onychophoran nervous system is generated by the massive irregular segregation of single neural precursors, contrasting with the limited number and stereotyped arrangement of NPGs/stem cells in euarthropods. Furthermore, neural genes do not show the spatiotemporal pattern that sets up the precise position of neural precursors as in euarthropods. We conclude that neurogenesis in onychophorans largely does not reflect the ancestral pattern of euarthropod neurogenesis, but shows a mixture of derived characters and ancestral characters that have been modified in the euarthropod lineage. Based on these data and additional evidence, we suggest an evolutionary sequence of arthropod neurogenesis that is in line with the Mandibulata hypothesis.
Collapse
Affiliation(s)
- Bo Joakim Eriksson
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
| | | |
Collapse
|
21
|
Döffinger C, Stollewerk A. How can conserved gene expression allow for variation? Lessons from the dorso-ventral patterning gene muscle segment homeobox. Dev Biol 2010; 345:105-16. [DOI: 10.1016/j.ydbio.2010.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/03/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
|
22
|
Janssen R, Eriksson BJ, Budd GE, Akam M, Prpic NM. Gene expression patterns in an onychophoran reveal that regionalization predates limb segmentation in pan-arthropods. Evol Dev 2010; 12:363-72. [DOI: 10.1111/j.1525-142x.2010.00423.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Kerner P, Simionato E, Le Gouar M, Vervoort M. Orthologs of key vertebrate neural genes are expressed during neurogenesis in the annelidPlatynereis dumerilii. Evol Dev 2009; 11:513-24. [DOI: 10.1111/j.1525-142x.2009.00359.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Blackburn DC, Conley KW, Plachetzki DC, Kempler K, Battelle BA, Brown NL. Isolation and expression of Pax6 and atonal homologues in the American horseshoe crab, Limulus polyphemus. Dev Dyn 2008; 237:2209-19. [PMID: 18651657 DOI: 10.1002/dvdy.21634] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Pax6 regulates eye development in many animals. In addition, Pax6 activates atonal transcription factors in both invertebrate and vertebrate eyes. Here, we investigate the roles of Pax6 and atonal during embryonic development of Limulus polyphemus rudimentary lateral, medial and ventral eyes, and the initiation of lateral ommatidial eye and medial ocelli formation. Limulus eye development is of particular interest because these animals hold a unique position in arthropod phylogeny and possess multiple eye types. Furthermore, the molecular underpinnings of eye development have yet to be investigated in chelicerates. We characterized a Limulus Pax6 gene, with multiple splice products and predicted protein isoforms, and one atonal homologue. Unexpectedly, neither gene is expressed in the developing eye types examined, although both genes are present in the lateral sense organ, a structure of unknown function.
Collapse
Affiliation(s)
- David C Blackburn
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
25
|
Stollewerk A, Seyfarth EA. Evolutionary changes in sensory precursor formation in arthropods: embryonic development of leg sensilla in the spider Cupiennius salei. Dev Biol 2007; 313:659-73. [PMID: 18054903 DOI: 10.1016/j.ydbio.2007.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 11/28/2022]
Abstract
We describe here for the first time the development of mechanosensory organs in a chelicerate, the spider Cupiennius salei. It has been shown previously that the number of external sense organs increases with each moult. While stage 1 larvae do not have any external sensory structures, stage 2 larvae show a stereotyped pattern of touch sensitive 'tactile hairs' on their legs. We show that these mechanosensory organs develop during embryogenesis. In contrast to insects, groups of sensory precursors are recruited from the leg epithelium, rather than single sensory organ progenitors. The groups increase by proliferation, and neural cells delaminate from the cluster, which migrate away to occupy a position proximal to the accessory cells of the sense organ. In addition, we describe the development of putative internal sense organs, which do not differentiate until larval stage 2. We show by RNA interference that, similar to Drosophila, proneural genes are responsible for the formation and subtype identity of sensory organs. Furthermore, we demonstrate an additional function for proneural genes in the coordinated invagination and migration of neural cells during sensory organ formation in the spider.
Collapse
Affiliation(s)
- Angelika Stollewerk
- Queen Mary, University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, UK.
| | | |
Collapse
|
26
|
Dill KK, Thamm K, Seaver EC. Characterization of twist and snail gene expression during mesoderm and nervous system development in the polychaete annelid Capitella sp. I. Dev Genes Evol 2007; 217:435-47. [PMID: 17473935 DOI: 10.1007/s00427-007-0153-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 03/28/2007] [Indexed: 10/23/2022]
Abstract
To investigate the evolutionary history of mesoderm in the bilaterian lineage, we are studying mesoderm development in the polychaete annelid, Capitella sp. I, a representative lophotrochozoan. In this study, we focus on the Twist and Snail families as candidate mesodermal patterning genes and report the isolation and in situ expression patterns of two twist homologs (CapI-twt1 and CapI-twt2) and two snail homologs (CapI-sna1 and CapI-sna2) in Capitella sp. I. CapI-twt1 is expressed in a subset of mesoderm derivatives during larval development, while CapI-twt2 shows more general mesoderm expression at the same stages. Neither twist gene is detected before the completion of gastrulation. The two snail genes have very distinct expression patterns. At cleavage and early gastrula stages, CapI-sna1 is broadly expressed in precursors of all three germ layers and becomes restricted to cells around the closing blastopore during late gastrulation; CapI-sna2 expression is not detected at these stages. After gastrulation, both snail genes are expressed in the developing central nervous system (CNS) at stages when neural precursor cells are internalized, and CapI-sna1 is also expressed laterally within the segmental mesoderm. Based on the expression patterns in this study, we suggest a putative function for Capitella sp. I twist genes in mesoderm differentiation and for snail genes in regulating CNS development and general cell migration during gastrulation.
Collapse
Affiliation(s)
- Kariena K Dill
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA
| | | | | |
Collapse
|