1
|
Gee LMV, Barron-Millar B, Leslie J, Richardson C, Zaki MYW, Luli S, Burgoyne RA, Cameron RIT, Smith GR, Brain JG, Innes B, Jopson L, Dyson JK, McKay KRC, Pechlivanis A, Holmes E, Berlinguer-Palmini R, Victorelli S, Mells GF, Sandford RN, Palmer J, Kirby JA, Kiourtis C, Mokochinski J, Hall Z, Bird TG, Borthwick LA, Morris CM, Hanson PS, Jurk D, Stoll EA, LeBeau FEN, Jones DEJ, Oakley F. Anti-Cholestatic Therapy with Obeticholic Acid Improves Short-Term Memory in Bile Duct-Ligated Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:11-26. [PMID: 36243043 DOI: 10.1016/j.ajpath.2022.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/03/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022]
Abstract
Patients with cholestatic liver disease, including those with primary biliary cholangitis, can experience symptoms of impaired cognition or brain fog. This phenomenon remains unexplained and is currently untreatable. Bile duct ligation (BDL) is an established rodent model of cholestasis. In addition to liver changes, BDL animals develop cognitive symptoms early in the disease process (before development of cirrhosis and/or liver failure). The cellular mechanisms underpinning these cognitive symptoms are poorly understood. Herein, the study explored the neurocognitive symptom manifestations, and tested potential therapies, in BDL mice, and used human neuronal cell cultures to explore translatability to humans. BDL animals exhibited short-term memory loss and showed reduced astrocyte coverage of the blood-brain barrier, destabilized hippocampal network activity, and neuronal senescence. Ursodeoxycholic acid (first-line therapy for most human cholestatic diseases) did not reverse symptomatic or mechanistic aspects. In contrast, obeticholic acid (OCA), a farnesoid X receptor agonist and second-line anti-cholestatic agent, normalized memory function, suppressed blood-brain barrier changes, prevented hippocampal network deficits, and reversed neuronal senescence. Co-culture of human neuronal cells with either BDL or human cholestatic patient serum induced cellular senescence and increased mitochondrial respiration, changes that were limited again by OCA. These findings provide new insights into the mechanism of cognitive symptoms in BDL animals, suggesting that OCA therapy or farnesoid X receptor agonism could be used to limit cholestasis-induced neuronal senescence.
Collapse
Affiliation(s)
- Lucy M V Gee
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ben Barron-Millar
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claire Richardson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marco Y W Zaki
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Biochemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Saimir Luli
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel A Burgoyne
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rainie I T Cameron
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Graham R Smith
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John G Brain
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Barbara Innes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laura Jopson
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Jessica K Dyson
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Katherine R C McKay
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexandros Pechlivanis
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Elaine Holmes
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Stella Victorelli
- Department of Physiology and Biomedical Engineering, Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - George F Mells
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Richard N Sandford
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jeremy Palmer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John A Kirby
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Joao Mokochinski
- MRC London Institute of Medical Sciences, London, United Kingdom
| | - Zoe Hall
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher M Morris
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter S Hanson
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | | | - Fiona E N LeBeau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David E J Jones
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
5
|
Faqihi F, Stoodley MA, McRobb LS. Endothelial surface translocation of mitochondrial PDCE2 involves the non-canonical secretory autophagy pathway: Putative molecular target for radiation-guided drug delivery. Exp Cell Res 2021; 405:112688. [PMID: 34097858 DOI: 10.1016/j.yexcr.2021.112688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
Radiation has been proposed as a priming agent to induce discriminatory luminal biomarkers for vascular targeting and drug delivery in disorders such as brain arteriovenous malformations and cancers. We previously observed ectopic expression of intracellular proteins such as mitochondrial PDCE2 on irradiated endothelium in animal models. In this study we examined the mechanism of PDCE2 trafficking in human endothelial cells to better understand its suitability as a vascular target. Ionizing radiation induced PDCE2 surface localization in association with accumulation of autophagosome markers (L3CB and p62) indicative of late-stage inhibition of autophagic flux. This effect was abolished in the presence of Rapamycin, an autophagy-inducer, but replicated in the presence of Bafilomycin A, an autophagy blocker. PDCE2 co-localized with lysosomal markers of the canonical degradative autophagy pathway in response to radiation but also with recycling endosomes and SNARE proteins responsible for autophagosome-plasma membrane fusion. These findings demonstrate that radiation-induced blockade of autophagic flux stimulates redirection of intracellular molecules such as PDCE2 to the cell surface via a non-canonical secretory autophagy pathway. Intracellular membrane proteins trafficked in this way could provide a unique pool of radiation biomarkers for therapeutic drug delivery.
Collapse
Affiliation(s)
- F Faqihi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - M A Stoodley
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - L S McRobb
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Zhu Y, Wang Q, Tang X, Yao G, Sun L. Mesenchymal stem cells enhance autophagy of human intrahepatic biliary epithelial cells in vitro. Cell Biochem Funct 2018; 36:280-287. [PMID: 29974509 DOI: 10.1002/cbf.3340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/28/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022]
Abstract
Dysfunctional autophagy in intrahepatic biliary epithelial cells (IBECs) is the main mechanism underlying the pathogenesis of bile duct lesions in primary biliary cholangitis. Autophagy may be a key pathogenesis for aetiology of primary biliary cholangitis. Immunoblotting and immunofluorescence analyses were used for the evaluation of autophagy in human intrahepatic biliary epithelial cells (HiBECs) at various time points. Glycochenodeoxycholate (GCDC) induced autophagy in HiBECs; the ratio of microtubule-associated protein light chain 3-II/microtubule-associated protein light chain 3-I (LC3-II/LC3-I) expression markedly increased at 48 hours, and then declined. However, compared with cells treated with GCDC alone, the expression of LC3-II increased and the clearance of autophagosome enhanced in GCDC-treated cells cocultured with mesenchymal stem cells (MSCs). Furthermore, the level of phosphorylation of signal transducer and activator of transcription 3 (pSTAT3) decreased in HiBECs cocultured with MSCs relative to those cultured without MSCs. Following STAT3 silencing, decreased expression of phosphorylated eukaryotic initiation factor 2α was consistently observed. The present data suggest that mesenchymal stem cells may enhance autophagic flux of HiBECs through the inhibition of STAT3 activity. SIGNIFICANCE PARAGRAPH The present findings constitute the first report that human umbilical cord-derived MSCs enhance autophagic flux in HiBECs through a STAT3-dependent way: MSCs enhance the autophagic flux by increasing the formation of autophagosome and autolysosome in GCDC-treated HiBECs. MSCs decrease the STAT3 activity and the expression of eIF2α in GCDC-treated HiBECs; in addition, MSCs increase the expression of PKR. With STAT3 silencing, MSCs enhance neither the levels of LC3II nor the expression of PKR in GCDC-treated HiBECs.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Rheumatology and Immunology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qian Wang
- Department of Rheumatology and Immunology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Sasaki M, Nakanuma Y. Stress-induced cellular responses and cell death mechanisms during inflammatory cholangiopathies. Clin Res Hepatol Gastroenterol 2017; 41:129-138. [PMID: 27618480 DOI: 10.1016/j.clinre.2016.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/24/2016] [Accepted: 08/01/2016] [Indexed: 02/04/2023]
Abstract
Various cellular responses including apoptosis, necrosis, autophagy and cellular senescence are involved in the pathogenesis of inflammatory cholangiopathies, such as primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) and biliary atresia (BA). For example, dysregulated autophagy may play a role in abnormal expression of mitochondrial antigens and following autoimmune pathogenesis in bile duct lesions in PBC. Recently, new types of regulated cell death including necroptosis, parthanatos, pyroptosis, immunogenic cell death are the subject of numerous reports and they may play roles in pathogenesis of liver diseases, such as nonalcoholic steatohepatitis. Although there have been few studies on these new types of regulated cell death in inflammatory cholangiopathies, so far, they may play important roles in the pathophysiology of inflammatory cholangiopathies. Further studies on new types of regulated cell death are mandatory, since they could be targets of new therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Motoko Sasaki
- Department of human pathology, Kanazawa university graduate school of medicine, Kanazawa 920-8640, Japan.
| | - Yasuni Nakanuma
- Department of human pathology, Kanazawa university graduate school of medicine, Kanazawa 920-8640, Japan; Division of pathology, Shizuoka cancer center, Shizuoka, Japan
| |
Collapse
|
8
|
Huang YQ. Recent advances in the diagnosis and treatment of primary biliary cholangitis. World J Hepatol 2016; 8:1419-1441. [PMID: 27957241 PMCID: PMC5124714 DOI: 10.4254/wjh.v8.i33.1419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/26/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023] Open
Abstract
Primary biliary cholangitis (PBC), formerly referred to as primary biliary cirrhosis, is an infrequent progressive intrahepatic cholestatic autoimmune illness that can evolve into hepatic fibrosis, hepatic cirrhosis, hepatic failure, and, in some cases, hepatocellular carcinoma. The disease itself is characterized by T-lymphocyte-mediated chronic non-suppurative destructive cholangitis and elevated serum levels of extremely specific anti-mitochondrial autoantibodies (AMAs). In this article, we will not only review epidemiology, risk factors, natural history, predictive scores, radiologic approaches (e.g., acoustic radiation force impulse imaging, vibration controlled transient elastography, and magnetic resonance elastography), clinical features, serological characteristics covering biochemical markers, immunoglobulins, infections markers, biomarkers, predictive fibrosis marker, specific antibodies (including AMAs such as AMA-M2), anti-nuclear autoantibodies [such as anti-multiple nuclear dot autoantibodies (anti-sp100, PML, NDP52, anti-sp140), anti-rim-like/membranous anti-nuclear autoantibodies (anti-gp210, anti-p62), anti-centromere autoantibodies, and some of the novel autoantibodies], histopathological characteristics of PBC, diagnostic advances, and anti-diastole of PBC. Furthermore, this review emphasizes the recent advances in research of PBC in terms of therapies, including ursodeoxycholic acid, budesonide, methotrexate, obeticholic acid, cyclosporine A, fibrates such as bezafibrate and fenofibrate, rituximab, mesenchymal stem cells transplant, and hepatic transplant. Currently, hepatic transplant remains the only optimal choice with acknowledged treatment efficiency for end-stage PBC patients.
Collapse
|