1
|
Tepus M, Tonoli E, Verderio EAM. Molecular profiling of urinary extracellular vesicles in chronic kidney disease and renal fibrosis. Front Pharmacol 2023; 13:1041327. [PMID: 36712680 PMCID: PMC9877239 DOI: 10.3389/fphar.2022.1041327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Chronic kidney disease (CKD) is a long-term kidney damage caused by gradual loss of essential kidney functions. A global health issue, CKD affects up to 16% of the population worldwide. Symptoms are often not apparent in the early stages, and if left untreated, CKD can progress to end-stage kidney disease (ESKD), also known as kidney failure, when the only possible treatments are dialysis and kidney transplantation. The end point of nearly all forms of CKD is kidney fibrosis, a process of unsuccessful wound-healing of kidney tissue. Detection of kidney fibrosis, therefore, often means detection of CKD. Renal biopsy remains the best test for renal scarring, despite being intrinsically limited by its invasiveness and sampling bias. Urine is a desirable source of fibrosis biomarkers as it can be easily obtained in a non-invasive way and in large volumes. Besides, urine contains biomolecules filtered through the glomeruli, mirroring the pathological state. There is, however, a problem of highly abundant urinary proteins that can mask rare disease biomarkers. Urinary extracellular vesicles (uEVs), which originate from renal cells and carry proteins, nucleic acids, and lipids, are an attractive source of potential rare CKD biomarkers. Their cargo consists of low-abundant proteins but highly concentrated in a nanosize-volume, as well as molecules too large to be filtered from plasma. Combining molecular profiling data (protein and miRNAs) of uEVs, isolated from patients affected by various forms of CKD, this review considers the possible diagnostic and prognostic value of uEVs biomarkers and their potential application in the translation of new experimental antifibrotic therapeutics.
Collapse
Affiliation(s)
- Melanie Tepus
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Elisa Tonoli
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Elisabetta A. M. Verderio
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Lysyl oxidase inhibitors attenuate cyclosporin A-induced nephropathy in mouse. Sci Rep 2021; 11:12437. [PMID: 34127702 PMCID: PMC8203624 DOI: 10.1038/s41598-021-91772-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
Calcineurin inhibitors, such as Cyclosporin (CsA), are the mainstay of anti-rejection therapy in solid organ transplants but can paradoxically induce progressive nephropathy characterised by renal dysfunction and interstitial fibrosis. Lysyl oxidases (LOXs), a group of enzymes that catalyse extracellular matrix (ECM) crosslinking, were shown to implicate in tissue scarring. It is hypothesized that inhibition of these enzymes may render therapeutic effects against CsA-induced nephropathy. In this study, 6-to-8 weeks old C57BL/6 J mice were administered saline or CsA (30 mg/kg/day s.c) for 16 weeks. At 8 weeks, CsA-treated animals were divided into 5 groups respectively treated with: (1) vehicle, (2) PXS-5505 (Pan-LOX inhibitor), (3) PXS-5382 (LOX-like 2 inhibitor), (4) PXS-5505 for 4 weeks then PXS-5382 for 4 weeks (sequential therapy), and (5) Telmisartan (standard therapy). Our results indicate that CsA administration significantly increased the levels of blood urea nitrogen, glomerular and tubular injury, tubulointerstitial fibrosis, inflammation and oxidative stress in mouse kidney. These changes were associated with upregulated mRNA expression of LOX and LOXL2. Administration of Pan-LOX or LOXL2 inhibitors or the sequential therapy suppressed the expression of ECM proteins (α-SMA, FN and COL1A), matrix metalloproteases (MMP)2 and 9, inflammatory markers (TNFα and MCP-1) and TGF-β1-Smad3 signalling. Among all regimens including telmisartan, only Pan-LOX inhibitor PXS-5505 was able to attenuate uraemia. Collectively, our study suggests that Pan-LOX and LOXL2 inhibition can attenuate progressive nephropathy due to CsA administration.
Collapse
|
3
|
Jameson SA, Swaminathan G, Dahal S, Couri B, Kuang M, Rietsch A, Butler RS, Ramamurthi A, Damaser MS. Elastin homeostasis is altered with pelvic organ prolapse in cultures of vaginal cells from a lysyl oxidase-like 1 knockout mouse model. Physiol Rep 2021; 8:e14436. [PMID: 32533648 PMCID: PMC7292929 DOI: 10.14814/phy2.14436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022] Open
Abstract
Pelvic organ prolapse (POP) decreases quality of life for many women, but its pathophysiology is poorly understood. We have previously shown that Lysyl oxidase‐like 1 knockout (Loxl1 KO) mice reliably prolapse with age and increased parity, similar to women. Both this model and clinical studies also indicate that altered elastin metabolism in pelvic floor tissues plays a role in POP manifestation, although it is unknown if this is a cause or effect. Using Loxl1 KO mice, we investigated the effects of genetic absence of Loxl1, vaginal parity, and presence of POP on the expression of genes and proteins key to the production and regulation of elastic matrix. Cultured cells isolated from vaginal explants of mice were assayed with Fastin for elastic matrix, as well as RT‐PCR and Western blot for expression of genes and proteins important for elastin homeostasis. Elastin synthesis significantly decreased with absence of LOXL1 and increased with parity (p < .001), but not with POP. Cells from prolapsed mice expressed significantly decreased MMP‐2 (p < .05) and increased TIMP‐4 (p < .05). The results suggest changes to elastin structure rather than amounts in prolapsed mice as well as poor postpartum elastin turnover, resulting in accumulation of damaged elastic fibers leading to abnormal tropoelastin deposition. POP may thus, be the result of an inability to initiate the molecular mechanisms necessary to clear and replace damaged elastic matrix in pelvic floor tissues after vaginal birth.
Collapse
Affiliation(s)
- Slater A Jameson
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Shataakshi Dahal
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bruna Couri
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mei Kuang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Rietsch
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Robert S Butler
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Anand Ramamurthi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.,Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
4
|
Harari-Steinberg O, Omer D, Gnatek Y, Pleniceanu O, Goldberg S, Cohen-Zontag O, Pri-Chen S, Kanter I, Ben Haim N, Becker E, Ankawa R, Fuchs Y, Kalisky T, Dotan Z, Dekel B. Ex Vivo Expanded 3D Human Kidney Spheres Engraft Long Term and Repair Chronic Renal Injury in Mice. Cell Rep 2021; 30:852-869.e4. [PMID: 31968258 DOI: 10.1016/j.celrep.2019.12.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 10/04/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
End-stage renal disease is a worldwide epidemic requiring renal replacement therapy. Harvesting tissue from failing kidneys and autotransplantation of tissue progenitors could theoretically delay the need for dialysis. Here we use healthy and end-stage human adult kidneys to robustly expand proliferative kidney epithelial cells and establish 3D kidney epithelial cultures termed "nephrospheres." Formation of nephrospheres reestablishes renal identity and function in primary cultures. Transplantation into NOD/SCID mice shows that nephrospheres restore self-organogenetic properties lost in monolayer cultures, allowing long-term engraftment as tubular structures, potentially adding nephron segments and demonstrating self-organization as critical to survival. Furthermore, long-term tubular engraftment of nephrospheres is functionally beneficial in murine models of chronic kidney disease. Remarkably, nephrospheres inhibit pro-fibrotic collagen production in cultured fibroblasts via paracrine modulation, while transplanted nephrospheres induce transcriptional signatures of proliferation and release from quiescence, suggesting re-activation of endogenous repair. These data support the use of human nephrospheres for renal cell therapy.
Collapse
Affiliation(s)
- Orit Harari-Steinberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Pleniceanu
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sanja Goldberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Cohen-Zontag
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sara Pri-Chen
- The Maurice and Gabriela Goldschleger Eye Research Institute, Sheba Medical Center, Ramat-Gan, Israel
| | - Itamar Kanter
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Nissim Ben Haim
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Eli Becker
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Roi Ankawa
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tomer Kalisky
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Zohar Dotan
- Department of Urology, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Nephrology, Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.
| |
Collapse
|
5
|
Ye M, Song Y, Pan S, Chu M, Wang ZW, Zhu X. Evolving roles of lysyl oxidase family in tumorigenesis and cancer therapy. Pharmacol Ther 2020; 215:107633. [PMID: 32693113 DOI: 10.1016/j.pharmthera.2020.107633] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
The lysyl oxidase (LOX) family is comprised of LOX and four LOX-like proteins (LOXL1, LOXL2, LOXL3, and LOXL4), and mainly functions in the remodeling of extracellular matrix (ECM) and the cross-linking of collagen and elastic fibers. Recently, a growing body of research has demonstrated that LOX family is critically involved in the regulation of cancer cell proliferation, migration, invasion and metastasis. In this review, we discuss the roles of LOX family members in the development and progression of different types of human cancers. Furthermore, we also describe the potential inhibitors of LOX family proteins and highlight that LOX family might be an important therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Miaomiao Ye
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yizuo Song
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shuya Pan
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China..
| | - Xueqiong Zhu
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
6
|
Saifi MA, Godugu C. Inhibition of lysyl oxidase ameliorates renal injury by inhibiting CD44-mediated pericyte detachment and loss of peritubular capillaries. Life Sci 2020; 243:117294. [PMID: 31927047 DOI: 10.1016/j.lfs.2020.117294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
Renal fibrosis is a common pathological manifestation of almost all forms of kidney disease irrespective of the etiological cause. Microvascular rarefaction represents itself as an important phenomenon associated with renal fibrosis and shows strong correlation with decline in renal functions. Lysyl oxidase (LOX) catalyzes crosslinking of extracellular matrix (ECM) proteins including collagens, plays an important role in stabilization of degradation resistant matrix. Since, there seems to be a causal link between deposition of excessive ECM and microvascular rarefaction, we investigated the effects of reduction in renal fibrosis on microvascular rarefaction in acute as well as end stage kidney. We used a well-established unilateral ureteral obstruction (UUO)-induced renal fibrosis model to produce renal fibrosis in animals. We treated animals with a LOX inhibitor, β-aminopropionitrile (BAPN, 100 mg/kg, i.p.) and investigated effects on renal fibrosis and microvascular rarefaction. We observed that LOX inhibition was associated with reduction in collagen deposition in UUO-induced renal fibrosis animal model. Further, ECM normalization by LOX inhibition decreased the loss of peritubular capillaries (PTCs) in fibrotic kidney in acute study while the LOX inhibition failed to inhibit PTCs loss in end stage kidney. The results of present study suggested that inhibition of LOX reduces collagen deposition and renal fibrosis. Further, the reduction in fibrosis fails to protect from PTCs loss in chronic study suggesting the absence of strong link between reduction in fibrosis and improvement in PTCs in an end stage kidney.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
7
|
Abstract
Fibrosis is a dynamic process with the potential for reversibility and restoration of near-normal tissue architecture and organ function. Herein, we review mechanisms for resolution of organ fibrosis, in particular that involving the lung, with an emphasis on the critical roles of myofibroblast apoptosis and clearance of deposited matrix.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School , Ann Arbor, Michigan
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
8
|
Abstract
Lysyl oxidase (LOX) and lysyl oxidase-like proteins (LOXL), a family of extracellular matrix (ECM) crosslinking enzymes that have been recognised as playing an important role in fibrogenesis for more than 40 years, are logical targets for antifibrotic treatments. Pulmonary fibrosis, especially idiopathic pulmonary fibrosis (IPF), is a progressive and lethal disease characterised by excessive deposition of ECM in the lung parenchyma. In this review, we discuss the current clinical approaches for IPF and review members of LOX family-LOX, LOXL1, LOXL2, LOXL3 and LOXL4 in IPF patients and in animal models of bleomycin-induced pulmonary fibrosis. Although these findings are controversial and require further validation, LOX/LOXL1/LOXL2 as potential therapeutic targets for IPF deserve continued attention. So far to our knowledge, LOXL3 or LOXL4 has not clearly shown specific therapeutic potential.
Collapse
Affiliation(s)
- Lijun Chen
- a Department of Pharmacology , Zhongshan Medical School, Sun Yat-sen University , Guangzhou , China
| | - Shifeng Li
- a Department of Pharmacology , Zhongshan Medical School, Sun Yat-sen University , Guangzhou , China
| | - Wande Li
- b Department of Biochemistry , Boston University School of Medicine , Boston , MA , USA
| |
Collapse
|
9
|
Juillerat-Jeanneret L, Aubert JD, Mikulic J, Golshayan D. Fibrogenic Disorders in Human Diseases: From Inflammation to Organ Dysfunction. J Med Chem 2018; 61:9811-9840. [DOI: 10.1021/acs.jmedchem.8b00294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - John-David Aubert
- Pneumology Division and Transplantation Center, Centre Hospitalier Universitaire Vaudois (CHUV), CH1011 Lausanne, Switzerland
| | - Josip Mikulic
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
10
|
Stangenberg S, Saad S, Schilter HC, Zaky A, Gill A, Pollock CA, Wong MG. Lysyl oxidase-like 2 inhibition ameliorates glomerulosclerosis and albuminuria in diabetic nephropathy. Sci Rep 2018; 8:9423. [PMID: 29930330 PMCID: PMC6013429 DOI: 10.1038/s41598-018-27462-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy is characterised by the excessive amount of extracellular matrix in glomeruli and tubulointerstitial space. Lysyl oxidase-like 2 (LOXL2) is elevated in renal fibrosis and known to play key roles in ECM stabilisation by facilitating collagen cross-links, epithelial to mesenchymal transition and myofibroblast activation. Thus, targeting LOXL2 may prove to be a useful strategy to prevent diabetic nephropathy. We explored the renoprotective effect of a selective small molecule LOXL2 inhibitor (PXS-S2B) in a streptozotocin-induced diabetes model. Diabetic mice were treated with PXS-S2B for 24 weeks and outcomes compared with untreated diabetic mice and with telmisartan treated animals as comparator of current standard of care. Diabetic mice had albuminuria, higher glomerulosclerosis scores, upregulation of fibrosis markers and increased renal cortical LOXL2 expression. Treatment with PXS-S2B reduced albuminuria and ameliorated glomerulosclerosis. This was associated with reduced expression of glomerular fibronectin and tubulointerstitial collagen I. The renoprotective effects of both PXS-S2B and telmisartan were more marked in the glomerular compartment than in the tubulointerstitial space. The study reveals that LOXL2 inhibition was beneficial in preserving glomerular structure and function. Thus, LOXL2 may be a potential therapeutic target in diabetic nephropathy.
Collapse
Affiliation(s)
- Stefanie Stangenberg
- Renal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Sydney, Australia.,Sydney Medical School Northern, University of Sydney, NSW, Sydney, Australia
| | - Sonia Saad
- Renal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Sydney, Australia.
| | - Heidi C Schilter
- Pharmaxis Pharmaceutical Ltd., Frenchs Forest, NSW, Sydney, Australia
| | - Amgad Zaky
- Renal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Sydney, Australia
| | - Anthony Gill
- Department of Cancer Research and Pathology Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Sydney, Australia
| | - Carol A Pollock
- Renal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Sydney, Australia.,Sydney Medical School Northern, University of Sydney, NSW, Sydney, Australia
| | - Muh Geot Wong
- Renal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Sydney, Australia.
| |
Collapse
|
11
|
Li T, Wu C, Gao L, Qin F, Wei Q, Yuan J. Lysyl oxidase family members in urological tumorigenesis and fibrosis. Oncotarget 2018; 9:20156-20164. [PMID: 29732010 PMCID: PMC5929453 DOI: 10.18632/oncotarget.24948] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/11/2018] [Indexed: 02/05/2023] Open
Abstract
Lysyl oxidase (LOX) is an extracellular copper-dependent monoamine oxidase that catalyzes crosslinking of soluble collagen and elastin into insoluble, mature fibers. Lysyl oxidase-like proteins (LOXL), LOX isozymes with partial structural homology, exhibit similar catalytic activities. This review summarizes recent findings describing the roles of LOX family members in urological cancers and fibrosis. LOX/LOXL play key roles in extracellular matrix stability and integrity, which is essential for normal female pelvic floor function. LOX/LOXL inhibition may reverse kidney fibrosis and ischemic priapism. LOX and LOXL2 reportedly promote kidney carcinoma tumorigenesis, while LOX, LOXL1 and LOXL4 suppress bladder cancer growth. Multiple studies agree that the LOX propeptide may suppress tumor growth, but the role of LOX in prostate cancer remains controversial. Further studies are needed to clarify the exact effects and mechanism of LOX/LOXL on urological malignancies.
Collapse
Affiliation(s)
- Tao Li
- The Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changjing Wu
- The Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Gao
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Qin
- The Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiuhong Yuan
- The Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Afratis NA, Klepfish M, Karamanos NK, Sagi I. The apparent competitive action of ECM proteases and cross-linking enzymes during fibrosis: Applications to drug discovery. Adv Drug Deliv Rev 2018; 129:4-15. [PMID: 29627371 DOI: 10.1016/j.addr.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/11/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Progressive loss of organ function in most organs is associated with fibrosis, a tissue state associated with abnormal matrix buildup. If highly progressive, the fibrotic process eventually leads to organ failure and death. Fibrosis is a basic connective tissue lesion defined by the increase in the amount of fibrillar extracellular matrix (ECM) components in a tissue or organ. In addition, intrinsic changes in important structural cells can induce the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. ECM enzymes belonging to the family of matrix metalloproteinases (MMPs) and lysyl oxidases (LOXs) play a crucial role in ECM remodeling and regeneration. MMPs have a catalytic role in degradation of ECM, whereas LOX/LOXLs mediate ECM, especially collagen, cross-linking and stiffening. Importantly, enzymes from both families are elevated during the fibrotic response to tissue injury and its resolution. Yet, the apparent molecular competition or antagonistic activities of these enzyme families during the various stages of fibrosis is often overlooked. In this review, we discuss the diverse roles of MMPs and LOX/LOXL2 in chronic organ fibrosis. Finally, we review contemporary therapeutic strategies for fibrosis treatment, based on neutralization of MMP and LOX activity, as well as the development of novel drug delivery approaches.
Collapse
Affiliation(s)
- Nikolaos A Afratis
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mordehay Klepfish
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
13
|
Chu CP, Hokamp JA, Cianciolo RE, Dabney AR, Brinkmeyer-Langford C, Lees GE, Nabity MB. RNA-seq of serial kidney biopsies obtained during progression of chronic kidney disease from dogs with X-linked hereditary nephropathy. Sci Rep 2017; 7:16776. [PMID: 29196624 PMCID: PMC5711945 DOI: 10.1038/s41598-017-16603-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022] Open
Abstract
Dogs with X-linked hereditary nephropathy (XLHN) have a glomerular basement membrane defect that leads to progressive juvenile-onset renal failure. Their disease is analogous to Alport syndrome in humans, and they also serve as a good model of progressive chronic kidney disease (CKD). However, the gene expression profile that affects progression in this disease has only been partially characterized. To help fill this gap, we used RNA sequencing to identify differentially expressed genes (DEGs), over-represented pathways, and upstream regulators that contribute to kidney disease progression. Total RNA from kidney biopsies was isolated at 3 clinical time points from 3 males with rapidly-progressing CKD, 3 males with slowly-progressing CKD, and 2 age-matched controls. We identified 70 DEGs by comparing rapid and slow groups at specific time points. Based on time course analysis, 1,947 DEGs were identified over the 3 time points revealing upregulation of inflammatory pathways: integrin signaling, T cell activation, and chemokine and cytokine signaling pathways. T cell infiltration was verified by immunohistochemistry. TGF-β1 was identified as the primary upstream regulator. These results provide new insights into the underlying molecular mechanisms of disease progression in XLHN, and the identified DEGs can be potential biomarkers and therapeutic targets translatable to all CKDs.
Collapse
Affiliation(s)
- Candice P Chu
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jessica A Hokamp
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Rachel E Cianciolo
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Alan R Dabney
- Department of Statistics, College of Science, Texas A&M University, College Station, TX, USA
| | - Candice Brinkmeyer-Langford
- Department of Veterinary Integrative Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - George E Lees
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Mary B Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
14
|
Chen J, Ren J, Loo WTY, Hao L, Wang M. Lysyl oxidases expression and histopathological changes of the diabetic rat nephron. Mol Med Rep 2017; 17:2431-2441. [PMID: 29207131 PMCID: PMC5783488 DOI: 10.3892/mmr.2017.8182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 11/06/2017] [Indexed: 02/05/2023] Open
Abstract
Diabetic nephropathy (DN) is a major complication of diabetes, the accumulation of extracellular matrix (ECM) is considered an indication of nephropathological changes. Lysyl oxidases (LOXs) are also associated with ECM. However, the majority of studies on LOXs have focused on their potential role in renal fibrogenesis and there has no examination of LOXs expression or the correlation with histopathological changes of DN, including glomerular basement membrane (GBM) thickening and glomerulosclerosis. In this study, the association between histological changes and LOXs was explored using a type 2 diabetes model of male Zucker diabetic fatty rats. The expression of LOX and lysyl oxidase-like 1 to 3 (LOXL1 to 3) levels were evaluated by immunohistochemical staining. The expression levels of LOX and LOXL2 in the kidney tissue in the diabetic group were significantly higher compared with those of the control group, but LOXL1 and LOXL3 expression levels were not significantly different between the two groups. These results indicated that LOXL2 and LOX may be critical factors involved in the progression of DN.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jie Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wings T Y Loo
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, P.R. China
| | - Liang Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
15
|
Lysyl Oxidase and the Tumor Microenvironment. Int J Mol Sci 2016; 18:ijms18010062. [PMID: 28036074 PMCID: PMC5297697 DOI: 10.3390/ijms18010062] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022] Open
Abstract
The lysyl oxidase (LOX) family of oxidases contains a group of extracellular copper-dependent enzymes that catalyze the cross-linking of collagen and elastin by oxidation, thus maintaining the rigidity and structural stability of the extracellular matrix (ECM). Aberrant expression or activation of LOX alters the cellular microenvironment, leading to many diseases, including atherosclerosis, tissue fibrosis, and cancer. Recently, a number of studies have shown that LOX is overexpressed in most cancers and that it is involved in the regulation of tumor progression and metastasis. In contrast, a few reports have also indicated the tumor-suppressing role of LOX. In this short review, we discuss recent research on the correlations between LOX and cancer. Further, the role of LOX in tumor microenvironment remodeling, tumorigenesis, and metastasis and the underlying mechanisms have also been elucidated.
Collapse
|
16
|
Xie J, Wang C, Huang DY, Zhang Y, Xu J, Kolesnikov SS, Sung K, Zhao H. TGF-beta1 induces the different expressions of lysyl oxidases and matrix metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after mechanical injury. J Biomech 2013; 46:890-8. [DOI: 10.1016/j.jbiomech.2012.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/06/2012] [Accepted: 12/21/2012] [Indexed: 11/25/2022]
|
17
|
Klingberg F, Hinz B, White ES. The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol 2013; 229:298-309. [PMID: 22996908 DOI: 10.1002/path.4104] [Citation(s) in RCA: 522] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/09/2012] [Accepted: 09/11/2012] [Indexed: 12/12/2022]
Abstract
Myofibroblasts, and the extracellular matrix (ECM) in which they reside, are critical components of wound healing and fibrosis. The ECM, traditionally viewed as the structural elements within which cells reside, is actually a functional tissue whose components possess not only scaffolding characteristics, but also growth factor, mitogenic, and other bioactive properties. Although it has been suggested that tissue fibrosis simply reflects an 'exuberant' wound-healing response, examination of the ECM and the roles of myofibroblasts during fibrogenesis instead suggest that the organism may be attempting to recapitulate developmental programmes designed to regenerate functional tissue. Evidence of this is provided by the temporospatial re-emergence of embryonic ECM proteins by fibroblasts and myofibroblasts that induce cellular programmatic responses intended to produce a functional tissue. In the setting of wound healing (or physiological fibrosis), this occurs in a highly regulated and exquisitely choreographed fashion which results in cessation of haemorrhage, restoration of barrier integrity, and re-establishment of tissue function. However, pathological tissue fibrosis, which oftentimes causes organ dysfunction and significant morbidity or mortality, likely results from dysregulation of normal wound-healing processes or abnormalities of the process itself. This review will focus on the myofibroblast ECM and its role in both physiological and pathological fibrosis, and will discuss the potential for therapeutically targeting ECM proteins for treatment of fibrotic disorders.
Collapse
Affiliation(s)
- Franco Klingberg
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5S 3E2, Canada
| | | | | |
Collapse
|
18
|
Xie J, Jiang J, Zhang Y, Xu C, Yin L, Wang C, Chen PCY, Sung KLP. Up-regulation expressions of lysyl oxidase family in Anterior Cruciate Ligament and Medial Collateral Ligament fibroblasts induced by Transforming Growth Factor-Beta 1. INTERNATIONAL ORTHOPAEDICS 2011; 36:207-13. [PMID: 21674292 DOI: 10.1007/s00264-011-1261-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/20/2011] [Indexed: 01/14/2023]
Abstract
PURPOSE The lysyl oxidase (LOX) family plays a crucial role in the formation and stabilisation of extracellular matrix (ECM) by catalysing the cross-linking of collagen and elastin, implicating its important fundamental roles in injury healing. A high level of transforming growth factor-β(1) (TGF-β(1)) accompanies the inflammatory phase of an injury of the knee joint. Our purpose was to detect the expressions of the LOX family in anterior cruciate ligament (ACL) and medial collateral ligament (MCL) response to TGF-β(1). METHODS This study used reversed transcript PCR, real time quantitative PCR and Western blot for analyses. RESULTS The results showed significant increases in mRNA levels of LOX family members. At 5 ng/ml concentration of TGF-β(1,) the gene profiles of LOXs showed most active, and LOX and LOXL-3 showed increasing peaks at 12 hours after TGF-β(1) treatment (LOX: 7.2, 8.8-fold and LOXL-3: 3.8, 5.4-fold compared with normal controls in ACL and MCL, respectively); LOXL-1, LOXL-2 and LOXL-4 reached their highest amounts at six hours (LOXL-1: 1.9, 2.4-fold; LOXL-2: 14.8, 16.2-fold; LOXL-4: 2.5, 4.4-fold in ACL and MCL, respectively). Protein assays revealed that LOXs in ACL cells had relatively lower response to TGF-β(1) compared with those in MCL cells. CONCLUSIONS The differential expression and activities of LOXs might help to explain the intrinsic difference between ACL and MCL, and LOXs could imply a potential capability for ACL healing.
Collapse
Affiliation(s)
- Jing Xie
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Conditional inactivation of TGF-β type II receptor in smooth muscle cells and epicardium causes lethal aortic and cardiac defects. Transgenic Res 2010; 19:1069-82. [PMID: 20213136 DOI: 10.1007/s11248-010-9379-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 02/10/2010] [Indexed: 12/16/2022]
Abstract
To understand the role of TGF-β signaling in cardiovascular development, we generated mice with conditional deletion of the TGF-β type II receptor (TβRII) gene (Tgfbr2) in cells expressing the smooth muscle cell-specific protein SM22α. The SM22α promoter was active in tissues involved in cardiovascular development: vascular smooth muscle cells (VSMCs), epicardium and myocardium. All SM22-Cre(+/-)/Tgfbr2 (flox/flox) embryos died during the last third of gestation. About half the mutant embryos exhibited heart defects (ventricular myocardium hypoplasia and septal defects). All mutant embryos displayed profound vascular abnormalities in the descending thoracic aorta (irregular outline and thickness, occasional aneurysms and elastic fiber disarray). Restriction of these defects to the descending thoracic aorta occurred despite similar levels of Tgfbr2 invalidation in the other portions of the aorta, the ductus arteriosus and the pulmonary trunk. Immunocytochemistry identified impairment of VSMC differentiation in the coronary vessels and the descending thoracic aorta as crucial for the defects. Ventricular myocardial hypoplasia, when present, was associated to impaired α-SMA differentiation of the epicardium-derived coronary VSMCs. Tgfbr2 deletion in the VSMCs of the descending thoracic aorta diminished the number of α-SMA-positive VSMC progenitors in the media at E11.5 and drastically decreased tropoelastin (from E11.5) and fibulin-5 (from E.12.5) synthesis and/or deposition. Defective elastogenesis observed in all mutant embryos and the resulting dilatation and probable rupture of the descending thoracic aorta might explain the late embryonic lethality. To conclude, during mouse development, TGF-β plays an irreplaceable role on the differentiation of the VSMCs in the coronary vessels and the descending thoracic aorta.
Collapse
|
20
|
Mannaerts I, Nuytten NR, Rogiers V, Vanderkerken K, van Grunsven LA, Geerts A. Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells in vitro and in vivo. Hepatology 2010; 51:603-14. [PMID: 19957378 DOI: 10.1002/hep.23334] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Hepatic stellate cell (HSC) activation is a pivotal step in the pathogenesis of liver fibrosis. The clarification of this transdifferentiation process is therefore important for the development of effective therapies for fibrosis. We analyzed the effect of a histone deacetylase inhibitor, valproic acid (VPA), on mouse HSC transdifferentiation in vitro and in vivo. The exposure of freshly isolated mouse HSCs to 2.5 mM VPA led to increased histone H4 acetylation and inhibited cell proliferation. Expression of stellate cell activation markers analyzed by quantitative polymerase chain reaction and western blotting revealed that treatment with VPA inhibited the induction of activation markers such as Acta2, Lox, Spp1, and Myh11. Treatment of mice with VPA decreased collagen deposition and in vivo activation of stellate cells in the livers of CCl(4)-treated mice. Class I histone deacetylase silencing through RNA interference in mouse HSCs only partially mimicked treatment with VPA. CONCLUSION Chronic administration of VPA results in a marked decrease in stellate cell activation both in vitro and in vivo. We hypothesize that the VPA effect results partially from class I histone deacetylase inhibition, but that also non-histone deacetylase class I VPA targets are involved in the stellate cell activation process.
Collapse
Affiliation(s)
- Inge Mannaerts
- Department of Cell Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Uchio K, Sawada K, Manabe N. Expression of macrophage metalloelastase (MMP-12) in podocytes of hereditary nephrotic mice (ICGN strain). J Vet Med Sci 2009; 71:305-12. [PMID: 19346698 DOI: 10.1292/jvms.71.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Institute for Cancer Research (ICR)-derived glomerulonephritis (ICGN) mouse is a good model for renal fibrosis. In the glomeruli and tubulointerstitium of ICGN mouse kidneys, the components of the extracellular matrix (ECM) accumulated, and matrix metalloproteinases (MMPs) participated in this process. To clarify the mechanism of renal fibrosis, we investigated the expression and localization of macrophage metalloelastase (MMP-12), whose functions in kidney diseases are not fully understood, and its regulatory molecules, monocyte chemoattractive protein-1 (MCP-1) and CC chemokine receptor 2 (CCR2), in the kidneys of ICGN mice by RT-PCR, Western blotting and immunohistochemical staining, respectively. Extensive expression of MMP-12 mRNA and its protein was noted in ICGN mice with progressed nephrotic syndrome. The increase in MMP-12 expression occurred predominantly in podocytes. Furthermore, MCP-1 and CCR2 were also increased in podocytes of the ICGN strain. These results suggest that the expression of MMP-12 is involved in the progression of nephrotic syndrome in ICGN mice.
Collapse
Affiliation(s)
- Kozue Uchio
- Laboratory of Experimental Animal Models, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan.
| | | | | |
Collapse
|
22
|
|
23
|
MIYAMOTO Y, MYOMOTO A, SAKAGUCHI Y, YAMAGUCHI-YAMADA M, UCHIO-YAMDA K, MANABE N. Localization of Tissue Transglutaminase (tTG) in Kidney of ICR-Derived Glomerulonephritis (ICGN) Mice. Exp Anim 2009; 58:375-82. [DOI: 10.1538/expanim.58.375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Yohei MIYAMOTO
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc
| | - Akira MYOMOTO
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc
| | - Yuka SAKAGUCHI
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc
| | - Misuzu YAMAGUCHI-YAMADA
- Laboratory of Veterinary Biochemistry and Cell Biology, Faculty of Agriculture, Iwate University
| | - Kozue UCHIO-YAMDA
- Laboratory of Experimental Animal Models, National Institute of Biomedical Innovation
| | - Noboru MANABE
- Research Unit for Animal Life Sciences, Animal Resource Science Center, The University of Tokyo
| |
Collapse
|
24
|
Atsawasuwan P, Mochida Y, Katafuchi M, Kaku M, Fong KSK, Csiszar K, Yamauchi M. Lysyl oxidase binds transforming growth factor-beta and regulates its signaling via amine oxidase activity. J Biol Chem 2008; 283:34229-40. [PMID: 18835815 DOI: 10.1074/jbc.m803142200] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysyl oxidase (LOX), an amine oxidase critical for the initiation of collagen and elastin cross-linking, has recently been shown to regulate cellular activities possibly by modulating the functions of growth factors. In this study, we investigated the interaction between LOX and transforming growth factor-beta1 (TGF-beta1), a potent growth factor abundant in bone, the effect of LOX on TGF-beta1 signaling, and its potential mechanism. The specific binding between mature LOX and mature TGF-beta1 was demonstrated by immunoprecipitation and glutathione S-transferase pulldown assay in vitro. Both proteins were colocalized in the extracellular matrix in an osteoblastic cell culture system, and the binding complex was identified in the mineral-associated fraction of bone matrix. Furthermore, LOX suppressed TGF-beta1-induced Smad3 phosphorylation likely through its amine oxidase activity. The data indicate that LOX binds to mature TGF-beta1 and enzymatically regulates its signaling in bone and thus may play an important role in bone maintenance and remodeling.
Collapse
Affiliation(s)
- Phimon Atsawasuwan
- Dental Research Center, University of North Carolina at Chapel Hill, North Carolina 27599-7455, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Díaz R, Kim JW, Hui JJ, Li Z, Swain GP, Fong KSK, Csiszar K, Russo PA, Rand EB, Furth EE, Wells RG. Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis. Hum Pathol 2008; 39:102-15. [PMID: 17900655 DOI: 10.1016/j.humpath.2007.05.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/11/2007] [Accepted: 05/16/2007] [Indexed: 12/11/2022]
Abstract
The epithelial to mesenchymal transition has recently been implicated as a source of fibrogenic myofibroblasts in organ fibrosis, particularly in the kidney. There is as yet minimal evidence for the epithelial to mesenchymal transition in the liver. We hypothesized that this process in biliary epithelial cells plays an important role in biliary fibrosis and might be found in patients with especially rapid forms, such as is seen in biliary atresia. We therefore obtained liver tissue from patients with biliary atresia as well as a variety of other pediatric and adult liver diseases. Tissues were immunostained with antibodies against the biliary epithelial cell marker CK19 as well as with antibodies against proteins characteristically expressed by cells undergoing the epithelial to mesenchymal transition, including fibroblast-specific protein 1, the collagen chaperone heat shock protein 47, the intermediate filament protein vimentin, and the transcription factor Snail. The degree of colocalization was quantified using a multispectral imaging system. We observed significant colocalization between CK19 and other markers of the epithelial to mesenchymal transition in biliary atresia as well as other liver diseases associated with significant bile ductular proliferation, including primary biliary cirrhosis. There was minimal colocalization seen in healthy adult and pediatric livers, or in livers not also demonstrating bile ductular proliferation. Multispectral imaging confirmed significant colocalization of the different markers in biliary atresia. In conclusion, we present significant histologic evidence suggesting that the epithelial to mesenchymal transition occurs in human liver fibrosis, particularly in diseases such as biliary atresia and primary biliary cirrhosis with prominent bile ductular proliferation.
Collapse
Affiliation(s)
- Rosalyn Díaz
- Department of Medicine (Gastroenterology), University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kawahara K, Lee YJ, Nagatsuka H, Rui K, Auerkari EI, Floresca MCGZ, Kishikawa H, Nagai N. A Study of Eight Oral Malignant Melanoma in Adults by WESTOP (Western Society of Teachers of Oral Pathology, 1995). J HARD TISSUE BIOL 2005. [DOI: 10.2485/jhtb.14.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|