1
|
Elimam H, Abdel Mageed SS, Hatawsh A, Moussa R, Radwan AF, Elfar N, Alhamshry NAA, Abd-Elmawla MA, Mohammed OA, Zaki MB, Doghish AS. Unraveling the influence of LncRNA in gastric cancer pathogenesis: a comprehensive review focus on signaling pathways interplay. Med Oncol 2024; 41:218. [PMID: 39103705 DOI: 10.1007/s12032-024-02455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Gastric cancers (GCs) are among the most common and fatal malignancies in the world. Despite our increasing understanding of the molecular mechanisms underlying GC, further biomarkers are still needed for more in-depth examination, focused prognosis, and treatment. GC is one among the long non-coding RNAs, or lncRNAs, that have emerged as key regulators of the pathophysiology of cancer. This comprehensive review focuses on the diverse functions of long noncoding RNAs (lncRNAs) in the development of GC and their interactions with important intracellular signaling pathways. LncRNAs affect GC-related carcinogenic signaling cascades including pathways for EGFR, PI3K/AKT/mTOR, p53, Wnt/β-catenin, JAK/STAT, Hedgehog, NF-κB, and hypoxia-inducible factor. Dysregulated long non-coding RNA (lncRNA) expression has been associated with multiple characteristics of cancer, such as extended growth, apoptosis resistance, enhanced invasion and metastasis, angiogenesis, and therapy resistance. For instance, lncRNAs such as HOTAIR, MALAT1, and H19 promote the development of GC via altering these pathways. Beyond their main roles, GC lncRNAs exhibit potential as diagnostic and prognostic biomarkers. The overview discusses CRISPR/Cas9 genome-modifying methods, antisense oligonucleotides, small molecules, and RNA interference as potential therapeutic approaches to regulate the expression of long noncoding RNAs (lncRNAs). An in-depth discussion of the intricate functions that lncRNAs play in the development of the majority of stomach malignancies is provided in this review. It provides the groundwork for future translational research in lncRNA-based whole processes toward GC by highlighting their carcinogenic effects, regulatory roles in significant signaling cascades, and practical scientific uses as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo, 11567, Egypt
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
2
|
Jahan R, Shah A, Kisling SG, Macha MA, Thayer S, Batra SK, Kaur S. Odyssey of trefoil factors in cancer: Diagnostic and therapeutic implications. Biochim Biophys Acta Rev Cancer 2020; 1873:188362. [PMID: 32298747 DOI: 10.1016/j.bbcan.2020.188362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Trefoil factors 1, 2, and 3 (TFFs) are a family of small secretory molecules involved in the protection and repair of the gastrointestinal tract (GI). TFFs maintain and restore epithelial structural integrity via transducing key signaling pathways for epithelial cell migration, proliferation, and invasion. In recent years, TFFs have emerged as key players in the pathogenesis of multiple diseases, especially cancer. Initially recognized as tumor suppressors, emerging evidence demonstrates their key role in tumor progression and metastasis, extending their actions beyond protection. However, to date, a comprehensive understanding of TFFs' mechanism of action in tumor initiation, progression and metastasis remains obscure. The present review discusses the structural, functional and mechanistic implications of all three TFF family members in tumor progression and metastasis. Also, we have garnered information from studies on their structure and expression status in different organs, along with lessons from their specific knockout in mouse models. In addition, we highlight the emerging potential of using TFFs as a biomarker to stratify tumors for better therapeutic intervention.
Collapse
Affiliation(s)
- Rahat Jahan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA; Department of Otolaryngology-Head & Neck Surgery, University of Nebraska Medical Center, NE, 68198, USA; Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India -191201
| | - Sarah Thayer
- Division of Surgical Oncology, Department of Surgery, University of Nebraska Medical Center, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE 68198, USA.
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA.
| |
Collapse
|
3
|
Gastric toxicity involving alterations of gastritis-related protein expression in mice following long-term exposure to nano TiO 2. Food Res Int 2017; 95:38-45. [DOI: 10.1016/j.foodres.2017.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Sokolova O, Naumann M. NF-κB Signaling in Gastric Cancer. Toxins (Basel) 2017; 9:toxins9040119. [PMID: 28350359 PMCID: PMC5408193 DOI: 10.3390/toxins9040119] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a leading cause of cancer death worldwide. Diet, obesity, smoking and chronic infections, especially with Helicobacter pylori, contribute to stomach cancer development. H. pylori possesses a variety of virulence factors including encoded factors from the cytotoxin-associated gene pathogenicity island (cagPAI) or vacuolating cytotoxin A (VacA). Most of the cagPAI-encoded products form a type 4 secretion system (T4SS), a pilus-like macromolecular transporter, which translocates CagA into the cytoplasm of the host cell. Only H. pylori strains carrying the cagPAI induce the transcription factor NF-κB, but CagA and VacA are dispensable for direct NF-κB activation. NF-κB-driven gene products include cytokines/chemokines, growth factors, anti-apoptotic factors, angiogenesis regulators and metalloproteinases. Many of the genes transcribed by NF-κB promote gastric carcinogenesis. Since it has been shown that chemotherapy-caused cellular stress could elicit activation of the survival factor NF-κB, which leads to acquisition of chemoresistance, the NF-κB system is recommended for therapeutic targeting. Research is motivated for further search of predisposing conditions, diagnostic markers and efficient drugs to improve significantly the overall survival of patients. In this review, we provide an overview about mechanisms and consequences of NF-κB activation in gastric mucosa in order to understand the role of NF-κB in gastric carcinogenesis.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany.
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany.
| |
Collapse
|
5
|
Abstract
Trefoil factor (TFF) peptides, with a 40-amino acid motif and including six conserved cysteine residues that form intramolecular disulfide bonds, are a family of mucin-associated secretory molecules mediating many physiological roles that maintain and restore gastrointestinal (GI) mucosal homeostasis. TFF peptides play important roles in response to GI mucosal injury and inflammation. In response to acute GI mucosal injury, TFF peptides accelerate cell migration to seal the damaged area from luminal contents, whereas chronic inflammation leads to increased TFF expression to prevent further progression of disease. Although much evidence supports the physiological significance of TFF peptides in mucosal defenses, the molecular and cellular mechanisms of TFF peptides in the GI epithelium remain largely unknown. In this review, we summarize the functional roles of TFF1, 2, and 3 and illustrate their action mechanisms, focusing on defense mechanisms in the GI tract.
Collapse
Affiliation(s)
- Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| | - Kristen A Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| | - Marshall H Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| |
Collapse
|
6
|
Yang T, Lan J, Huang Q, Chen X, Sun X, Liu X, Yang P, Jin T, Wang S, Mou X. Embelin sensitizes acute myeloid leukemia cells to TRAIL through XIAP inhibition and NF-κB inactivation. Cell Biochem Biophys 2015; 71:291-7. [PMID: 25358405 DOI: 10.1007/s12013-014-0197-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) shows promising result in cancer therapy and induces apoptosis in a wide variety of tumor cells, without causing toxicity to normal cells. However, many tumor cells including acute myeloid leukemia (AML) showed certain degrees of resistance to TRAIL and the mechanism remains largely unknown. Embelin is a potent XIAP inhibitor which has been shown to inhibit the proliferation of tumor cells and cause cell apoptosis. In this study, we investigated the effects of Embelin on the TRAIL-induced apoptosis and the underlying mechanism. Here, we chose an adenovirus vector as the expression vector for TRAIL, which was named Ad-TRAIL. The results in vitro showed that the co-treatment of Embelin and Ad-TRAIL has synergistically suppressed the proliferation of AML cells. Embelin has the ability to enhance TRAIL-induced apoptosis and activate caspase pathway. More interestingly, we found that the underlying mechanism for these talent skills of Embelin is through reducing the TRAIL-mediated activation of NF-κB and decreasing its transcriptional activity. Furthermore, our results in vivo suggest that combined therapy of Embelin and Ad-TRAIL caused significant growth inhibition of HL-60 xenograft tumors. Our results suggested that Embelin could sensitize AML cell to TRAIL through the repression of NF-κB signal pathway in vitro and in vivo, and combined therapy of Ad-TRAIL and Embelin may be the attractive candidate for clinical application in treatment of AML.
Collapse
Affiliation(s)
- Tianxin Yang
- Department of Hematology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Xiao P, Ling H, Lan G, Liu J, Hu H, Yang R. Trefoil factors: Gastrointestinal-specific proteins associated with gastric cancer. Clin Chim Acta 2015; 450:127-34. [PMID: 26265233 DOI: 10.1016/j.cca.2015.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/11/2022]
Abstract
Trefoil factor family (TFF), composed of TFF1, TFF2, and TFF3, is a cluster of secreted peptides characterized by trefoil domain (s) and C-terminal dimerization domain. TFF1, a gastric tumor suppressor, is a single trefoil peptide originally detected in breast cancer cell lines but expressed mainly in the stomach; TFF2, a candidate of gastric cancer suppressor with two trefoil domains, is abundant in the stomach and duodenal Brunner's glands; and TFF3 is another single trefoil peptide expressed throughout the intestine which can promote the development of gastric carcinoma. According to multiple studies, TFFs play a regulatory function in the mammals' digestive system, namely in mucosal protection and epithelial cell reconstruction, tumor suppression or promotion, signal transduction and the regulation of proliferation and apoptosis. Action mechanisms of TFFs remain unresolved, but the recent demonstration of a GKN (gastrokine) 2-TFF1 heterodimer implicates structural and functional interplay with gastrokines. This review aims to encapsulate the structural and biological characteristics of TFF.
Collapse
Affiliation(s)
- Ping Xiao
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Hui Ling
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China.
| | - Gang Lan
- Key Laboratory for Atherosclerology of Hunan Province, Cardiovascular Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Jiao Liu
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Haobin Hu
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Ruirui Yang
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| |
Collapse
|
8
|
Shi Y, Chen GB, Huang QW, Chen X, Liu JJ, Xu W, Huang XX, Liu YP, Xiao CX, Wu DC, Guleng B, Ren JL. miR218-5p regulates the proliferation of gastric cancer cells by targeting TFF1 in an Erk1/2-dependent manner. Biochim Biophys Acta Mol Basis Dis 2015; 1852:970-9. [PMID: 25652124 DOI: 10.1016/j.bbadis.2015.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 01/06/2023]
Abstract
Trefoil factor 1 (TFF1), a member of the trefoil peptide family, is not only associated with mucosal protection and restoration but is also correlated with tumorigenesis of the gastrointestinal tract. In an early study, we performed sequence analysis and identified one potential miR423-5p binding site within the 3'-untranslated region of TFF1 using microRNA target prediction tools. In the current study, we demonstrated that the coding DNA region within TFF1 is also a candidate for miR218-5p targeting. We used real-time PCR and in situ hybridization to analyze the correlation between miR218-5p and TFF1 expression in tumor lesions and paracancerous tissue in gastric cancer (GC) samples. Additionally, endogenous and exogenous TFF1 were suppressed by miR218-5p in gastric cancer cells and influenced the progression of GC in an Erk1/2-dependent manner. Targeting miR218-5p may provide a novel strategy for the treatment of GC.
Collapse
Affiliation(s)
- Ying Shi
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian, China
| | - Guo-Bin Chen
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian, China; Department of Gastroenterology, Xiamen Zhongshan Teaching Hospital of Fujian Medical University, Xiamen 361004, Fujian, China
| | - Qing-Wen Huang
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian, China
| | - Xu Chen
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian, China
| | - Jing-Jing Liu
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian, China
| | - Wei Xu
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian, China
| | - Xiao-Xiao Huang
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian, China
| | - Yun-Peng Liu
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian, China
| | - Chuan-Xing Xiao
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian, China
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan; Division of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung City 812, Taiwan
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian, China; Faculty of Clinical Medicine, Medical College of Xiamen University, 168 University Road, Xiamen 361005, Fujian, China; State Key Laboratory of Cellular Stress Biology, Xiamen University, 168 University Road, Xiamen 361005, Fujian, China.
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian, China.
| |
Collapse
|