1
|
Tan Y, Wu D, Liu ZY, Yu HQ, Zheng XR, Lin XT, Bie P, Zhang LD, Xie CM. Degradation of helicase-like transcription factor (HLTF) by β-TrCP promotes hepatocarcinogenesis via activation of the p62/mTOR axis. J Mol Cell Biol 2023; 15:mjad012. [PMID: 36822623 PMCID: PMC10478628 DOI: 10.1093/jmcb/mjad012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/27/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Helicase-like transcription factor (HLTF) has been found to be involved in the maintenance of genome stability and tumour suppression, but whether its downregulation in cancers is associated with posttranslational regulation remains unclear. Here, we observed that HLTF was significantly downregulated in hepatocellular carcinoma (HCC) tissues and positively associated with the survival of HCC patients. Mechanistically, the decreased expression of HLTF in HCC was attributed to elevated β-TrCP-mediated ubiquitination and degradation. Knockdown of HLTF enhanced p62 transcriptional activity and mammalian target of rapamycin (mTOR) activation, leading to HCC tumourigenesis. Inhibition of mTOR effectively blocked β-TrCP overexpression- or HLTF knockdown-mediated HCC tumourigenesis and metastasis. Furthermore, in clinical tissues, decreased HLTF expression was positively correlated with elevated expression of β-TrCP, p62, or p-mTOR in HCC patients. Overall, our data not only uncover new roles of HLTF in HCC cell proliferation and metastasis, but also reveal a novel posttranslational modification of HLTF by β-TrCP, indicating that the β-TrCP/HLTF/p62/mTOR axis may be a new oncogenic driver involved in HCC development. This finding provides a potential therapeutic strategy for HCC patients by targeting the β-TrCP/HLTF/p62/mTOR axis.
Collapse
Affiliation(s)
- Ye Tan
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ze-Yu Liu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hong-Qiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang-Ru Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Xiao-Tong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ping Bie
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Lei-Da Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
2
|
Cen X, Lu Y, Lu J, Zhan P, Cheng Y, Luo C, Liu J, Xie C, Wang F. Upregulation of helicase-like transcription factor predicts poor prognosis and facilitates hepatocellular carcinoma progression. Hum Cell 2023:10.1007/s13577-023-00917-3. [PMID: 37227687 DOI: 10.1007/s13577-023-00917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Helicase-like transcription factor (HLTF) belongs to the family of SWI/SNF proteins, which has been reported to exert oncogenic function in several human cancers. However, to date, its functional role in hepatocellular carcinoma (HCC) has not been revealed. Here, we found that HLTF was highly expressed in HCC tissues compared to nontumor tissues. Additionally, upregulation of HLTF was significantly associated with poor prognosis of patients with HCC. Functional experiments demonstrated that knockdown of HLTF expression significantly inhibited the proliferation, migration, and invasion of HCC cells in vitro, and suppressed tumor growth in vivo. In conclusion, our results suggest that upregulation of HLTF is associated with the development of HCC, and HLTF may be a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xuesong Cen
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Yuyan Lu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Jing Lu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Ping Zhan
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Yizhe Cheng
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Changhong Luo
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Jie Liu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Chengrong Xie
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China.
| | - Fuqiang Wang
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 1739 Xianyue Road, Xiamen, 361001, Fujian Province, China.
| |
Collapse
|
3
|
Bryant EE, Šunjevarić I, Berchowitz L, Rothstein R, Reid RJD. Rad5 dysregulation drives hyperactive recombination at replication forks resulting in cisplatin sensitivity and genome instability. Nucleic Acids Res 2019; 47:9144-9159. [PMID: 31350889 PMCID: PMC6753471 DOI: 10.1093/nar/gkz631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/14/2019] [Accepted: 07/25/2019] [Indexed: 01/19/2023] Open
Abstract
The postreplication repair gene, HLTF, is often amplified and overexpressed in cancer. Here we model HLTF dysregulation through the functionally conserved Saccharomyces cerevisiae ortholog, RAD5. Genetic interaction profiling and landscape enrichment analysis of RAD5 overexpression (RAD5OE) reveals requirements for genes involved in recombination, crossover resolution, and DNA replication. While RAD5OE and rad5Δ both cause cisplatin sensitivity and share many genetic interactions, RAD5OE specifically requires crossover resolving genes and drives recombination in a region of repetitive DNA. Remarkably, RAD5OE induced recombination does not require other post-replication repair pathway members, or the PCNA modification sites involved in regulation of this pathway. Instead, the RAD5OE phenotype depends on a conserved domain necessary for binding 3' DNA ends. Analysis of DNA replication intermediates supports a model in which dysregulated Rad5 causes aberrant template switching at replication forks. The direct effect of Rad5 on replication forks in vivo, increased recombination, and cisplatin sensitivity predicts similar consequences for dysregulated HLTF in cancer.
Collapse
Affiliation(s)
- Eric E Bryant
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ivana Šunjevarić
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Luke Berchowitz
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rodney Rothstein
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert J D Reid
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
4
|
Gallo D, Brown GW. Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer. Crit Rev Biochem Mol Biol 2019; 54:301-332. [PMID: 31429594 DOI: 10.1080/10409238.2019.1651817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The eukaryotic post-replication repair (PRR) pathway allows completion of DNA replication when replication forks encounter lesions on the DNA template and are mediated by post-translational ubiquitination of the DNA sliding clamp proliferating cell nuclear antigen (PCNA). Monoubiquitinated PCNA recruits translesion synthesis (TLS) polymerases to replicate past DNA lesions in an error-prone manner while addition of K63-linked polyubiquitin chains signals for error-free template switching to the sister chromatid. Central to both branches is the E3 ubiquitin ligase and DNA helicase Rad5/helicase-like transcription factor (HLTF). Mutations in PRR pathway components lead to genomic rearrangements, cancer predisposition, and cancer progression. Recent studies have challenged the notion that the PRR pathway is involved only in DNA lesion tolerance and have shed new light on its roles in cancer progression. Molecular details of Rad5/HLTF recruitment and function at replication forks have emerged. Mounting evidence indicates that PRR is required during lesion-less replication stress, leading to TLS polymerase activity on undamaged templates. Analysis of PRR mutation status in human cancers and PRR function in cancer models indicates that down regulation of PRR activity is a viable strategy to inhibit cancer cell growth and reduce chemoresistance. Here, we review these findings, discuss how they change our views of current PRR models, and look forward to targeting the PRR pathway in the clinic.
Collapse
Affiliation(s)
- David Gallo
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| |
Collapse
|
5
|
Liu L, Liu H, Zhou Y, He J, Liu Q, Wang J, Zeng M, Yuan D, Tan F, Zhou Y, Pei H, Zhu H. HLTF suppresses the migration and invasion of colorectal cancer cells via TGF‑β/SMAD signaling in vitro. Int J Oncol 2018; 53:2780-2788. [PMID: 30320371 DOI: 10.3892/ijo.2018.4591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/25/2019] [Indexed: 11/06/2022] Open
Abstract
Helicase‑like transcription factor (HLTF) has been identified as a tumor suppressor gene. The hypermethylation of HTLF is frequently observed in various types of cancer, including colorectal cancer (CRC). However, the mechanisms through which HLTF suppresses CRC progression remain unclear. Thus, the aim of the present study was to explore the biological function of HLTF in CRC cells and the underlying mechanisms. CRC tissues and cells were used to detect the expression of HLTF. Wound‑healing and Transwell assays were performed to assess the motility of CRC cells. The results revealed that HLTF expression was significantly associated with the differentiation status, invasion depth, lymph node metastasis and distant metastasis. A low HLTF expression was significantly associated with a poor survival. Furthermore, HTLF knockdown or ectopic overexpression significantly promoted or suppressed the motility of CRC cells, respectively. With regard to the underlying molecular mechanisms, the protein expression of HTLF was upregulated when the CRC cells were stimulated with transforming growth factor (TGF)‑β, and HLTF upregulation induced an increase in SMAD4 and p‑SMAD2/3 expression and a decrease in levels of the TGF‑β/SMAD pathway downstream genes, Vimentin and zinc finger e‑box binding homeobox 1 (ZEB1). On the whole, the findings of this study suggest that HLTF is negatively associated with the progression of CRC, and its overexpression suppresses the migration and invasion of CRC cells by targeting the TGF‑β/SMAD pathway.
Collapse
Affiliation(s)
- Li Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Huan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jiaofeng He
- Department of Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, Hunan 410008, P.R. China
| | - Qiong Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Manting Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dan Yuan
- Department of Oncology, Zhuzhou No. 2 Hospital, Zhuzhou, Hunan 412005, P.R. China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuan Zhou
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Haiping Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
6
|
Singh N, Tripathi AK, Sahu DK, Mishra A, Linan M, Argente B, Varkey J, Parida N, Chowdhry R, Shyam H, Alam N, Dixit S, Shankar P, Mishra A, Agarwal A, Yoo C, Bhatt MLB, Kant R. Differential genomics and transcriptomics between tyrosine kinase inhibitor-sensitive and -resistant BCR-ABL-dependent chronic myeloid leukemia. Oncotarget 2018; 9:30385-30418. [PMID: 30100996 PMCID: PMC6084383 DOI: 10.18632/oncotarget.25752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/28/2018] [Indexed: 01/11/2023] Open
Abstract
Previously, it has been stated that the BCR-ABL fusion-protein is sufficient to induce Chronic Myeloid Leukemia (CML), but additional genomic-changes are required for disease progression. Hence, we profiled control and tyrosine kinase inhibitors (TKI) alone or in combination with other drug-treated CML-samples in different phases, categorized as drug-sensitive and drug-resistant on the basis of BCR-ABL transcripts, the marker of major molecular-response. Molecular-profiling was done using the molecular-inversion probe-based-array, Human Transcriptomics-Array2.0, and Axiom-Biobank genotyping-arrays. At the transcript-level, clusters of control, TKI-resistant and TKI-sensitive cases were correlated with BCR-ABL transcript-levels. Both at the gene- and exon-levels, up-regulation of MPO, TPX2, and TYMS and down-regulation of STAT6, FOS, TGFBR2, and ITK lead up-regulation of the cell-cycle, DNA-replication, DNA-repair pathways and down-regulation of the immune-system, chemokine- and interleukin-signaling, TCR, TGF beta and MAPK signaling pathways. A comparison between TKI-sensitive and TKI-resistant cases revealed up-regulation of LAPTM4B, HLTF, PIEZO2, CFH, CD109, ANGPT1 in CML-resistant cases, leading to up-regulation of autophagy-, protein-ubiquitination-, stem-cell-, complement-, TGFβ- and homeostasis-pathways with specific involvement of the Tie2 and Basigin signaling-pathway. Dysregulated pathways were accompanied with low CNVs in CP-new and CP-UT-TKI-sensitive-cases with undetectable BCR-ABL-copies. High CNVs (previously reported gain of 9q34) were observed in BCR-ABL-independent and -dependent TKI, non-sensitive-CP-UT/AP-UT/B-UT and B-new samples. Further, genotyping CML-CP-UT cases with BCR-ABL 0-to-77.02%-copies, the identified, rsID239798 and rsID9475077, were associated with FAM83B, a candidate for therapeutic resistance. The presence of BCR-ABL, additional genetic-events, dysregulated-signaling-pathways and rsIDs associated with FAM83B in TKI-resistant-cases can be used to develop a signature-profile that may help in monitoring therapy.
Collapse
Affiliation(s)
- Neetu Singh
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Anil Kumar Tripathi
- Department of Clinical Hematology, King George's Medical University, Lucknow, India
| | - Dinesh Kumar Sahu
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Archana Mishra
- Department of Cardio Thoracic and Vascular Surgery, King George's Medical University, Lucknow, India
| | | | | | | | - Niranjan Parida
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Rebecca Chowdhry
- Department of Periodontics, King George's Medical University, Lucknow, India
| | - Hari Shyam
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Nawazish Alam
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Shivani Dixit
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Pratap Shankar
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Abhishek Mishra
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Avinash Agarwal
- Department of Medicine, King George's Medical University, Lucknow, India
| | - Chris Yoo
- Systems Imagination, Scottsdale, Arizona, USA
| | | | - Ravi Kant
- All India Institute of Medical Sciences, Rishikesh, India
| |
Collapse
|
7
|
Dhont L, Pintilie M, Kaufman E, Navab R, Tam S, Burny A, Shepherd F, Belayew A, Tsao MS, Mascaux C. Helicase-like transcription factor expression is associated with a poor prognosis in Non-Small-Cell Lung Cancer (NSCLC). BMC Cancer 2018; 18:429. [PMID: 29661164 PMCID: PMC5902896 DOI: 10.1186/s12885-018-4215-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/12/2018] [Indexed: 01/09/2023] Open
Abstract
Background The relapse rate in early stage non-small cell lung cancer (NSCLC) after surgical resection is high. Prognostic biomarkers may help identify patients who may benefit from additional therapy. The Helicase-like Transcription Factor (HLTF) is a tumor suppressor, altered in cancer either by gene hypermethylation or mRNA alternative splicing. This study assessed the expression and the clinical relevance of wild-type (WT) and variant forms of HLTF RNAs in NSCLC. Methods We analyzed online databases (TCGA, COSMIC) for HLTF alterations in NSCLC and assessed WT and spliced HLTF mRNAs expression by RT-ddPCR in 39 lung cancer cell lines and 171 patients with resected stage I-II NSCLC. Results In silico analyses identified HLTF gene alterations more frequently in lung squamous cell carcinoma than in adenocarcinoma. In cell lines and in patients, WT and I21R HLTF mRNAs were detected, but the latter at lower level. The subgroup of 25 patients presenting a combined low WT HLTF expression and a high I21R HLTF expression had a significantly worse disease-free survival than the other 146 patients in univariate (HR 1.96, CI 1.17–3.30; p = 0.011) and multivariate analyses (HR 1.98, CI 1.15–3.40; p = 0.014). Conclusion A low WT HLTF expression with a high I21R HLTF expression is associated with a poor DFS.
Collapse
Affiliation(s)
- Ludovic Dhont
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, Université de Mons, Mons, Belgium.,Princess Margaret Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Cellular and Molecular Epigenetics, Université de Liège-GIGA, Liège, Belgium
| | - Melania Pintilie
- Biostatistics Department, University of Toronto, Toronto, Canada
| | - Ethan Kaufman
- Princess Margaret Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Roya Navab
- Princess Margaret Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shirley Tam
- Princess Margaret Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Arsène Burny
- Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Frances Shepherd
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, Université de Mons, Mons, Belgium
| | - Ming-Sound Tsao
- Princess Margaret Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Céline Mascaux
- Department of Muldisciplinary Oncology and Therapeutic Innovations, Assistance Publique des Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Chemin des Bourrely, 13195, Marseille, Cedex 20, France. .,Centre de Recherche en Cancérologie de Marseille (CRCM, Cancer Research Center of Marseille), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France.
| |
Collapse
|
8
|
Lugli N, Sotiriou SK, Halazonetis TD. The role of SMARCAL1 in replication fork stability and telomere maintenance. DNA Repair (Amst) 2017. [PMID: 28623093 DOI: 10.1016/j.dnarep.2017.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SMARCAL1 (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A-Like 1), also known as HARP, is an ATP-dependent annealing helicase that stabilizes replication forks during DNA damage. Mutations in this gene are the cause of Schimke immune-osseous dysplasia (SIOD), an autosomal recessive disorder characterized by T-cell immunodeficiency and growth dysfunctions. In this review, we summarize the main roles of SMARCAL1 in DNA repair, telomere maintenance and replication fork stability in response to DNA replication stress.
Collapse
Affiliation(s)
- Natalia Lugli
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
9
|
Cheng CK, Chan NPH, Wan TSK, Lam LY, Cheung CHY, Wong THY, Ip RKL, Wong RSM, Ng MHL. Helicase-like transcription factor is a RUNX1 target whose downregulation promotes genomic instability and correlates with complex cytogenetic features in acute myeloid leukemia. Haematologica 2016; 101:448-57. [PMID: 26802049 DOI: 10.3324/haematol.2015.137125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/13/2016] [Indexed: 12/27/2022] Open
Abstract
Helicase-like transcription factor is a SWI/SNF chromatin remodeling factor involved in various biological processes. However, little is known about its role in hematopoiesis. In this study, we measured helicase-like transcription factor mRNA expression in the bone marrow of 204 adult patients with de novo acute myeloid leukemia. Patients were dichotomized into low and high expression groups at the median level for clinicopathological correlations. Helicase-like transcription factor levels were dramatically reduced in the low expression patient group compared to those in the normal controls (n=40) (P<0.0001). Low helicase-like transcription factor expression correlated positively with French-American-British M4/M5 subtypes (P<0.0001) and complex cytogenetic abnormalities (P=0.02 for ≥3 abnormalities;P=0.004 for ≥5 abnormalities) but negatively with CEBPA double mutations (P=0.012). Also, low expression correlated with poorer overall (P=0.005) and event-free (P=0.006) survival in the intermediate-risk cytogenetic subgroup. Consistent with the more aggressive disease associated with low expression, helicase-like transcription factor knockdown in leukemic cells promoted proliferation and chromosomal instability that was accompanied by downregulation of mitotic regulators and impaired DNA damage response. The significance of helicase-like transcription factor in genome maintenance was further indicated by its markedly elevated expression in normal human CD34(+)hematopoietic stem cells. We further demonstrated that helicase-like transcription factor was a RUNX1 target and transcriptionally repressed by RUNX1-ETO and site-specific DNA methylation through a duplicated RUNX1 binding site in its promoter. Taken together, our findings provide new mechanistic insights on genomic instability linked to helicase-like transcription factor deregulation, and strongly suggest a tumor suppressor function of the SWI/SNF protein in acute myeloid leukemia.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Natalie P H Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Thomas S K Wan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Lai Ying Lam
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Coty H Y Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Terry H Y Wong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Rosalina K L Ip
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Raymond S M Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina Sir Y. K. Pao Centre for Cancer, Prince of Wales Hospital, Hong Kong, Cina
| | - Margaret H L Ng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Cina
| |
Collapse
|
10
|
Dhont L, Mascaux C, Belayew A. The helicase-like transcription factor (HLTF) in cancer: loss of function or oncomorphic conversion of a tumor suppressor? Cell Mol Life Sci 2016; 73:129-47. [PMID: 26472339 PMCID: PMC11108516 DOI: 10.1007/s00018-015-2060-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 09/21/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022]
Abstract
The Helicase-like Transcription Factor (HLTF) belongs to the SWI/SNF family of proteins involved in chromatin remodeling. In addition to its role in gene transcription, HLTF has been implicated in DNA repair, which suggests that this protein acts as a tumor suppressor. Accumulating evidence indicates that HLTF expression is altered in various cancers via two mechanisms: gene silencing through promoter hypermethylation or alternative mRNA splicing, which leads to the expression of truncated proteins that lack DNA repair domains. In either case, the alteration of HLTF expression in cancer has a poor prognosis. In this review, we gathered published clinical and molecular data on HLTF. Our purposes are (a) to address whether HLTF alterations could be considered as cancer drivers or passengers and (b) to determine whether its different functions (transcription or DNA repair) could be diverted in clonal selection during cancer progression.
Collapse
Affiliation(s)
- Ludovic Dhont
- Laboratory of Molecular Biology, University of Mons, Avenue du Champ de Mars 6, Pentagone 3A, B-7000 Mons, Belgium
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto Medical Discovery Tower, 101 College Street, 14th floor, Toronto, ON M5G 1L7 Canada
| | - Céline Mascaux
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto Medical Discovery Tower, 101 College Street, 14th floor, Toronto, ON M5G 1L7 Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2L9 Canada
| | - Alexandra Belayew
- Laboratory of Molecular Biology, University of Mons, Avenue du Champ de Mars 6, Pentagone 3A, B-7000 Mons, Belgium
| |
Collapse
|
11
|
Ye C, Sun NX, Ma Y, Zhao Q, Zhang Q, Xu C, Wang SB, Sun SH, Wang F, Li W. MicroRNA-145 contributes to enhancing radiosensitivity of cervical cancer cells. FEBS Lett 2015; 589:702-9. [DOI: 10.1016/j.febslet.2015.01.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/21/2015] [Accepted: 01/28/2015] [Indexed: 11/17/2022]
|
12
|
Capouillez A, Noël JC, Arafa M, Arcolia V, Mouallif M, Guenin S, Delvenne P, Belayew A, Saussez S. Expression of the helicase-like transcription factor and its variants during carcinogenesis of the uterine cervix: implications for tumour progression. Histopathology 2011; 58:984-8. [PMID: 21585432 DOI: 10.1111/j.1365-2559.2011.03843.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Abstract
In the yeast Saccharomyces cerevisiae, the Rad6-Rad18 DNA damage tolerance pathway constitutes a major defense system against replication fork blocking DNA lesions. The Rad6-Rad18 ubiquitin-conjugating/ligase complex governs error-free and error-prone translesion synthesis by specialized DNA polymerases, as well as an error-free Rad5-dependent postreplicative repair pathway. For facilitating replication through DNA lesions, translesion synthesis polymerases copy directly from the damaged template, while the Rad5-dependent damage tolerance pathway obtains information from the newly synthesized strand of the undamaged sister duplex. Although genetic data demonstrate the importance of the Rad5-dependent pathway in tolerating DNA damages, there has been little understanding of its mechanism. Also, the conservation of the yeast Rad5-dependent pathway in higher order eukaryotic cells remained uncertain for a long time. Here we summarize findings published in recent years regarding the role of Rad5 in promoting error-free replication of damaged DNA, and we also discuss results obtained with its human orthologs, HLTF and SHPRH.
Collapse
|
14
|
Capouillez A, Debauve G, Decaestecker C, Filleul O, Chevalier D, Mortuaire G, Coppée F, Leroy X, Belayew A, Saussez S. The helicase-like transcription factor is a strong predictor of recurrence in hypopharyngeal but not in laryngeal squamous cell carcinomas. Histopathology 2009; 55:77-90. [PMID: 19614770 DOI: 10.1111/j.1365-2559.2009.03330.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS To examine the immunohistochemical expression of helicase-like transcription factor (HLTF) in relation to the prognosis of hypopharyngeal (HSCCs) and laryngeal (LSCCs) squamous cell carcinomas, and to characterize the HLTF protein variants expressed in biopsy specimens of head and neck squamous cell carcinoma (HNSCC) as well as the HeLa cell line. METHODS AND RESULTS HLTF expression was determined by immunohistochemistry on a series of 100 hypopharyngeal (stage IV) and 56 laryngeal SCCs (stages I, II and IV). The HLTF variants were defined using reverse transcriptase-polymerase chain reaction and Western blots in 13 fresh HNSCC biopsies and in HeLa cells. High levels of HLTF expression were associated with rapid recurrence rates in a subgroup of 81 stage IV hypopharyngeal SCCs (with complete follow-up). A 95-kDa HLTF variant truncated at the carboxyl-terminal domain was detected in addition to the 115-kDa full-size protein in HNSCC biopsies, while six variants were observed in HeLa cells. CONCLUSIONS Our results demonstrate, for the first time, that hypopharyngeal SCCs presenting high levels of HLTF have a worse prognosis. The quantitative determination of HLTF in hypopharyngeal SCCs was an independent prognostic marker alongside tumour node metastasis staging. HNSCCs expressed the truncated HLTF variant lacking the domains involved in DNA repair.
Collapse
Affiliation(s)
- Aurélie Capouillez
- Laboratories of Anatomy, Faculty of Medicine and Pharmacy, University of Mons-Hainaut, Mons, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|