1
|
Zygotic Vsx1 Plays a Key Role in Defining V2a Interneuron Sub-Lineage by Directly Repressing tal1 Transcription in Zebrafish. Int J Mol Sci 2020; 21:ijms21103600. [PMID: 32443726 PMCID: PMC7279403 DOI: 10.3390/ijms21103600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022] Open
Abstract
In the spinal cord, excitatory V2a and inhibitory V2b interneurons are produced together by the final division of common P2 progenitors. During V2a and V2b diversification, Tal1 is necessary and sufficient to promote V2b differentiation and Vsx2 suppresses the expression of motor neuron genes to consolidate V2a interneuron identity. The expression program of Tal1 is triggered by a Foxn4-driven regulatory network in the common P2 progenitors. Why the expression of Tal1 is inhibited in V2a interneurons at the onset of V2a and V2b sub-lineage diversification remains unclear. Since transcription repressor Vsx1 is expressed in the P2 progenitors and newborn V2a cells in zebrafish, we investigated the role of Vsx1 in V2a fate specification during V2a and V2b interneuron diversification in this species by loss and gain-of-function experiments. In vsx1 knockdown embryos or knockout Go chimeric embryos, tal1 was ectopically expressed in the presumptive V2a cells, while the generation of V2a interneurons was significantly suppressed. By contrast, in vsx1 overexpression embryos, normal expression of tal1 in the presumptive V2b cells was suppressed, while the generation of V2a interneuron was expanded. Chromatin immunoprecipitation and electrophoretic mobility shift assays in combination with core consensus sequence mutation analysis further revealed that Vsx1 can directly bind to tal1 promoter and repress tal1 transcription. These results indicate that Vsx1 can directly repress tal1 transcription and plays an essential role in defining V2a interneuron sub-lineage during V2a and V2b sub-lineage diversification in zebrafish.
Collapse
|
2
|
Markitantova Y, Simirskii V. Inherited Eye Diseases with Retinal Manifestations through the Eyes of Homeobox Genes. Int J Mol Sci 2020; 21:E1602. [PMID: 32111086 PMCID: PMC7084737 DOI: 10.3390/ijms21051602] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal development is under the coordinated control of overlapping networks of signaling pathways and transcription factors. The paper was conceived as a review of the data and ideas that have been formed to date on homeobox genes mutations that lead to the disruption of eye organogenesis and result in inherited eye/retinal diseases. Many of these diseases are part of the same clinical spectrum and have high genetic heterogeneity with already identified associated genes. We summarize the known key regulators of eye development, with a focus on the homeobox genes associated with monogenic eye diseases showing retinal manifestations. Recent advances in the field of genetics and high-throughput next-generation sequencing technologies, including single-cell transcriptome analysis have allowed for deepening of knowledge of the genetic basis of inherited retinal diseases (IRDs), as well as improve their diagnostics. We highlight some promising avenues of research involving molecular-genetic and cell-technology approaches that can be effective for IRDs therapy. The most promising neuroprotective strategies are aimed at mobilizing the endogenous cellular reserve of the retina.
Collapse
|
3
|
Hardwick LJ, Philpott A. xNgn2 induces expression of predominantly sensory neuron markers in Xenopus whole embryo ectoderm but induces mixed subtype expression in isolated ectoderm explants. Wellcome Open Res 2018. [DOI: 10.12688/wellcomeopenres.14911.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proneural basic-helix-loop-helix (bHLH) proteins, such as Neurogenin2 (Ngn2) and Ascl1, are critical regulators at the onset of neuronal differentiation. Endogenously they have largely complementary expression patterns, and have conserved roles in the specification of distinct neuronal subtypes. InXenopusembryos, xNgn2 is the master regulator of primary neurogenesis forming sensory, inter- and motor neurons within the neural plate, while xAscl1 is the master regulator of autonomic neurogenesis, forming noradrenergic neurons in the antero-ventral region of the embryo. Here we characterise neuronal subtype identity of neurons induced by xNgn2 in the ectoderm of wholeXenopusembryos in comparison with xAscl1, and in ectodermal “animal cap” explants. We find that the transcriptional cascades mediating primary and autonomic neuron formation are distinct, and while xNgn2 and xAscl1 can upregulate genes associated with a non-endogenous cascade, this expression is spatially restricted within the embryo. xNgn2 is more potent than xAscl1 at inducing primary neurogenesis as assayed by neural-β-tubulin. In ectoderm of the intact embryo, these induced primary neurons have sensory characteristics with no upregulation of motor neuron markers. In contrast, xNgn2 is able to up-regulate both sensory and motor neuron markers in naïve ectoderm of animal cap explants, suggesting a non-permissive environment for motor identity in the patterned ectoderm of the whole embryo.
Collapse
|
4
|
Le Blay K, Préau L, Morvan-Dubois G, Demeneix B. Expression of the inactivating deiodinase, Deiodinase 3, in the pre-metamorphic tadpole retina. PLoS One 2018; 13:e0195374. [PMID: 29641587 PMCID: PMC5895027 DOI: 10.1371/journal.pone.0195374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/21/2018] [Indexed: 01/27/2023] Open
Abstract
Thyroid hormone (TH) orchestrates amphibian metamorphosis. Thus, this developmental phase is often used to study TH-dependent responses in specific tissues. However, TH signaling appears early in development raising the question of the control of TH availability in specific cell types prior to metamorphosis. TH availability is under strict temporal and tissue-specific control by deiodinases. We examined the expression of the TH-inactivating enzyme, deiodinase type 3 (D3), during early retinal development. To this end we created a Xenopus laevis transgenic line expressing GFP from the Xenopus dio3 promoter region (pdio3) and followed pdio3-GFP expression in pre-metamorphic tadpoles. To validate retinal GFP expression in the transgenic line as a function of dio3 promoter activity, we used in situ hybridization to compare endogenous dio3 expression to reporter-driven GFP activity. Retinal expression of dio3 increased during pre-metamorphosis through stages NF41, 45 and 48. Both sets of results show dio3 to have cell-specific, dynamic expression in the pre-metamorphic retina. At stage NF48, dio3 expression co-localised with markers for photoreceptors, rods, Opsin-S cones and bipolar neurons. In contrast, in post-metamorphic juveniles dio3 expression was reduced and spatially confined to certain photoreceptors and amacrine cells. We compared dio3 expression at stages NF41 and NF48 with TH-dependent transcriptional responses using another transgenic reporter line: THbZIP-GFP and by analyzing the expression of T3-regulated genes in distinct TH availability contexts. At stage NF48, the majority of retinal cells expressing dio3 were negative for T3 signaling. Notably, most ganglion cells were virtually both dio3-free and T3-responsive. The results show that dio3 can reduce TH availability at the cellular scale. Further, a reduction in dio3 expression can trigger fine-tuned T3 action in cell-type specific maturation at the right time, as exemplified here in photoreceptor survival in the pre-metamorphic retina.
Collapse
Affiliation(s)
- Karine Le Blay
- Département Adaptation du Vivant, UMR CNRS, Evolution des Régulations Endocriniennes, Muséum National d’Histoire Naturelle, Paris, France
| | - Laëtitia Préau
- Zoologisches Institut, Zell-und Entwicklungsbiologie, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ghislaine Morvan-Dubois
- Département Adaptation du Vivant, UMR CNRS, Evolution des Régulations Endocriniennes, Muséum National d’Histoire Naturelle, Paris, France
| | - Barbara Demeneix
- Département Adaptation du Vivant, UMR CNRS, Evolution des Régulations Endocriniennes, Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
5
|
Abstract
Neural basic helix-loop helix (bHLH) transcription factors promote progenitor cell differentiation by activation of downstream target genes that coordinate neuronal differentiation. Here we characterize a neural bHLH target gene in Xenopus laevis, vexin (vxn; previously sbt1), that is homologous to human c8orf46 and is conserved across vertebrate species. C8orf46 has been implicated in cancer progression, but its function is unknown. Vxn is transiently expressed in differentiating progenitors in the developing central nervous system (CNS), and is required for neurogenesis in the neural plate and retina. Its function is conserved, since overexpression of either Xenopus or mouse vxn expands primary neurogenesis and promotes early retinal cell differentiation in cooperation with neural bHLH factors. Vxn protein is localized to the cell membrane and the nucleus, but functions in the nucleus to promote neural differentiation. Vxn inhibits cell proliferation, and works with the cyclin-dependent kinase inhibitor p27Xic1 (cdkn1b) to enhance neurogenesis and increase levels of the proneural protein Neurog2. We propose that vxn provides a key link between neural bHLH activity and execution of the neurogenic program.
Collapse
|
6
|
Sreekanth S, Rasheed VA, Soundararajan L, Antony J, Saikia M, Sivakumar KC, Das AV. miR Cluster 143/145 Directly Targets Nrl and Regulates Rod Photoreceptor Development. Mol Neurobiol 2017; 54:8033-8049. [PMID: 27878762 DOI: 10.1007/s12035-016-0237-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Abstract
Retinal histogenesis requires coordinated and temporal functioning of factors by which different cell types are generated from multipotent progenitors. Development of rod photoreceptors is regulated by multiple transcription factors, and Nrl is one of the major factors involved in their fate specification. Presence or absence of Nrl at the postnatal stages decides the generation of cone photoreceptors or other later retinal cells. This suggests the need for regulated expression of Nrl in order to accelerate the generation of other cell types during retinal development. We found that miR cluster 143/145, comprising miR-143 and miR-145, targets and imparts a posttranscriptional inhibition of Nrl. Expression of both miRNAs was differentially regulated during retinal development and showed least expression at PN1 stage in which most of the rod photoreceptors are generated. Downregulation of rod photoreceptor regulators and markers upon miR cluster 143/145 overexpression demonstrated that this cluster indeed negatively regulates rod photoreceptors. Further, we prove that Nrl positively regulates miR cluster 143/145, thus establishing a feedback loop regulatory mechanism. This may be one possible mechanism by which Nrl is posttranscriptionally regulated to facilitate the generation of other cell types in retina.
Collapse
Affiliation(s)
- Sreekumaran Sreekanth
- Molecular Neurobiology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Vazhanthodi A Rasheed
- Neuro Stem Cell Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Lalitha Soundararajan
- Neuro Stem Cell Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Jayesh Antony
- Cancer Research Program-2, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Minakshi Saikia
- Cancer Research Program-2, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | | | - Ani V Das
- Molecular Neurobiology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
- Cancer Research Program-9, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
7
|
Francius C, Hidalgo-Figueroa M, Debrulle S, Pelosi B, Rucchin V, Ronellenfitch K, Panayiotou E, Makrides N, Misra K, Harris A, Hassani H, Schakman O, Parras C, Xiang M, Malas S, Chow RL, Clotman F. Vsx1 Transiently Defines an Early Intermediate V2 Interneuron Precursor Compartment in the Mouse Developing Spinal Cord. Front Mol Neurosci 2016; 9:145. [PMID: 28082864 PMCID: PMC5183629 DOI: 10.3389/fnmol.2016.00145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/30/2016] [Indexed: 12/30/2022] Open
Abstract
Spinal ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities. Interneurons arise during embryonic development from distinct progenitor domains distributed orderly along the dorso-ventral axis of the neural tube. A single ventral progenitor population named p2 generates at least five V2 interneuron subsets. Whether the diversification of V2 precursors into multiple subsets occurs within the p2 progenitor domain or involves a later compartment of early-born V2 interneurons remains unsolved. Here, we provide evidence that the p2 domain produces an intermediate V2 precursor compartment characterized by the transient expression of the transcriptional repressor Vsx1. These cells display an original repertoire of cellular markers distinct from that of any V2 interneuron population. They have exited the cell cycle but have not initiated neuronal differentiation. They coexpress Vsx1 and Foxn4, suggesting that they can generate the known V2 interneuron populations as well as possible additional V2 subsets. Unlike V2 interneurons, the generation of Vsx1-positive precursors does not depend on the Notch signaling pathway but expression of Vsx1 in these cells requires Pax6. Hence, the p2 progenitor domain generates an intermediate V2 precursor compartment, characterized by the presence of the transcriptional repressor Vsx1, that contributes to V2 interneuron development.
Collapse
Affiliation(s)
- Cédric Francius
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - María Hidalgo-Figueroa
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Stéphanie Debrulle
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Barbara Pelosi
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Vincent Rucchin
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | | | | | | | - Kamana Misra
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University - Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
| | - Audrey Harris
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Hessameh Hassani
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM)Paris, France
| | - Olivier Schakman
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Carlos Parras
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM)Paris, France
| | - Mengqing Xiang
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University - Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Stavros Malas
- The Cyprus Institute of Neurology and GeneticsNicosia, Cyprus
| | - Robert L. Chow
- Department of Biology, University of VictoriaVictoria, BC, Canada
| | - Frédéric Clotman
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| |
Collapse
|
8
|
Sun L, Li H, Xu X, Xiao G, Luo C. MicroRNA-20a is essential for normal embryogenesis by targeting vsx1 mRNA in fish. RNA Biol 2015; 12:615-27. [PMID: 25833418 DOI: 10.1080/15476286.2015.1034919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
MicroRNAs are major post-transcriptional regulators of gene expression and have essential roles in diverse developmental processes. In vertebrates, some regulatory genes play different roles at different developmental stages. These genes are initially transcribed in a wide embryonic region but restricted within distinct cell types at subsequent stages during development. Therefore, post-transcriptional regulation is required for the transition from one developmental stage to the next and the establishment of different cell identities. However, the regulation of many multiple functional genes at post-transcription level during development remains unknown. Here we show that miR-20a can target the mRNA of vsx1, a multiple functional gene, at the 3'-UTR and inhibit protein expression in both goldfish and zebrafish. The expression of miR-20a is initiated ubiquitously at late gastrula stage and exhibits a tissue-specific pattern in the developing retina. Inhibition of vsx1 3'-UTR mediated protein expression occurs when and where miR-20a is expressed. Decoying miR-20a resulted in severely impaired head, eye and trunk formation in association with excessive generation of vsx1 marked neurons in the spinal cord and defects of somites in the mesoderm region. These results demonstrate that miR-20a is essential for normal embryogenesis by restricting Vsx1 expression in goldfish and zebrafish, and that post-transcriptional regulation is an essential mechanism for Vsx1 playing different roles in diverse developmental processes.
Collapse
Affiliation(s)
- Lei Sun
- a College of Life Sciences; Zhejiang University ; Hangzhou , Zhejiang , China
| | | | | | | | | |
Collapse
|
9
|
Hardwick LJA, Philpott A. Multi-site phosphorylation regulates NeuroD4 activity during primary neurogenesis: a conserved mechanism amongst proneural proteins. Neural Dev 2015; 10:15. [PMID: 26084567 PMCID: PMC4494719 DOI: 10.1186/s13064-015-0044-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/10/2015] [Indexed: 02/04/2023] Open
Abstract
Background Basic Helix Loop Helix (bHLH) proneural transcription factors are master regulators of neurogenesis that act at multiple stages in this process. We have previously demonstrated that multi-site phosphorylation of two members of the proneural protein family, Ngn2 and Ascl1, limits their ability to drive neuronal differentiation when cyclin-dependent kinase levels are high, as would be found in rapidly cycling cells. Here we investigate potential phospho-regulation of proneural protein NeuroD4 (also known as Xath3), the Xenopus homologue of Math3/NeuroM, that functions downstream of Ngn2 in the neurogenic cascade. Results Using the developing Xenopus embryo system, we show that NeuroD4 is expressed and phosphorylated during primary neurogenesis, and this phosphorylation limits its ability to drive neuronal differentiation. Phosphorylation of up to six serine/threonine-proline sites contributes additively to regulation of NeuroD4 proneural activity without altering neuronal subtype specification, and number rather than location of available phospho-sites is the key for limiting NeuroD4 activity. Mechanistically, a phospho-mutant NeuroD4 displays increased protein stability and enhanced chromatin binding relative to wild-type NeuroD4, resulting in transcriptional up-regulation of a range of target genes that further promote neuronal differentiation. Conclusions Multi-site phosphorylation on serine/threonine-proline pairs is a widely conserved mechanism of limiting proneural protein activity, where it is the number of phosphorylated sites, rather than their location that determines protein activity. Hence, multi-site phosphorylation is very well suited to allow co-ordination of proneural protein activity with the cellular proline-directed kinase environment. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0044-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
10
|
Cremisi F. MicroRNAs and cell fate in cortical and retinal development. Front Cell Neurosci 2013; 7:141. [PMID: 24027496 PMCID: PMC3760135 DOI: 10.3389/fncel.2013.00141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/15/2013] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in crucial steps of neurogenesis, neural differentiation, and neuronal plasticity. Here we review experimental evidence suggesting that miRNAs may regulate the histogenesis of the cerebral cortex and neural retina. Both cortical and retinal early progenitor cells are multipotent, that is, they can generate different types of cortical or retinal cells, respectively, in one lineage. In both cortical and retinal development, the precise timing of activation of cell fate transcription factors results in a stereotyped schedule of generation of the different types of neurons. Emerging evidence indicates that miRNAs may play an important role in regulating such temporal programing of neuronal differentiation. Neuronal subtypes of the cortex and retina exhibit distinct miRNA signatures, implying that miRNA codes may be used to specify different types of neurons. Interfering with global miRNA activity changes the ratio of the different types of neurons produced. In fact, there are examples of cell fate genes that are regulated at the translational level, both in retinogenesis and in corticogenesis. A model depicting how miRNAs might orchestrate both the type and the birth of different neurons is presented and discussed. Glossary. • Lineage: the temporally ordered cell progeny of an individual progenitor cell. • Specification: the (reversible) process by which a cell becomes capable of, and biased toward, a particular fate. • Commitment: the process by which cell fate is fully determined and can no longer be affected by external cues. • Potency: the entire complement of cells that a progenitor can ultimately produce. • Multipotency: the ability to give rise to more than one cell type. • Progenitor: a dividing cell that, in contrast to a stem cell, cannot proliferate indefinitely. • Antago-miR: modified antisense oligonucleotide that blocks the activity of a miRNA. • Heterochronic neuron: type of neurons that is generated at inappropriate times of development. • Neuron birth date: the time of the last mitosis of a neuronal cell.
Collapse
|
11
|
Aldiri I, Moore KB, Hutcheson DA, Zhang J, Vetter ML. Polycomb repressive complex PRC2 regulates Xenopus retina development downstream of Wnt/β-catenin signaling. Development 2013; 140:2867-78. [PMID: 23739135 DOI: 10.1242/dev.088096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The histone methyltransferase complex PRC2 controls key steps in developmental transitions and cell fate choices; however, its roles in vertebrate eye development remain unknown. Here, we report that in Xenopus, PRC2 regulates the progression of retinal progenitors from proliferation to differentiation. We show that the PRC2 core components are enriched in retinal progenitors and downregulated in differentiated cells. Knockdown of the PRC2 core component Ezh2 leads to reduced retinal progenitor proliferation, in part due to upregulation of the Cdk inhibitor p15(Ink4b). In addition, although PRC2 knockdown does not alter eye patterning, retinal progenitor gene expression or expression of the neural competence factor Sox2, it does cause suppression of proneural bHLH gene expression, indicating that PRC2 is crucial for the initiation of neural differentiation in the retina. Consistent with this, knocking down or blocking PRC2 function constrains the generation of most retinal neural cell types and promotes a Müller glial cell fate decision. We also show that Wnt/β-catenin signaling acting through the receptor Frizzled 5, but independent of Sox2, regulates expression of key PRC2 subunits in the developing retina. This is consistent with a role for this pathway in coordinating proliferation and the transition to neurogenesis in the Xenopus retina. Our data establish PRC2 as a regulator of proliferation and differentiation during eye development.
Collapse
Affiliation(s)
- Issam Aldiri
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
12
|
Xenopus Bsx links daily cell cycle rhythms and pineal photoreceptor fate. Proc Natl Acad Sci U S A 2010; 107:6352-7. [PMID: 20308548 DOI: 10.1073/pnas.1000854107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the developing central nervous system, the cell cycle clock plays a crucial role in determining cell fate specification. A second clock, the circadian oscillator, generates daily rhythms of cell cycle progression. Although these two clocks interact, the mechanisms linking circadian cell cycle progression and cell fate determination are still poorly understood. A convenient system to address this issue is the pineal organ of lower vertebrates, which contains only two neuronal types, photoreceptors and projection neurons. In particular, photoreceptors constitute the core of the pineal circadian system, being able to transduce daily light inputs into the rhythmical production of melatonin. However, the genetic program leading to photoreceptor fate largely remains to be deciphered. Here, we report a previously undescribed function for the homeobox gene Bsx in controlling pineal proliferation and photoreceptor fate in Xenopus. We show that Xenopus Bsx (Xbsx) is expressed rhythmically in postmitotic photoreceptor precursors, reaching a peak during the night, with a cycle that is complementary to the daily rhythms of S-phase entry displayed by pineal cells. Xbsx knockdown results in increased night levels of pineal proliferation, whereas activation of a GR-Xbsx protein flattens the daily rhythms of S-phase entry to the lowest level. Furthermore, evidence is presented that Xbsx is necessary and sufficient to promote a photoreceptor fate. Altogether, these data indicate that Xbsx plays a dual role in contributing to shape the profile of the circadian cell cycle progression and in the specification of pineal photoreceptors, thus acting as a unique link between these two events.
Collapse
|
13
|
Abstract
Cell identity is acquired in different brain structures according to a stereotyped timing schedule, by accommodating the proliferation of multipotent progenitor cells and the generation of distinct types of mature nerve cells at precise times. However, the molecular mechanisms coupling the identity of a specific neuron and its birth date are poorly understood. In the neural retina, only late progenitor cells that divide slowly can become bipolar neurons, by the activation of otx2 and vsx1 genes. In Xenopus, we found that Xotx2 and Xvsx1 translation is inhibited in early progenitor cells that divide rapidly by a set of cell cycle-related microRNAs (miRNAs). Through expression and functional screenings, we selected 4 miRNAs--mir-129, mir-155, mir-214, and mir-222--that are highly expressed at early developmental stages in the embryonic retina and bind to the 3' UTR of Xotx2 and Xvsx1 mRNAs inhibiting their translation. The functional inactivation of these miRNAs in vivo releases the inhibition, supporting the generation of additional bipolar cells. We propose a model in which the proliferation rate and the age of a retinal progenitor are linked to each other and determine the progenitor fate through the activity of a set of miRNAs.
Collapse
|
14
|
Agathocleous M, Iordanova I, Willardsen MI, Xue XY, Vetter ML, Harris WA, Moore KB. A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development 2009; 136:3289-99. [PMID: 19736324 DOI: 10.1242/dev.040451] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Progenitor cells in the central nervous system must leave the cell cycle to become neurons and glia, but the signals that coordinate this transition remain largely unknown. We previously found that Wnt signaling, acting through Sox2, promotes neural competence in the Xenopus retina by activating proneural gene expression. We now report that Wnt and Sox2 inhibit neural differentiation through Notch activation. Independently of Sox2, Wnt stimulates retinal progenitor proliferation and this, when combined with the block on differentiation, maintains retinal progenitor fates. Feedback inhibition by Sox2 on Wnt signaling and by the proneural transcription factors on Sox2 mean that each element of the core pathway activates the next element and inhibits the previous one, providing a directional network that ensures retinal cells make the transition from progenitors to neurons and glia.
Collapse
Affiliation(s)
- Michalis Agathocleous
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Willardsen MI, Suli A, Pan Y, Marsh-Armstrong N, Chien CB, El-Hodiri H, Brown NL, Moore KB, Vetter ML. Temporal regulation of Ath5 gene expression during eye development. Dev Biol 2008; 326:471-81. [PMID: 19059393 DOI: 10.1016/j.ydbio.2008.10.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 12/11/2022]
Abstract
During central nervous system development the timing of progenitor differentiation must be precisely controlled to generate the proper number and complement of neuronal cell types. Proneural basic helix-loop-helix (bHLH) transcription factors play a central role in regulating neurogenesis, and thus the timing of their expression must be regulated to ensure that they act at the appropriate developmental time. In the developing retina, the expression of the bHLH factor Ath5 is controlled by multiple signals in early retinal progenitors, although less is known about how these signals are coordinated to ensure correct spatial and temporal pattern of gene expression. Here we identify a key distal Xath5 enhancer and show that this enhancer regulates the early phase of Xath5 expression, while the proximal enhancer we previously identified acts later. The distal enhancer responds to Pax6, a key patterning factor in the optic vesicle, while FGF signaling regulates Xath5 expression through sequences outside of this region. In addition, we have identified an inhibitory element adjacent to the conserved distal enhancer region that is required to prevent premature initiation of expression in the retina. This temporal regulation of Xath5 gene expression is comparable to proneural gene regulation in Drosophila, whereby separate enhancers regulate different temporal phases of expression.
Collapse
Affiliation(s)
- Minde I Willardsen
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kimura Y, Satou C, Higashijima SI. V2a and V2b neurons are generated by the final divisions of pair-producing progenitors in the zebrafish spinal cord. Development 2008; 135:3001-5. [PMID: 18684740 DOI: 10.1242/dev.024802] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The p2 progenitor domain in the ventral spinal cord gives rise to two interneuron subtypes: V2a and V2b. Delta-Notch-mediated cell-cell interactions between postmitotic immature neurons have been implicated in the segregation of neuron subtypes. However, lineage relationships between V2a and V2b neurons have not been reported. We address this issue using Tg[vsx1:GFP] zebrafish, a model system in which high GFP expression is initiated near the final stage of p2 progenitors. Cell fates were followed in progeny using time-lapse microscopy. Results indicate that the vast majority, if not all, of GFP-labeled p2 progenitors divide once to produce V2a/V2b neuron pairs, indicating that V2a and V2b neurons are generated by the asymmetric division of pair-producing progenitor cells. Together with evidence that Notch signaling is involved in the cell fate specification process, our results strongly suggest that Delta-Notch interactions between sister cells play a crucial role in the final outcome of these asymmetric divisions. This mechanism for determining cell fate is similar to asymmetric divisions that occur during Drosophila neurogenesis, where ganglion mother cells divide once to produce distinct neurons. However, unlike in Drosophila, the divisional axes of p2 progenitors in zebrafish were not fixed. We report that the terminal division of pair-producing progenitor cells in vertebrate neurogenesis can reproducibly produce two distinct neurons through a mechanism that may not depend on the orientation of the division axis.
Collapse
Affiliation(s)
- Yukiko Kimura
- National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | | | | |
Collapse
|
17
|
Dullin JP, Locker M, Robach M, Henningfeld KA, Parain K, Afelik S, Pieler T, Perron M. Ptf1a triggers GABAergic neuronal cell fates in the retina. BMC DEVELOPMENTAL BIOLOGY 2007; 7:110. [PMID: 17910758 PMCID: PMC2212653 DOI: 10.1186/1471-213x-7-110] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 10/02/2007] [Indexed: 11/10/2022]
Abstract
Background In recent years, considerable knowledge has been gained on the molecular mechanisms underlying retinal cell fate specification. However, hitherto studies focused primarily on the six major retinal cell classes (five types of neurons of one type of glial cell), and paid little attention to the specification of different neuronal subtypes within the same cell class. In particular, the molecular machinery governing the specification of the two most abundant neurotransmitter phenotypes in the retina, GABAergic and glutamatergic, is largely unknown. In the spinal cord and cerebellum, the transcription factor Ptf1a is essential for GABAergic neuron production. In the mouse retina, Ptf1a has been shown to be involved in horizontal and most amacrine neurons differentiation. Results In this study, we examined the distribution of neurotransmitter subtypes following Ptf1a gain and loss of function in the Xenopus retina. We found cell-autonomous dramatic switches between GABAergic and glutamatergic neuron production, concomitant with profound defects in the genesis of amacrine and horizontal cells, which are mainly GABAergic. Therefore, we investigated whether Ptf1a promotes the fate of these two cell types or acts directly as a GABAergic subtype determination factor. In ectodermal explant assays, Ptf1a was found to be a potent inducer of the GABAergic subtype. Moreover, clonal analysis in the retina revealed that Ptf1a overexpression leads to an increased ratio of GABAergic subtypes among the whole amacrine and horizontal cell population, highlighting its instructive capacity to promote this specific subtype of inhibitory neurons. Finally, we also found that within bipolar cells, which are typically glutamatergic interneurons, Ptf1a is able to trigger a GABAergic fate. Conclusion Altogether, our results reveal for the first time in the retina a major player in the GABAergic versus glutamatergic cell specification genetic pathway.
Collapse
Affiliation(s)
| | - Morgane Locker
- UMR CNRS 8080, Université Paris Sud, Bât. 445, 91405 Orsay, France
| | - Mélodie Robach
- UMR CNRS 8080, Université Paris Sud, Bât. 445, 91405 Orsay, France
| | - Kristine A Henningfeld
- DFG-Center of Molecular Physiology of the Brain, Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Karine Parain
- UMR CNRS 8080, Université Paris Sud, Bât. 445, 91405 Orsay, France
| | - Solomon Afelik
- DFG-Center of Molecular Physiology of the Brain, Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Tomas Pieler
- DFG-Center of Molecular Physiology of the Brain, Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Muriel Perron
- UMR CNRS 8080, Université Paris Sud, Bât. 445, 91405 Orsay, France
| |
Collapse
|
18
|
Onorati M, Cremisi F, Liu Y, He RQ, Barsacchi G, Vignali R. A specific box switches the cell fate determining activity of XOTX2 and XOTX5b in the Xenopus retina. Neural Dev 2007; 2:12. [PMID: 17597530 PMCID: PMC1929070 DOI: 10.1186/1749-8104-2-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Accepted: 06/27/2007] [Indexed: 11/27/2022] Open
Abstract
Background Otx genes, orthologues of the Drosophila orthodenticle gene (otd), play crucial roles in vertebrate brain development. In the Xenopus eye, Xotx2 and Xotx5b promote bipolar and photoreceptor cell fates, respectively. The molecular basis of their differential action is not completely understood, though the carboxyl termini of the two proteins seem to be crucial. To define the molecular domains that make the action of these proteins so different, and to determine whether their retinal abilities are shared by Drosophila OTD, we performed an in vivo molecular dissection of their activity by transfecting retinal progenitors with several wild-type, deletion and chimeric constructs of Xotx2, Xotx5b and otd. Results We identified a small 8–10 amino acid divergent region, directly downstream of the homeodomain, that is crucial for the respective activities of XOTX2 and XOTX5b. In lipofection experiments, the exchange of this 'specificity box' completely switches the retinal activity of XOTX5b into that of XOTX2 and vice versa. Moreover, the insertion of this box into Drosophila OTD, which has no effect on retinal cell fate, endows it with the specific activity of either XOTX protein. Significantly, in cell transfection experiments, the diverse ability of XOTX2 and XOTX5b to synergize with NRL, a cofactor essential for vertebrate rod development, to transactivate the rhodopsin promoter is also switched depending on the box. We also show by GST-pull down that XOTX2 and XOTX5b differentially interact with NRL, though this property is not strictly dependent on the box. Conclusion Our data provide molecular evidence on how closely related homeodomain gene products can differentiate their functions to regulate distinct cell fates. A small 'specificity box' is both necessary and sufficient to confer on XOTX2 and XOTX5b their distinct activities in the developing frog retina and to convert the neutral orthologous OTD protein of Drosophila into a positive and specific XOTX-like retinal regulator. Relatively little is known of what gives developmental specificity to homeodomain regulators. We propose that this box is a major domain of XOTX proteins that provides them with the appropriate developmental specificity in retinal histogenesis.
Collapse
Affiliation(s)
- Marco Onorati
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via G. Carducci 13, 56010 Ghezzano (Pisa), Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italy
| | - Federico Cremisi
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via G. Carducci 13, 56010 Ghezzano (Pisa), Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italy
| | - Yang Liu
- State Key Lab of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Da Tun Road, Chao Yang District, Beijing 100101, China RP
- Dana-Farber Cancer Institute, Jimmy Fund Way, Boston, MA 02115, USA
| | - Rong-Qiao He
- State Key Lab of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Da Tun Road, Chao Yang District, Beijing 100101, China RP
| | - Giuseppina Barsacchi
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via G. Carducci 13, 56010 Ghezzano (Pisa), Italy
- AMBISEN Center, High Technology Center for the Study of the Environmental Damage of the Endocrine and Nervous System, Università di Pisa, Pisa, Italy
| | - Robert Vignali
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via G. Carducci 13, 56010 Ghezzano (Pisa), Italy
- AMBISEN Center, High Technology Center for the Study of the Environmental Damage of the Endocrine and Nervous System, Università di Pisa, Pisa, Italy
| |
Collapse
|
19
|
Clark AM, Yun S, Veien ES, Wu YY, Chow RL, Dorsky RI, Levine EM. Negative regulation of Vsx1 by its paralog Chx10/Vsx2 is conserved in the vertebrate retina. Brain Res 2007; 1192:99-113. [PMID: 17919464 DOI: 10.1016/j.brainres.2007.06.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/08/2007] [Accepted: 06/13/2007] [Indexed: 01/03/2023]
Abstract
Chx10/Vsx2 and Vsx1 are the only Paired-like CVC (Prd-L:CVC) homeobox genes in the mouse genome. Both are expressed in the retina and have important but distinct roles in retinal development. Mutations in Chx10/Vsx2 cause reduced retinal progenitor cell (RPC) proliferation and an absence of bipolar cells, while mutations in Vsx1 impair differentiation of cone bipolar cells. Given their structural similarities and importance in retinal development, we sought to determine if a regulatory interaction exists between these genes and whether inactivation of both genes blocks initiation of retinal development. We found that Chx10/Vsx2 binds to a specific sequence in the Vsx1 5'-intergenic region and represses the activity of a luciferase reporter under the control of the Vsx1 promoter. This is consistent with our observation that there is an inverse relationship between the levels of Chx10/Vsx2 and Vsx1 immunostaining within the bipolar cell class. Furthermore, Vsx1 mRNA is upregulated in the RPCs of Chx10/Vsx2 deficient mice and zebrafish embryos injected with a chx10/vsx2 morpholino. In mice deficient for both Chx10/Vsx2 and Vsx1 and zebrafish embryos co-injected with chx10/Vsx2 and vsx1 morpholinos, the changes in embryonic retinal development and marker expression are similar in magnitude to embryos with Chx10/Vsx2 loss of function only. From these studies, we propose that Vsx1 is a direct target of Chx10/Vsx2-mediated transcriptional repression. Although Vsx1 mRNA is upregulated in Chx10/Vsx2 deficient RPCs, Vsx1 does not genetically compensate for loss of Chx10/Vsx2, demonstrating that Prd-L:CVC genes, although important, are not absolutely required to initiate retinal development.
Collapse
Affiliation(s)
- Anna M Clark
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | |
Collapse
|