1
|
Král J, Sember A, Divišová K, Kořínková T, Reyes Lerma AC, Ávila Herrera IM, Forman M, Šťáhlavský F, Musilová J, Torres Kalme S, Palacios Vargas JG, Zrzavá M, Vrbová I, Moreno-González JA, Cushing PE, Gromov AV, Šebestiánová Š, Šlechtová VB, Prendini L, Bird TL. Advances in Understanding the Karyotype Evolution of Tetrapulmonata and Two Other Arachnid Taxa, Ricinulei and Solifugae. Genes (Basel) 2025; 16:207. [PMID: 40004536 PMCID: PMC11855311 DOI: 10.3390/genes16020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Arachnids are a megadiverse arthropod group. The present study investigated the chromosomes of pedipalpid tetrapulmonates (orders Amblypygi, Thelyphonida, Schizomida) and two arachnid orders of uncertain phylogenetic placement, Ricinulei and Solifugae, to reconstruct their karyotype evolution. Except for amblypygids, the cytogenetics of these arachnid orders was almost unknown prior to the present study. METHODS Chromosomes were investigated using methods of standard (Giemsa-stained preparations, banding techniques) and molecular cytogenetics (fluorescence in situ hybridization, comparative genomic hybridization). RESULTS AND CONCLUSIONS New data for 38 species, combined with previously published data, suggest that ancestral arachnids possessed low to moderate 2n (22-40), monocentric chromosomes, one nucleolus organizer region (NOR), low levels of heterochromatin and recombinations, and no or homomorphic sex chromosomes. Karyotypes of Pedipalpi and Solifugae diversified via centric fusions, pericentric inversions, and changes in the pattern of NORs and, in solifuges, also through tandem fusions. Some solifuges display an enormous amount of constitutive heterochromatin and high NOR number. It is hypothesized that the common ancestor of amblypygids, thelyphonids, and spiders exhibited a homomorphic XY system, and that telomeric heterochromatin and NORs were involved in the evolution of amblypygid sex chromosomes. The new findings support the Cephalosomata clade (acariforms, palpigrades, and solifuges). Hypotheses concerning the origin of acariform holocentric chromosomes are presented. Unlike current phylogenetic hypotheses, the results suggest a sister relationship between Schizomida and a clade comprising other tetrapulmonates as well as a polyploidization in the common ancestor of the clade comprising Araneae, Amblypygi, and Thelyphonida.
Collapse
Affiliation(s)
- Jiří Král
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (K.D.); (A.C.R.L.); (I.M.Á.H.); (M.F.); (J.M.); (S.T.K.)
| | - Alexandr Sember
- Institute of Animal Physiology and Genetics AS CR, Rumburská 89, 277 21 Liběchov, Czech Republic; (A.S.); (V.B.Š.)
| | - Klára Divišová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (K.D.); (A.C.R.L.); (I.M.Á.H.); (M.F.); (J.M.); (S.T.K.)
| | | | - Azucena C. Reyes Lerma
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (K.D.); (A.C.R.L.); (I.M.Á.H.); (M.F.); (J.M.); (S.T.K.)
| | - Ivalú M. Ávila Herrera
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (K.D.); (A.C.R.L.); (I.M.Á.H.); (M.F.); (J.M.); (S.T.K.)
| | - Martin Forman
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (K.D.); (A.C.R.L.); (I.M.Á.H.); (M.F.); (J.M.); (S.T.K.)
| | - František Šťáhlavský
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic;
| | - Jana Musilová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (K.D.); (A.C.R.L.); (I.M.Á.H.); (M.F.); (J.M.); (S.T.K.)
- Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 161 00 Prague, Czech Republic
| | - Sabrina Torres Kalme
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (K.D.); (A.C.R.L.); (I.M.Á.H.); (M.F.); (J.M.); (S.T.K.)
| | - José G. Palacios Vargas
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City 04510, Mexico;
| | - Magda Zrzavá
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic;
- Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Iva Vrbová
- Department of Molecular Cytogenetics, Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic;
| | - Jairo A. Moreno-González
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA; (J.A.M.-G.); (L.P.)
| | - Paula E. Cushing
- Department of Zoology, Denver Museum of Nature and Science, 2001 Colorado Blvd., Denver, CO 80205, USA;
| | - Alexander V. Gromov
- Senckenberg Research Institute, Arachnology, Mertonstrasse 17-21, 60325 Frankfurt, Germany;
| | - Štěpánka Šebestiánová
- Institute of Physiotherapy and Selected Medical Disciplines, Faculty of Health and Social Sciences, University of South Bohemia, J. Boreckého 1167/27, 370 11 České Budějovice, Czech Republic;
| | - Vendula Bohlen Šlechtová
- Institute of Animal Physiology and Genetics AS CR, Rumburská 89, 277 21 Liběchov, Czech Republic; (A.S.); (V.B.Š.)
| | - Lorenzo Prendini
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA; (J.A.M.-G.); (L.P.)
| | - Tharina L. Bird
- Ditsong National Museum of Natural History, 432 Paul Kruger Street, Pretoria 0001, South Africa;
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0083, South Africa
| |
Collapse
|
2
|
Klementz BC, Brenneis G, Hinne IA, Laumer EM, Neu SM, Hareid GM, Gainett G, Setton EVW, Simian C, Vrech DE, Joyce I, Barnett AA, Patel NH, Harvey MS, Peretti AV, Gulia-Nuss M, Sharma PP. A Novel Expression Domain of extradenticle Underlies the Evolutionary Developmental Origin of the Chelicerate Patella. Mol Biol Evol 2024; 41:msae188. [PMID: 39235104 PMCID: PMC11422720 DOI: 10.1093/molbev/msae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/02/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Neofunctionalization of duplicated gene copies is thought to be an important process underlying the origin of evolutionary novelty and provides an elegant mechanism for the origin of new phenotypic traits. One putative case where a new gene copy has been linked to a novel morphological trait is the origin of the arachnid patella, a taxonomically restricted leg segment. In spiders, the origin of this segment has been linked to the origin of the paralog dachshund-2, suggesting that a new gene facilitated the expression of a new trait. However, various arachnid groups that possess patellae do not have a copy of dachshund-2, disfavoring the direct link between gene origin and trait origin. We investigated the developmental genetic basis for patellar patterning in the harvestman Phalangium opilio, which lacks dachshund-2. Here, we show that the harvestman patella is established by a novel expression domain of the transcription factor extradenticle. Leveraging this definition of patellar identity, we surveyed targeted groups across chelicerate phylogeny to assess when this trait evolved. We show that a patellar homolog is present in Pycnogonida (sea spiders) and various arachnid orders, suggesting a single origin of the patella in the ancestor of Chelicerata. A potential loss of the patella is observed in Ixodida. Our results suggest that the modification of an ancient gene, rather than the neofunctionalization of a new gene copy, underlies the origin of the patella. Broadly, this work underscores the value of comparative data and broad taxonomic sampling when testing hypotheses in evolutionary developmental biology.
Collapse
Affiliation(s)
- Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| | - Georg Brenneis
- Unit Integrative Zoologie, Department Evolutionsbiologie, Universität Wien, Vienna, Austria
| | - Isaac A Hinne
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Ethan M Laumer
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| | - Sophie M Neu
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| | - Grace M Hareid
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children,'s Hospital, Boston, MA, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Catalina Simian
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Cientifícas Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - David E Vrech
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Cientifícas Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Isabella Joyce
- Department of Biology, DeSales University, Center Valley, PA, USA
| | - Austen A Barnett
- Department of Biology, DeSales University, Center Valley, PA, USA
| | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA, USA
- Organismal Biology & Anatomy, University of Chicago, Chicago, IL, USA
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, WA, Australia
| | - Alfredo V Peretti
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Cientifícas Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Gainett G, Klementz BC, Setton EVW, Simian C, Iuri HA, Edgecombe GD, Peretti AV, Sharma PP. A plurality of morphological characters need not equate with phylogenetic accuracy: A rare genomic change refutes the placement of Solifugae and Pseudoscorpiones in Haplocnemata. Evol Dev 2024; 26:e12467. [PMID: 38124251 DOI: 10.1111/ede.12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Recent advances in higher-level invertebrate phylogeny have leveraged shared features of genomic architecture to resolve contentious nodes across the tree of life. Yet, the interordinal relationships within Chelicerata have remained recalcitrant given competing topologies in recent molecular analyses. As such, relationships between topologically unstable orders remain supported primarily by morphological cladistic analyses. Solifugae, one such unstable chelicerate order, has long been thought to be the sister group of Pseudoscorpiones, forming the clade Haplocnemata, on the basis of eight putative morphological synapomorphies. The discovery, however, of a shared whole genome duplication placing Pseudoscorpiones in Arachnopulmonata provides the opportunity for a simple litmus test evaluating the validity of Haplocnemata. Here, we present the first developmental transcriptome of a solifuge (Titanopuga salinarum) and survey copy numbers of the homeobox genes for evidence of systemic duplication. We find that over 70% of the identified homeobox genes in T. salinarum are retained in a single copy, while representatives of the arachnopulmonates retain orthologs of those genes as two or more copies. Our results refute the placement of Solifugae in Haplocnemata. Subsequent reevaluation of putative interordinal morphological synapomorphies among chelicerates reveals a high incidence of homoplasy, reversals, and inaccurate coding within Haplocnemata and other small clades, as well as Arachnida more broadly, suggesting existing morphological character matrices are insufficient to resolve chelicerate phylogeny.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catalina Simian
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Laboratorio de Biología Reproductiva y Evolución, Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - Hernán A Iuri
- División de Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| | - Gregory D Edgecombe
- Department of Earth Sciences, Division ES Invertebrates and Plants Palaeobiology, The Natural History Museum, London, UK
| | - Alfredo V Peretti
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Laboratorio de Biología Reproductiva y Evolución, Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Klementz BC, Brenneis G, Hinne IA, Laumer EM, Neu SM, Hareid GM, Gainett G, Setton EVW, Simian C, Vrech DE, Joyce I, Barnett AA, Patel NH, Harvey MS, Peretti AV, Gulia-Nuss M, Sharma PP. A novel expression domain of extradenticle underlies the evolutionary developmental origin of the chelicerate patella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594547. [PMID: 38826321 PMCID: PMC11142128 DOI: 10.1101/2024.05.16.594547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Neofunctionalization of duplicated gene copies is thought to be an important process underlying the origin of evolutionary novelty and provides an elegant mechanism for the origin of new phenotypic traits. One putative case where a new gene copy has been linked to a novel morphological trait is the origin of the arachnid patella, a taxonomically restricted leg segment. In spiders, the origin of this segment has been linked to the origin of the paralog dachshund-2 , suggesting that a new gene facilitated the expression of a new trait. However, various arachnid groups that possess patellae do not have a copy of dachshund-2 , disfavoring the direct link between gene origin and trait origin. We investigated the developmental genetic basis for patellar patterning in the harvestman Phalangium opilio , which lacks dachshund-2 . Here, we show that the harvestman patella is established by a novel expression domain of the transcription factor extradenticle . Leveraging this definition of patellar identity, we surveyed targeted groups across chelicerate phylogeny to assess when this trait evolved. We show that a patellar homolog is present in Pycnogonida (sea spiders) and various arachnid orders, suggesting a single origin of the patella in the ancestor of Chelicerata. A potential loss of the patella is observed in Ixodida. Our results suggest that the modification of an ancient gene, rather than the neofunctionalization of a new gene copy, underlies the origin of the patella. Broadly, this work underscores the value of comparative data and broad taxonomic sampling when testing hypotheses in evolutionary developmental biology.
Collapse
|
5
|
Medina-Jiménez BI, Budd GE, Janssen R. Single-cell RNA sequencing of mid-to-late stage spider embryos: new insights into spider development. BMC Genomics 2024; 25:150. [PMID: 38326752 PMCID: PMC10848406 DOI: 10.1186/s12864-023-09898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The common house spider Parasteatoda tepidariorum represents an emerging new model organism of arthropod evolutionary and developmental (EvoDevo) studies. Recent technical advances have resulted in the first single-cell sequencing (SCS) data on this species allowing deeper insights to be gained into its early development, but mid-to-late stage embryos were not included in these pioneering studies. RESULTS Therefore, we performed SCS on mid-to-late stage embryos of Parasteatoda and characterized resulting cell clusters by means of in-silico analysis (comparison of key markers of each cluster with previously published information on these genes). In-silico prediction of the nature of each cluster was then tested/verified by means of additional in-situ hybridization experiments with additional markers of each cluster. CONCLUSIONS Our data show that SCS data reliably group cells with similar genetic fingerprints into more or less distinct clusters, and thus allows identification of developing cell types on a broader level, such as the distinction of ectodermal, mesodermal and endodermal cell lineages, as well as the identification of distinct developing tissues such as subtypes of nervous tissue cells, the developing heart, or the ventral sulcus (VS). In comparison with recent other SCS studies on the same species, our data represent later developmental stages, and thus provide insights into different stages of developing cell types and tissues such as differentiating neurons and the VS that are only present at these later stages.
Collapse
Affiliation(s)
- Brenda I Medina-Jiménez
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| |
Collapse
|
6
|
Santibáñez-López CE, Ojanguren-Affilastro AA, Graham MR, Sharma PP. Congruence between ultraconserved element-based matrices and phylotranscriptomic datasets in the scorpion Tree of Life. Cladistics 2023; 39:533-547. [PMID: 37401727 DOI: 10.1111/cla.12551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 07/05/2023] Open
Abstract
Scorpions are ancient and historically renowned for their potent venom. Traditionally, the systematics of this group of arthropods was supported by morphological characters, until recent phylogenomic analyses (using RNAseq data) revealed most of the higher-level taxa to be non-monophyletic. While these phylogenomic hypotheses are stable for almost all lineages, some nodes have been hard to resolve due to minimal taxonomic sampling (e.g. family Chactidae). In the same line, it has been shown that some nodes in the Arachnid Tree of Life show disagreement between hypotheses generated using transcritptomes and other genomic sources such as the ultraconserved elements (UCEs). Here, we compared the phylogenetic signal of transcriptomes vs. UCEs by retrieving UCEs from new and previously published scorpion transcriptomes and genomes, and reconstructed phylogenies using both datasets independently. We reexamined the monophyly and phylogenetic placement of Chactidae, sampling an additional chactid species using both datasets. Our results showed that both sets of genome-scale datasets recovered highly similar topologies, with Chactidae rendered paraphyletic owing to the placement of Nullibrotheas allenii. As a first step toward redressing the systematics of Chactidae, we establish the family Anuroctonidae (new family) to accommodate the genus Anuroctonus.
Collapse
Affiliation(s)
| | | | - Matthew R Graham
- Department of Biology, Eastern Connecticut State University, Willimantic, CT, 06226, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
7
|
Sharma PP. The Impact of Whole Genome Duplication on the Evolution of the Arachnids. Integr Comp Biol 2023; 63:825-842. [PMID: 37263789 DOI: 10.1093/icb/icad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
The proliferation of genomic resources for Chelicerata in the past 10 years has revealed that the evolution of chelicerate genomes is more dynamic than previously thought, with multiple waves of ancient whole genome duplications affecting separate lineages. Such duplication events are fascinating from the perspective of evolutionary history because the burst of new gene copies associated with genome duplications facilitates the acquisition of new gene functions (neofunctionalization), which may in turn lead to morphological novelties and spur net diversification. While neofunctionalization has been invoked in several contexts with respect to the success and diversity of spiders, the overall impact of whole genome duplications on chelicerate evolution and development remains imperfectly understood. The purpose of this review is to examine critically the role of whole genome duplication on the diversification of the extant arachnid orders, as well as assess functional datasets for evidence of subfunctionalization or neofunctionalization in chelicerates. This examination focuses on functional data from two focal model taxa: the spider Parasteatoda tepidariorum, which exhibits evidence for an ancient duplication, and the harvestman Phalangium opilio, which exhibits an unduplicated genome. I show that there is no evidence that taxa with genome duplications are more successful than taxa with unduplicated genomes. I contend that evidence for sub- or neofunctionalization of duplicated developmental patterning genes in spiders is indirect or fragmentary at present, despite the appeal of this postulate for explaining the success of groups like spiders. Available expression data suggest that the condition of duplicated Hox modules may have played a role in promoting body plan disparity in the posterior tagma of some orders, such as spiders and scorpions, but functional data substantiating this postulate are critically missing. Spatiotemporal dynamics of duplicated transcription factors in spiders may represent cases of developmental system drift, rather than neofunctionalization. Developmental system drift may represent an important, but overlooked, null hypothesis for studies of paralogs in chelicerate developmental biology. To distinguish between subfunctionalization, neofunctionalization, and developmental system drift, concomitant establishment of comparative functional datasets from taxa exhibiting the genome duplication, as well as those that lack the paralogy, is sorely needed.
Collapse
Affiliation(s)
- Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Napiórkowska T, Templin J, Napiórkowski P, Townley MA. Appendage abnormalities in spiders induced by an alternating temperature protocol in the context of recent advances in molecular spider embryology. PeerJ 2023; 11:e16011. [PMID: 37701827 PMCID: PMC10493090 DOI: 10.7717/peerj.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
In the literature there are numerous reports of developmental deformities in arthropods collected in their natural habitat. Since such teratogenically affected individuals are found purely by chance, the causes of their defects are unknown. Numerous potential physical, mechanical, chemical, and biological teratogens have been considered and tested in the laboratory. Thermal shocks, frequently used in teratological research on the spider Eratigena atrica, have led to deformities on both the prosoma and the opisthosoma. In the 2020/2021 breeding season, by applying alternating temperatures (14 °C and 32 °C, changed every 12 h) for the first 10 days of embryonic development, we obtained 212 postembryos (out of 3,007) with the following anomalies: oligomely, heterosymely, bicephaly, schistomely, symely, polymely, complex anomalies, and others. From these we selected six spiders with defects on the prosoma and two with short appendages on the pedicel for further consideration. The latter cases seem particularly interesting because appendages do not normally develop on this body part, viewed as the first segment of the opisthosoma, and appear to represent examples of atavism. In view of the ongoing development of molecular techniques and recent research on developmental mechanisms in spiders, we believe the observed phenotypes may result, at least in part, from the erroneous suppression or expression of segmentation or appendage patterning genes. We consider "knockdown" experiments described in the literature as a means for generating hypotheses about the sources of temperature-induced body abnormalities in E. atrica.
Collapse
Affiliation(s)
- Teresa Napiórkowska
- Department of Invertebrate Zoology and Parasitology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Julita Templin
- Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Paweł Napiórkowski
- Department of Hydrobiology, Faculty of Biological Sciences, Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Mark A. Townley
- University Instrumentation Center, University of New Hampshire, Durham, New Hampshire, United States
| |
Collapse
|
9
|
Aria C. The origin and early evolution of arthropods. Biol Rev Camb Philos Soc 2022; 97:1786-1809. [PMID: 35475316 DOI: 10.1111/brv.12864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022]
Abstract
The rise of arthropods is a decisive event in the history of life. Likely the first animals to have established themselves on land and in the air, arthropods have pervaded nearly all ecosystems and have become pillars of the planet's ecological networks. Forerunners of this saga, exceptionally well-preserved Palaeozoic fossils recently discovered or re-discovered using new approaches and techniques have elucidated the precocious appearance of extant lineages at the onset of the Cambrian explosion, and pointed to the critical role of the plankton and hard integuments in early arthropod diversification. The notion put forward at the beginning of the century that the acquisition of extant arthropod characters was stepwise and represented by the majority of Cambrian fossil taxa is being rewritten. Although some key traits leading to Euarthropoda are indeed well documented along a diversified phylogenetic stem, this stem led to several speciose and ecologically diverse radiations leaving descendants late into the Palaeozoic, and a large part, if not all of the Cambrian euarthropods can now be placed on either of the two extant lineages: Mandibulata and Chelicerata. These new observations and discoveries have altered our view on the nature and timing of the Cambrian explosion and clarified diagnostic characters at the origin of extant arthropods, but also raised new questions, especially with respect to cephalic plasticity. There is now strong evidence that early arthropods shared a homologous frontalmost appendage, coined here the cheira, which likely evolved into antennules and chelicerae, but other aspects, such as brain and labrum evolution, are still subject to active debate. The early evolution of panarthropods was generally driven by increased mastication and predation efficiency and sophistication, but a wealth of recent studies have also highlighted the prevalent role of suspension-feeding, for which early panarthropods developed their own adaptive feedback through both specialized appendages and the diversification of small, morphologically differentiated larvae. In a context of general integumental differentiation and hardening across Cambrian metazoans, arthrodization of body and limbs notably prompted two diverging strategies of basipod differentiation, which arguably became founding criteria in the divergence of total-groups Mandibulata and Chelicerata. The kinship of trilobites and their relatives remains a source of disagreement, but a recent topological solution, termed the 'deep split', could embed Artiopoda as sister taxa to chelicerates and constitute definitive support for Arachnomorpha. Although Cambrian fossils have been critical to all these findings, data of exceptional quality have also been accumulating from other Palaeozoic Konservat-Lagerstätten, and a better integration of this information promises a much more complete and elaborate picture of early arthropod evolution in the near future. From the broader perspective of a total-evidence approach to the understanding of life's history, and despite persisting systematic debates and new interpretative challenges, various advances based on palaeontological evidence open the prospect of finally using the full potential of the most diverse animal phylum to investigate macroevolutionary patterns and processes.
Collapse
Affiliation(s)
- Cédric Aria
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, 210008, P. R. China.,Shaanxi Key Laboratory of Early Life and Environments, Northwest University, Xi'an, 710069, P.R. China
| |
Collapse
|
10
|
Gainett G, Crawford AR, Klementz BC, So C, Baker CM, Setton EVW, Sharma PP. Eggs to long-legs: embryonic staging of the harvestman Phalangium opilio (Opiliones), an emerging model arachnid. Front Zool 2022; 19:11. [PMID: 35246168 PMCID: PMC8896363 DOI: 10.1186/s12983-022-00454-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The comparative embryology of Chelicerata has greatly advanced in recent years with the integration of classical studies and genetics, prominently spearheaded by developmental genetic works in spiders. Nonetheless, the understanding of the evolution of development and polarization of embryological characters in Chelicerata is presently limited, as few non-spider species have been well studied. A promising focal species for chelicerate evo-devo is the daddy-long-legs (harvestman) Phalangium opilio, a member of the order Opiliones. Phalangium opilio, breeds prolifically and is easily accessible in many parts of the world, as well as tractable in a laboratory setting. Resources for this species include developmental transcriptomes, a draft genome, and protocols for RNA interference, but a modern staging system is critically missing for this emerging model system. RESULTS We present a staging system of P. opilio embryogenesis that spans the most important morphogenetic events with respect to segment formation, appendage elongation and head development. Using time-lapse imaging, confocal microscopy, colorimetric in situ hybridization, and immunohistochemistry, we tracked the development of synchronous clutches from egg laying to adulthood. We describe key events in segmentation, myogenesis, neurogenesis, and germ cell formation. CONCLUSION Considering the phylogenetic position of Opiliones and the unduplicated condition of its genome (in contrast to groups like spiders and scorpions), this species is poised to serve as a linchpin for comparative studies in arthropod development and genome evolution. The staging system presented herein provides a valuable reference for P. opilio that we anticipate being useful to the arthropod evo-devo community, with the goal of revitalizing research in the comparative development of non-spider arachnids.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA.
| | - Audrey R Crawford
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Calvin So
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
11
|
Ballesteros JA, Santibáñez-López CE, Baker CM, Benavides LR, Cunha TJ, Gainett G, Ontano AZ, Setton EVW, Arango CP, Gavish-Regev E, Harvey MS, Wheeler WC, Hormiga G, Giribet G, Sharma PP. Comprehensive species sampling and sophisticated algorithmic approaches refute the monophyly of Arachnida. Mol Biol Evol 2022; 39:6522129. [PMID: 35137183 PMCID: PMC8845124 DOI: 10.1093/molbev/msac021] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Deciphering the evolutionary relationships of Chelicerata (arachnids, horseshoe crabs, and allied taxa) has proven notoriously difficult, due to their ancient rapid radiation and the incidence of elevated evolutionary rates in several lineages. Although conflicting hypotheses prevail in morphological and molecular data sets alike, the monophyly of Arachnida is nearly universally accepted, despite historical lack of support in molecular data sets. Some phylotranscriptomic analyses have recovered arachnid monophyly, but these did not sample all living orders, whereas analyses including all orders have failed to recover Arachnida. To understand this conflict, we assembled a data set of 506 high-quality genomes and transcriptomes, sampling all living orders of Chelicerata with high occupancy and rigorous approaches to orthology inference. Our analyses consistently recovered the nested placement of horseshoe crabs within a paraphyletic Arachnida. This result was insensitive to variation in evolutionary rates of genes, complexity of the substitution models, and alternative algorithmic approaches to species tree inference. Investigation of sources of systematic bias showed that genes and sites that recover arachnid monophyly are enriched in noise and exhibit low information content. To test the impact of morphological data, we generated a 514-taxon morphological data matrix of extant and fossil Chelicerata, analyzed in tandem with the molecular matrix. Combined analyses recovered the clade Merostomata (the marine orders Xiphosura, Eurypterida, and Chasmataspidida), but merostomates appeared nested within Arachnida. Our results suggest that morphological convergence resulting from adaptations to life in terrestrial habitats has driven the historical perception of arachnid monophyly, paralleling the history of numerous other invertebrate terrestrial groups.
Collapse
Affiliation(s)
- Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Carlos E Santibáñez-López
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biology, Western Connecticut State University, Danbury, CT, 06810, USA
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Ligia R Benavides
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Tauana J Cunha
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Andrew Z Ontano
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Claudia P Arango
- Office for Research, Griffith University, Nathan, Queensland, 4111, Australia
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, 6106, Australia
- School of Biological Sciences, University of Western, Crawley, Western Australia, 6009, Australia; Australia
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
12
|
Brenneis G. The visual pathway in sea spiders (Pycnogonida) displays a simple serial layout with similarities to the median eye pathway in horseshoe crabs. BMC Biol 2022; 20:27. [PMID: 35086529 PMCID: PMC8796508 DOI: 10.1186/s12915-021-01212-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Phylogenomic studies over the past two decades have consolidated the major branches of the arthropod tree of life. However, especially within the Chelicerata (spiders, scorpions, and kin), interrelationships of the constituent taxa remain controversial. While sea spiders (Pycnogonida) are firmly established as sister group of all other extant representatives (Euchelicerata), euchelicerate phylogeny itself is still contested. One key issue concerns the marine horseshoe crabs (Xiphosura), which recent studies recover either as sister group of terrestrial Arachnida or nested within the latter, with significant impact on postulated terrestrialization scenarios and long-standing paradigms of ancestral chelicerate traits. In potential support of a nested placement, previous neuroanatomical studies highlighted similarities in the visual pathway of xiphosurans and some arachnopulmonates (scorpions, whip scorpions, whip spiders). However, contradictory descriptions of the pycnogonid visual system hamper outgroup comparison and thus character polarization. RESULTS To advance the understanding of the pycnogonid brain and its sense organs with the aim of elucidating chelicerate visual system evolution, a wide range of families were studied using a combination of micro-computed X-ray tomography, histology, dye tracing, and immunolabeling of tubulin, the neuropil marker synapsin, and several neuroactive substances (including histamine, serotonin, tyrosine hydroxylase, and orcokinin). Contrary to previous descriptions, the visual system displays a serial layout with only one first-order visual neuropil connected to a bilayered arcuate body by catecholaminergic interneurons. Fluorescent dye tracing reveals a previously reported second visual neuropil as the target of axons from the lateral sense organ instead of the eyes. CONCLUSIONS Ground pattern reconstruction reveals remarkable neuroanatomical stasis in the pycnogonid visual system since the Ordovician or even earlier. Its conserved layout exhibits similarities to the median eye pathway in euchelicerates, especially in xiphosurans, with which pycnogonids share two median eye pairs that differentiate consecutively during development and target one visual neuropil upstream of the arcuate body. Given multiple losses of median and/or lateral eyes in chelicerates, and the tightly linked reduction of visual processing centers, interconnections between median and lateral visual neuropils in xiphosurans and arachnopulmonates are critically discussed, representing a plausible ancestral condition of taxa that have retained both eye types.
Collapse
Affiliation(s)
- Georg Brenneis
- Universität Greifswald, Zoologisches Institut und Museum, AG Cytologie und Evolutionsbiologie, Soldmannstraße 23, 17489, Greifswald, Germany.
| |
Collapse
|
13
|
Ontano AZ, Steiner HG, Sharma PP. How many long branch orders occur in Chelicerata? Opposing effects of Palpigradi and Opilioacariformes on phylogenetic stability. Mol Phylogenet Evol 2021; 168:107378. [PMID: 34968680 DOI: 10.1016/j.ympev.2021.107378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 01/20/2023]
Abstract
Excepting a handful of nodes, phylogenetic relationships between chelicerate orders remains poorly resolved, due to both the incidence of long branch attraction artifacts and the limited sampling of key lineages. It has recently been shown that increasing representation of basal nodes plays an outsized role in resolving the higher-level placement of long branch chelicerate orders. Two lineages have been consistently undersampled in chelicerate phylogeny. First, sampling of the miniaturized order Palpigradi has been restricted to a fragmentary transcriptome of a single species. Second, sampling of Opilioacariformes, a rarely encountered and key group of Parasitiformes, has been restricted to a single exemplar. These two lineages exhibit dissimilar properties with respect to branch length; Opilioacariformes shows relatively low evolutionary rate compared to other Parasitiformes, whereas Palpigradi possibly acts as another long branch order (an effect that may be conflated with the degree of missing data). To assess these properties and their effects on tree stability, we constructed a phylogenomic dataset of Chelicerata wherein both lineages were sampled with three terminals, increasing the representation of these lineages per locus. We examined the effect of subsampling phylogenomic matrices using (1) taxon occupancy, (2) evolutionary rate, and (3) a principal components-based approach. We further explored the impact of taxon deletion experiments that mitigate the effect of long branches. Here, we show that Palpigradi constitutes a fourth long branch chelicerate order (together with Acariformes, Parasitiformes, and Pseudoscorpiones), which further destabilizes the chelicerate backbone topology. By contrast, the slow-evolving Opilioacariformes were consistently recovered within Parasitiformes, with certain subsampling practices recovering their placement as the sister group to the remaining Parasitiformes. Whereas the inclusion of Opilioacariformes always resulted in the non-monophyly of Acari with support, deletion of Opilioacariformes from datasets consistently incurred the monophyly of Acari except in matrices constructed on the basis of evolutionary rate. Our results strongly suggest that Acari is an artifact of long-branch attraction.
Collapse
Affiliation(s)
- Andrew Z Ontano
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Hugh G Steiner
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA 53706.
| |
Collapse
|
14
|
What Is an “Arachnid”? Consensus, Consilience, and Confirmation Bias in the Phylogenetics of Chelicerata. DIVERSITY 2021. [DOI: 10.3390/d13110568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The basal phylogeny of Chelicerata is one of the opaquest parts of the animal Tree of Life, defying resolution despite application of thousands of loci and millions of sites. At the forefront of the debate over chelicerate relationships is the monophyly of Arachnida, which has been refuted by most analyses of molecular sequence data. A number of phylogenomic datasets have suggested that Xiphosura (horseshoe crabs) are derived arachnids, refuting the traditional understanding of arachnid monophyly. This result is regarded as controversial, not least by paleontologists and morphologists, due to the widespread perception that arachnid monophyly is unambiguously supported by morphological data. Moreover, some molecular datasets have been able to recover arachnid monophyly, galvanizing the belief that any result that challenges arachnid monophyly is artefactual. Here, we explore the problems of distinguishing phylogenetic signal from noise through a series of in silico experiments, focusing on datasets that have recently supported arachnid monophyly. We assess the claim that filtering by saturation rate is a valid criterion for recovering Arachnida. We demonstrate that neither saturation rate, nor the ability to assemble a molecular phylogenetic dataset supporting a given outcome with maximal nodal support, is a guarantor of phylogenetic accuracy. Separately, we review empirical morphological phylogenetic datasets to examine characters supporting Arachnida and the downstream implication of a single colonization of terrestrial habitats. We show that morphological support of arachnid monophyly is contingent upon a small number of ambiguous or incorrectly coded characters, most of these tautologically linked to adaptation to terrestrial habitats.
Collapse
|
15
|
Gainett G, González VL, Ballesteros JA, Setton EVW, Baker CM, Barolo Gargiulo L, Santibáñez-López CE, Coddington JA, Sharma PP. The genome of a daddy-long-legs (Opiliones) illuminates the evolution of arachnid appendages. Proc Biol Sci 2021; 288:20211168. [PMID: 34344178 PMCID: PMC8334856 DOI: 10.1098/rspb.2021.1168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Chelicerate arthropods exhibit dynamic genome evolution, with ancient whole-genome duplication (WGD) events affecting several orders. Yet, genomes remain unavailable for a number of poorly studied orders, such as Opiliones (daddy-long-legs), which has hindered comparative study. We assembled the first harvestman draft genome for the species Phalangium opilio, which bears elongate, prehensile appendages, made possible by numerous distal articles called tarsomeres. Here, we show that the genome of P. opilio exhibits a single Hox cluster and no evidence of WGD. To investigate the developmental genetic basis for the quintessential trait of this group-the elongate legs-we interrogated the function of the Hox genes Deformed (Dfd) and Sex combs reduced (Scr), and a homologue of Epidermal growth factor receptor (Egfr). Knockdown of Dfd incurred homeotic transformation of two pairs of legs into pedipalps, with dramatic shortening of leg segments in the longest leg pair, whereas homeosis in L3 is only achieved upon double Dfd + Scr knockdown. Knockdown of Egfr incurred shortened appendages and the loss of tarsomeres. The similarity of Egfr loss-of-function phenotypic spectra in insects and this arachnid suggest that repeated cooption of EGFR signalling underlies the independent gains of supernumerary tarsomeres across the arthropod tree of life.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, 53706 WI, USA
| | - Vanessa L. González
- Global Genome Initiative, Smithsonian Institution, National Museum of Natural History, 10th and Constitution, NW, Washington, DC 20560-0105, USA
| | - Jesús A. Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, 53706 WI, USA
| | - Emily V. W. Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, 53706 WI, USA
| | - Caitlin M. Baker
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, 53706 WI, USA
| | | | - Carlos E. Santibáñez-López
- Department of Biological and Environmental Sciences, Western Connecticut State University, 181 White St, Danbury, CT 06810, USA
| | - Jonathan A. Coddington
- Global Genome Initiative, Smithsonian Institution, National Museum of Natural History, 10th and Constitution, NW, Washington, DC 20560-0105, USA
| | - Prashant P. Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, 53706 WI, USA
| |
Collapse
|
16
|
Cotoras DD, Castanheira PDS, Sharma PP. Implications of a cheliceral axial duplication in Tetragnatha versicolor (Araneae: Tetragnathidae) for arachnid deuterocerebral appendage development. Dev Genes Evol 2021; 231:131-139. [PMID: 34125284 DOI: 10.1007/s00427-021-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
The homology of the arachnid chelicera with respect to other head appendages in Panarthropoda has long been debated. Gene expression data and the re-interpretation of early transitional fossils have supported the homology of the deutocerebrum and its associated appendages, implying a homology between primary antennae (mandibulates), chelicerae (euchelicerates), and chelifores (sea spiders). Nevertheless, comparatively little is known about the mechanistic basis of proximo-distal (PD) axis induction in chelicerates, much less the basis for cheliceral fate specification. Here, we describe a new cheliceral teratology in the spider Tetragnatha versicolor Walckenaer, 1841, which consists on a duplication of the PD axis of the left chelicera associated with a terminal secondary schistomely on the fang of the lower axis. This duplication offers clues as to potential shared mechanisms of PD axis formation in the chelicera. We review the state of knowledge on PD axis induction mechanisms in arthropods and identify elements of gene regulatory networks that are key for future functional experiments of appendage development in non-insect model systems. Such investigations would allow a better understanding of PD axis induction of modified and poorly studied arthropod limbs (e.g., chelicerae, chelifores, and ovigers).
Collapse
Affiliation(s)
- Darko D Cotoras
- Entomology Department, California Academy of Sciences, 55 Music Concourse Dr., Golden Gate Park, San Francisco, CA, 94118, USA.
| | - Pedro de S Castanheira
- Laboratório de Diversidade de Aracnídeos, Universidade do Brasil/Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Ilha do Fundão, Rio de Janeiro, Brazil.,Harry Butler Institute, Murdoch University, 90 South St, Murdoch, Western Australia, 6150, Australia
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 441 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
17
|
Ontano AZ, Gainett G, Aharon S, Ballesteros JA, Benavides LR, Corbett KF, Gavish-Regev E, Harvey MS, Monsma S, Santibáñez-López CE, Setton EVW, Zehms JT, Zeh JA, Zeh DW, Sharma PP. Taxonomic Sampling and Rare Genomic Changes Overcome Long-Branch Attraction in the Phylogenetic Placement of Pseudoscorpions. Mol Biol Evol 2021; 38:2446-2467. [PMID: 33565584 PMCID: PMC8136511 DOI: 10.1093/molbev/msab038] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Long-branch attraction is a systematic artifact that results in erroneous groupings of fast-evolving taxa. The combination of short, deep internodes in tandem with long-branch attraction artifacts has produced empirically intractable parts of the Tree of Life. One such group is the arthropod subphylum Chelicerata, whose backbone phylogeny has remained unstable despite improvements in phylogenetic methods and genome-scale data sets. Pseudoscorpion placement is particularly variable across data sets and analytical frameworks, with this group either clustering with other long-branch orders or with Arachnopulmonata (scorpions and tetrapulmonates). To surmount long-branch attraction, we investigated the effect of taxonomic sampling via sequential deletion of basally branching pseudoscorpion superfamilies, as well as varying gene occupancy thresholds in supermatrices. We show that concatenated supermatrices and coalescent-based summary species tree approaches support a sister group relationship of pseudoscorpions and scorpions, when more of the basally branching taxa are sampled. Matrix completeness had demonstrably less influence on tree topology. As an external arbiter of phylogenetic placement, we leveraged the recent discovery of an ancient genome duplication in the common ancestor of Arachnopulmonata as a litmus test for competing hypotheses of pseudoscorpion relationships. We generated a high-quality developmental transcriptome and the first genome for pseudoscorpions to assess the incidence of arachnopulmonate-specific duplications (e.g., homeobox genes and miRNAs). Our results support the inclusion of pseudoscorpions in Arachnopulmonata (new definition), as the sister group of scorpions. Panscorpiones (new name) is proposed for the clade uniting Scorpiones and Pseudoscorpiones.
Collapse
Affiliation(s)
- Andrew Z Ontano
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Shlomi Aharon
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ligia R Benavides
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kevin F Corbett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, WA, Australia
| | | | | | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jakob T Zehms
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeanne A Zeh
- Department of Biology and Program in Ecology, Evolution & Conservation Biology, University of Nevada, Reno, NV, USA
| | - David W Zeh
- Department of Biology and Program in Ecology, Evolution & Conservation Biology, University of Nevada, Reno, NV, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
18
|
Fan Z, Yuan T, Liu P, Wang LY, Jin JF, Zhang F, Zhang ZS. A chromosome-level genome of the spider Trichonephila antipodiana reveals the genetic basis of its polyphagy and evidence of an ancient whole-genome duplication event. Gigascience 2021; 10:giab016. [PMID: 33739402 PMCID: PMC7976613 DOI: 10.1093/gigascience/giab016] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/25/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The spider Trichonephila antipodiana (Araneidae), commonly known as the batik golden web spider, preys on arthropods with body sizes ranging from ∼2 mm in length to insects larger than itself (>20‒50 mm), indicating its polyphagy and strong dietary detoxification abilities. Although it has been reported that an ancient whole-genome duplication event occurred in spiders, lack of a high-quality genome has limited characterization of this event. RESULTS We present a chromosome-level T. antipodiana genome constructed on the basis of PacBio and Hi-C sequencing. The assembled genome is 2.29 Gb in size with a scaffold N50 of 172.89 Mb. Hi-C scaffolding assigned 98.5% of the bases to 13 pseudo-chromosomes, and BUSCO completeness analysis revealed that the assembly included 94.8% of the complete arthropod universal single-copy orthologs (n = 1,066). Repetitive elements account for 59.21% of the genome. We predicted 19,001 protein-coding genes, of which 96.78% were supported by transcriptome-based evidence and 96.32% matched protein records in the UniProt database. The genome also shows substantial expansions in several detoxification-associated gene families, including cytochrome P450 mono-oxygenases, carboxyl/cholinesterases, glutathione-S-transferases, and ATP-binding cassette transporters, reflecting the possible genomic basis of polyphagy. Further analysis of the T. antipodiana genome architecture reveals an ancient whole-genome duplication event, based on 2 lines of evidence: (i) large-scale duplications from inter-chromosome synteny analysis and (ii) duplicated clusters of Hox genes. CONCLUSIONS The high-quality T. antipodiana genome represents a valuable resource for spider research and provides insights into this species' adaptation to the environment.
Collapse
Affiliation(s)
- Zheng Fan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Tao Yuan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Piao Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Lu-Yu Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Jian-Feng Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, Jiangsu 210095, China
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, Jiangsu 210095, China
| | - Zhi-Sheng Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| |
Collapse
|
19
|
Ballesteros JA, Setton EVW, Santibáñez-López CE, Arango CP, Brenneis G, Brix S, Corbett KF, Cano-Sánchez E, Dandouch M, Dilly GF, Eleaume MP, Gainett G, Gallut C, McAtee S, McIntyre L, Moran AL, Moran R, López-González PJ, Scholtz G, Williamson C, Woods HA, Zehms JT, Wheeler WC, Sharma PP. Phylogenomic Resolution of Sea Spider Diversification through Integration of Multiple Data Classes. Mol Biol Evol 2021; 38:686-701. [PMID: 32915961 PMCID: PMC7826184 DOI: 10.1093/molbev/msaa228] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Despite significant advances in invertebrate phylogenomics over the past decade, the higher-level phylogeny of Pycnogonida (sea spiders) remains elusive. Due to the inaccessibility of some small-bodied lineages, few phylogenetic studies have sampled all sea spider families. Previous efforts based on a handful of genes have yielded unstable tree topologies. Here, we inferred the relationships of 89 sea spider species using targeted capture of the mitochondrial genome, 56 conserved exons, 101 ultraconserved elements, and 3 nuclear ribosomal genes. We inferred molecular divergence times by integrating morphological data for fossil species to calibrate 15 nodes in the arthropod tree of life. This integration of data classes resolved the basal topology of sea spiders with high support. The enigmatic family Austrodecidae was resolved as the sister group to the remaining Pycnogonida and the small-bodied family Rhynchothoracidae as the sister group of the robust-bodied family Pycnogonidae. Molecular divergence time estimation recovered a basal divergence of crown group sea spiders in the Ordovician. Comparison of diversification dynamics with other marine invertebrate taxa that originated in the Paleozoic suggests that sea spiders and some crustacean groups exhibit resilience to mass extinction episodes, relative to mollusk and echinoderm lineages.
Collapse
Affiliation(s)
- Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| | | | - Claudia P Arango
- Queensland Museum, Biodiversity Program, Brisbane, QLD, Australia
| | - Georg Brenneis
- Zoologisches Institut und Museum, Cytologie und Evolutionsbiologie, Universität Greifswald, Greifswald, Germany
| | - Saskia Brix
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), c/o Biocenter Grindel (CeNak), Martin-Luther-King-Platz 3, Hamburg, Germany
| | - Kevin F Corbett
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| | - Esperanza Cano-Sánchez
- Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Merai Dandouch
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - Geoffrey F Dilly
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - Marc P Eleaume
- Départment Milieux et Peuplements Aquatiques, Muséum National d’Histoire Naturelle, Paris, France
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| | - Cyril Gallut
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Concarneau, France
| | - Sean McAtee
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - Lauren McIntyre
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - Amy L Moran
- Department of Biology, University of Hawai’I at Mānoa, Honolulu, HI
| | - Randy Moran
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - Pablo J López-González
- Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Gerhard Scholtz
- Institut für Biologie, Vergleichende Zoologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clay Williamson
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Jakob T Zehms
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, NY
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| |
Collapse
|
20
|
Lehmann T, Melzer RR. Outsourcing a visual neuropil - The central visual system of the median eyes of Galeodes granti Pocock, 1903 (Arachnida: Solifugae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:101024. [PMID: 33383276 DOI: 10.1016/j.asd.2020.101024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Only a few studies have examined the central visual system of Solifugae until now. To get new insights suitable for phylogenetic analysis we studied the R-cell (or retinula cell) projections and visual neuropils of Galeodes granti using various methods. G. granti possesses large median eyes and rudimentary lateral eyes. In this study, only the R-cells and neuropils of the median eyes were successfully stained. The R-cells terminate in two distinct visual neuropils. The first neuropil is located externally to the protocerebrum directly below the retina, the second neuropil lies in the cell body rind of the protocerebrum, and immediately adjacent is the arcuate body. This layout of the median eye visual system differs from Arachnopulmonata (Scorpiones + Tetrapulmonata). However, there are several similarities with Opiliones. In both, (1) the R-cells are connected to a first and second visual neuropil and not to any other region of the brain, (2) the first neuropil is not embedded in the cell body rind of the protocerebrum, it is rather external to the protocerebrum, (3) the second visual neuropil is embedded in the cell body rind, and (4) the second neuropil abuts the arcuate body. These findings may provide important new characters for the discussion on arachnid phylogeny.
Collapse
Affiliation(s)
- Tobias Lehmann
- Bavarian State Collection of Zoology - SNSB, Münchhausenstraße 21, 81247, Munich, Germany.
| | - Roland R Melzer
- Bavarian State Collection of Zoology - SNSB, Münchhausenstraße 21, 81247, Munich, Germany; Ludwig-Maximilians-Universität München, Department Biologie II, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany; GeoBioCenter(LMU), Richard -Wagner-Str. 10, 80333 Munich, Germany
| |
Collapse
|
21
|
Gainett G, Ballesteros JA, Kanzler CR, Zehms JT, Zern JM, Aharon S, Gavish-Regev E, Sharma PP. Systemic paralogy and function of retinal determination network homologs in arachnids. BMC Genomics 2020; 21:811. [PMID: 33225889 PMCID: PMC7681978 DOI: 10.1186/s12864-020-07149-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/13/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Arachnids are important components of cave ecosystems and display many examples of troglomorphisms, such as blindness, depigmentation, and elongate appendages. Little is known about how the eyes of arachnids are specified genetically, let alone the mechanisms for eye reduction and loss in troglomorphic arachnids. Additionally, duplication of Retinal Determination Gene Network (RDGN) homologs in spiders has convoluted functional inferences extrapolated from single-copy homologs in pancrustacean models. RESULTS We investigated a sister species pair of Israeli cave whip spiders, Charinus ioanniticus and C. israelensis (Arachnopulmonata, Amblypygi), of which one species has reduced eyes. We generated embryonic transcriptomes for both Amblypygi species, and discovered that several RDGN homologs exhibit duplications. We show that duplication of RDGN homologs is systemic across arachnopulmonates (arachnid orders that bear book lungs), rather than being a spider-specific phenomenon. A differential gene expression (DGE) analysis comparing the expression of RDGN genes in field-collected embryos of both species identified candidate RDGN genes involved in the formation and reduction of eyes in whip spiders. To ground bioinformatic inference of expression patterns with functional experiments, we interrogated the function of three candidate RDGN genes identified from DGE using RNAi in the spider Parasteatoda tepidariorum. We provide functional evidence that one of these paralogs, sine oculis/Six1 A (soA), is necessary for the development of all arachnid eye types. CONCLUSIONS Our work establishes a foundation to investigate the genetics of troglomorphic adaptations in cave arachnids, and links differential gene expression to an arthropod eye phenotype for the first time outside of Pancrustacea. Our results support the conservation of at least one RDGN component across Arthropoda and provide a framework for identifying the role of gene duplications in generating arachnid eye diversity.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Charlotte R Kanzler
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jakob T Zehms
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John M Zern
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shlomi Aharon
- National Natural History Collections, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
22
|
Howard RJ, Puttick MN, Edgecombe GD, Lozano-Fernandez J. Arachnid monophyly: Morphological, palaeontological and molecular support for a single terrestrialization within Chelicerata. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 59:100997. [PMID: 33039753 DOI: 10.1016/j.asd.2020.100997] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The majority of extant arachnids are terrestrial, but other chelicerates are generally aquatic, including horseshoe crabs, sea spiders, and the extinct eurypterids. It is necessary to determine whether arachnids are exclusively descended from a single common ancestor (monophyly), because only that relationship is compatible with one land colonisation in chelicerate evolutionary history. Some studies have cast doubt on arachnid monophyly and recast the origins of their terrestrialization. These include some phylogenomic analyses placing horseshoe crabs within Arachnida, and from aquatic Palaeozoic stem-group scorpions. Here, we evaluate the possibility of arachnid monophyly by considering morphology, fossils and molecules holistically. We argue arachnid monophyly obviates the need to posit reacquisition/retention of aquatic characters such as gnathobasic feeding and book gills without trabeculae from terrestrial ancestors in horseshoe crabs, and that the scorpion total-group contains few aquatic taxa. We built a matrix composed of 200 slowly-evolving genes and re-analysed two published molecular datasets. We retrieved arachnid monophyly where other studies did not - highlighting the difficulty of resolving chelicerate relationships from current molecular data. As such, we consider arachnid monophyly the best-supported hypothesis. Finally, we inferred that arachnids terrestrialized during the Cambrian-Ordovician using the slow-evolving molecular matrix, in agreement with recent analyses.
Collapse
Affiliation(s)
- Richard J Howard
- Department of Biosciences, University of Exeter, Penryn Campus, UK; Department of Earth Sciences, The Natural History Museum, UK.
| | - Mark N Puttick
- School of Biochemistry & Biological Sciences, University of Bath, Bath, UK
| | | | - Jesus Lozano-Fernandez
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain; School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
23
|
Gainett G, Sharma PP. Genomic resources and toolkits for developmental study of whip spiders (Amblypygi) provide insights into arachnid genome evolution and antenniform leg patterning. EvoDevo 2020; 11:18. [PMID: 32874529 PMCID: PMC7455915 DOI: 10.1186/s13227-020-00163-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The resurgence of interest in the comparative developmental study of chelicerates has led to important insights, such as the discovery of a genome duplication shared by spiders and scorpions, inferred to have occurred in the most recent common ancestor of Arachnopulmonata (a clade comprising the five arachnid orders that bear book lungs). Nonetheless, several arachnid groups remain understudied in the context of development and genomics, such as the order Amblypygi (whip spiders). The phylogenetic position of Amblypygi in Arachnopulmonata posits them as an interesting group to test the incidence of the proposed genome duplication in the common ancestor of Arachnopulmonata, as well as the degree of retention of duplicates over 450 Myr. Moreover, whip spiders have their first pair of walking legs elongated and modified into sensory appendages (a convergence with the antennae of mandibulates), but the genetic patterning of these antenniform legs has never been investigated. RESULTS We established genomic resources and protocols for cultivation of embryos and gene expression assays by in situ hybridization to study the development of the whip spider Phrynus marginemaculatus. Using embryonic transcriptomes from three species of Amblypygi, we show that the ancestral whip spider exhibited duplications of all ten Hox genes. We deploy these resources to show that paralogs of the leg gap genes dachshund and homothorax retain arachnopulmonate-specific expression patterns in P. marginemaculatus. We characterize the expression of leg gap genes Distal-less, dachshund-1/2 and homothorax-1/2 in the embryonic antenniform leg and other appendages, and provide evidence that allometry, and by extension the antenniform leg fate, is specified early in embryogenesis. CONCLUSION This study is the first step in establishing P. marginemaculatus as a chelicerate model for modern evolutionary developmental study, and provides the first resources sampling whip spiders for comparative genomics. Our results suggest that Amblypygi share a genome duplication with spiders and scorpions, and set up a framework to study the genetic specification of antenniform legs. Future efforts to study whip spider development must emphasize the development of tools for functional experiments in P. marginemaculatus.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Prashant P. Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|