1
|
Yu ZQ, Wang M, Zhou W, Mao MX, Chen YY, Li N, Peng XC, Cai J, Cai ZQ. ROS1-positive non-small cell lung cancer (NSCLC): Biology, Diagnostics, Therapeutics and Resistance. J Drug Target 2022; 30:845-857. [PMID: 35658765 DOI: 10.1080/1061186x.2022.2085730] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ROS1 is a proto-oncogene encoding a receptor tyrosine protein kinase (RTK), homologous to the v - Ros sequence of University of Manchester tumours virus 2(UR2) sarcoma virus, whose ligands are still being investigated. ROS1 fusion genes have been identified in various types of tumours. As an oncoprotein, it promotes cell proliferation, activation and cell cycle progression by activating downstream signalling pathways, accelerating the development and progression of non-small cell lung cancer (NSCLC). Studies have demonstrated that ROS1 inhibitors are effective in patients with ROS1-positive NSCLC and are used for first-line clinical treatment. These small molecule inhibitors provide a rational therapeutic option for the treatment of ROS1-positive patients. Inevitably, ROS1 inhibitor resistance mutations occur, leading to tumours recurrence or progression. Here, we comprehensively review the identified biological properties and Differential subcellular localization of ROS1 fusion oncoprotein promotes tumours progression. We summarize recently completed and ongoing clinical trials of the classic and new ROS1 inhibitors. More importantly, we classify the complex evolving tumours cell resistance mechanisms. This review contributes to our understanding of the biological properties of ROS1 and current therapeutic advances and resistant tumours cells, and the future directions to develop ROS1 inhibitors with durable effects.
Collapse
Affiliation(s)
- Zhi-Qiong Yu
- Department of Oncology, First Affiliated Hospital of Yangtze University
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University
| | - Wen Zhou
- Department of Oncology, First Affiliated Hospital of Yangtze University
| | - Meng-Xia Mao
- Department of Oncology, First Affiliated Hospital of Yangtze University
| | - Yuan-Yuan Chen
- Department of Oncology, First Affiliated Hospital of Yangtze University
| | - Na Li
- Department of Oncology, First Affiliated Hospital of Yangtze University
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine.,Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University
| | - Zhi-Qiang Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University
| |
Collapse
|
2
|
Chen X, Gao W, Yin G, Guo W, Huang J, Huang Z, Zhang Y. Phospho-EGFRTyr992 is synergistically repressed by co-inhibition of histone deacetylase (HDAC) and phosphatidylinositol 3-kinase (PI3K), which attenuates resistance to erlotinib in head and neck cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1455. [PMID: 34734007 PMCID: PMC8506790 DOI: 10.21037/atm-21-4335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022]
Abstract
Background Erlotinib is a commonly used epidermal growth factor receptor (EGFR)-targeted therapeutic choice for head and neck squamous cell carcinoma; however, its efficacy is largely compromised by cancer cell resistance. Understanding and targeting the erlotinib adaptive mechanisms of squamous cell carcinoma of the head and neck (HNSCC) cancer cells are still pressing challenges. This study aimed to elucidate the cooperative erlotinib-sensitizing mechanisms of histone deacetylase (HDAC) and phosphatidylinositol 3-kinase (PI3K) co-inhibition, which will be helpful in gaining a better understanding of the mechanism of EGFR-tyrosine kinase inhibitor (TKI) resistance in head and neck cancer cells. Methods High-content screening (HCS) was performed to analyze the cell counts of different treatment groups and their drug-sensitizing effect phenotype. Western blotting and immunofluorescence staining assays were used to measure and locate the expression of proteins in the FaDu and TU212 cells. Annexin V/PI and DAPI staining were also used to determine the ratio of apoptotic cells and different cell cycle phases. Results The expression of phosphor-EGFRTyr992 was significantly increased in erlotinib-treated FaDu cells compared with dimethyl sulfoxide (DMSO)-treated FaDu cells. Meanwhile, erlotinib + vorinostat + copanlisib jointly attenuated the expression of phosphor-EGFRTyr1068 and phosphor-EGFRTyr992, but stimulated the expression of E-cadherin. Moreover, we found that the tri-drug group also impaired the expression of phosphor-STAT3Ser727 and its relevant activators, including phosphor-SrcTyr416. Conclusions These findings indicate that HDACs and PI3K co-inhibition sensitizes erlotinib via inactivation of the phosphor-EGFRTyr1068-induced RTK-STAT3 axis. However, PI3K inhibition was sufficient to sensitize TU212 cells to erlotinib, providing new perspectives for the further clinical study of erlotinib + vorinostat + copanlisib as a potential combination therapeutic solution for EGFR responsive reactivation-induced resistance to erlotinib.
Collapse
Affiliation(s)
- Xuejun Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wen Gao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Gaofei Yin
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junwei Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhigang Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Zhai H, Moore D, Jamal-Hanjani M. Inactivation of RB1 and histological transformation in EGFR-mutant lung adenocarcinoma. Ann Oncol 2020; 31:169-170. [PMID: 31959334 DOI: 10.1016/j.annonc.2019.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/12/2023] Open
Affiliation(s)
- H Zhai
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - D Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Department of Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - M Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
4
|
Tafe LJ. Non-Small Cell Lung Cancer as a Precision Oncology Paradigm: Emerging Targets and Tumor Mutational Burden (TMB). Adv Anat Pathol 2020; 27:3-10. [PMID: 31567128 DOI: 10.1097/pap.0000000000000244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Non-small cell lung cancer (NSCLC), since the recognition of epidermal growth factor receptor (EGFR) mutations that sensitized tumors to EGFR tyrosine kinase inhibitors, has been a poster child for precision oncology in solid tumors. The emergence of resistance to the EGFR tyrosine kinase inhibitors led to the unveiling of multiple resistance mechanisms that are now recognized to be frequent mechanisms across multiple tumor types. Coevolution of technological advancements in testing methods available to clinical laboratories now has identified a growing number of molecularly defined subsets of NSCLC that have new therapeutic implications. In addition, identifying patients eligible for immunotherapy is another goal for precision oncology. Recently, studies suggest that TMB may be a promising biomarker for selecting patients with NSCLC for immunotherapy. This review focuses on emerging potentially targetable alterations specifically in RET, ERBB2 (HER2), MET, and KRAS and current evidence and controversies surrounding TMB testing.
Collapse
|
5
|
Ku BM, Bae YH, Lee KY, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ. Entrectinib resistance mechanisms in ROS1-rearranged non-small cell lung cancer. Invest New Drugs 2019; 38:360-368. [PMID: 31124056 PMCID: PMC7066105 DOI: 10.1007/s10637-019-00795-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 01/12/2023]
Abstract
Entrectinib is a pan-tyrosine-kinase inhibitor that targets oncogenic rearrangements in NTRK, ROS1 and ALK. The combined results of two clinical trials demonstrated the efficacy of entrectinib in ROS1-rearranged NSCLC. Because the development of drug resistance is inevitable, it would be helpful to determine the mechanisms of entrectinib resistance in a ROS1-rearranged tumor model so that future therapeutic strategies can be developed. Here, we characterized the molecular basis of resistance in entrectinib-resistant ROS1-rearranged HCC78 cells (HCC78ER cells). These cells were analyzed by next-generation sequencing and genetic profiling, which revealed the acquisition of KRAS G12C and the amplification of KRAS and FGF3. However, there were no secondary mutations in the ROS1 kinase domain. We also found that sustained ERK activation was involved in entrectinib resistance, and that combined treatment with selumetinib resensitized HCC78ER cells to entrectinib in cell viability and colony formation assays. Our data suggest that activation of the RAS signaling pathway can cause entrectinib resistance in ROS1-rearranged NSCLC, and is unlikely to be overcome by sequential single agent ROS1-targeting strategies against such tumors. Instead, co-targeting ROS1 and MEK may be an effective strategy for overcoming entrectinib resistance in ROS1-rearranged NSCLC.
Collapse
Affiliation(s)
- Bo Mi Ku
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yeon Hee Bae
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyoung Young Lee
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong-Mu Sun
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Se-Hoon Lee
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Jin Seok Ahn
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Keunchil Park
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Myung-Ju Ahn
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
6
|
Cui Q, Wang B, Li K, Sun H, Hai T, Zhang Y, Kang H. Upregulating MMP-1 in carcinoma-associated fibroblasts reduces the efficacy of Taxotere on breast cancer synergized by Collagen IV. Oncol Lett 2018; 16:3537-3544. [PMID: 30127959 DOI: 10.3892/ol.2018.9092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy is an important comprehensive treatment for breast cancer, which targets micro-environment of tumors as well as their characterisitcs. A previous microarray analysis revealed that matrix metalloproteinase (MMP)-1 was highly upregulated in carcinoma-associated fibroblasts (CAFs) prior to and following treatment with Taxotere under co-culture conditions. However, whether the chemotherapeutic effects of Taxotere were influenced by the changes in MMP-1 remained unclear. The purpose of the present study was to investigate the impact and mechanism of CAFs in regulating the efficacy of Taxotere on breast cancer cells. CAFs isolated from primary invasive ductal human breast tumors following surgical resection, were used in co-culture with MDA-MB-231 cells to simulate the tumor micro-environment. Following the addition of Taxotere, changes in MMP-1 gene and protein expression were assessed by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Proliferation, invasion and apoptosis assays revealed that when MMP-1 was upregulated in CAFs, the therapeutic efficacy of Taxotere was reduced in breast cancer cells. Chemosensitivity was significantly increased when MMP-1 expression was inhibited by GM6001. In addition, Collagen IV was upregulated in CAFs following chemotherapy and protected breast cancer cells against chemotherapeutic side effects. Collagen IV expression significantly decreased, as well as MMP-1 expression when GM6001 was added. Proliferation and invasion assays demonstrated that the exogenous addition of Collagen IV weakend the chemotherapeutic effect of Taxotere on breast tumor cells. Overall, the results revealed that in CAFs, MMP-1 synergized with Collagen IV as a key gene in regulating the chemotherapeutic effect of Taxotere on breast tumor cells and served an important role in reducing the efficacy of Taxotere on breast cancer, potentially via the transforming growth factor-β signaling pathway. These fidings provide a theoretical basis for the mechanism of CAFs in reducing the chemotherapeutic effect of Taxotere on breast cancer cells and a novel approach for enhancing the chemosensitivity of tumors.
Collapse
Affiliation(s)
- Qingyu Cui
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Bixiao Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Kaifu Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Haichen Sun
- Surgery Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Tao Hai
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Yan Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Hua Kang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
7
|
Denis JA, Guillerm E, Coulet F, Larsen AK, Lacorte JM. The Role of BEAMing and Digital PCR for Multiplexed Analysis in Molecular Oncology in the Era of Next-Generation Sequencing. Mol Diagn Ther 2018; 21:587-600. [PMID: 28667577 DOI: 10.1007/s40291-017-0287-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BEAMing polymerase chain reaction (PCR) and digital PCR (dPCR) are used for robust and accurate quantification of nucleic acids. These methods are particularly well suited for the identification of very small fractions (<1%) of variant copies such as the presence of mutant genes in a predominantly wild-type background. BEAMing and dPCR are increasingly used in diverse fields including bacteriology, virology, non-invasive prenatal testing, and oncology, in particular for the molecular analysis of liquid biopsies. In this review, we present the principles of BEAMing and dPCR as well as the trends of future technical development, focusing on the possibility of developing multiplexed mutation analysis. Finally, we will discuss why such techniques will remain useful despite the ever-decreasing costs and increased automatization of next-generation sequencing (NGS), using molecular characterization of cancer cells as an example.
Collapse
Affiliation(s)
- Jérôme Alexandre Denis
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France. .,Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, INSERM, UMRS 938, 75571, Paris Cedex 12, France. .,Department of Endocrine and Oncological Biochemistry, AP-HP, University Hospitals of Pitié-Salpétrière - Charles Foix, 75651, Paris, France.
| | - Erell Guillerm
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,INSERM, UMRS 938 Centre de Recherche Saint-Antoine, "Instability of Microsatellites and Cancers", Team approved by the National League Against Cancer, 75571, Paris Cedex 12, France.,Departement of Genetics, Unit of Molecular Oncogenetics and Angiogenetics, AP-HP, University Hospitals of Pitié-Salpétrière - Charles Foix, 75651, Paris Cedex, France
| | - Florence Coulet
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,INSERM, UMRS 938 Centre de Recherche Saint-Antoine, "Instability of Microsatellites and Cancers", Team approved by the National League Against Cancer, 75571, Paris Cedex 12, France.,Departement of Genetics, Unit of Molecular Oncogenetics and Angiogenetics, AP-HP, University Hospitals of Pitié-Salpétrière - Charles Foix, 75651, Paris Cedex, France
| | - Annette K Larsen
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, INSERM, UMRS 938, 75571, Paris Cedex 12, France
| | - Jean-Marc Lacorte
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,INSERM, UMR_S 1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, 75013, Paris, France.,Department of Endocrine and Oncological Biochemistry, AP-HP, University Hospitals of Pitié-Salpétrière - Charles Foix, 75651, Paris, France
| |
Collapse
|
8
|
Wang Y, Liu H, Hou Y, Zhou X, Liang L, Zhang Z, Shi H, Xu S, Hu P, Zheng Z, Liu R, Tang T, Ye F, Liang Z, Bu H. Performance validation of an amplicon-based targeted next-generation sequencing assay and mutation profiling of 648 Chinese colorectal cancer patients. Virchows Arch 2018; 472:959-968. [PMID: 29705968 DOI: 10.1007/s00428-018-2359-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/01/2018] [Accepted: 04/08/2018] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing (NGS) has become a promising approach for tumor somatic mutation detection. However, stringent validation is required for its application on clinical specimens, especially for low-quality formalin-fixed paraffin-embedded (FFPE) tissues. Here, we validated the performance of an amplicon-based targeted NGS assay, OncoAim™ DNA panel, on both commercial reference FFPE samples and clinical FFPE samples of Chinese colorectal cancer (CRC) patients. Then we profiled the mutation spectrum of 648 Chinese CRC patients in a multicenter study to explore its clinical utility. This NGS assay achieved 100% test specificity and 95-100% test sensitivity for variants with mutant allele frequency (MAF) ≥ 5% when median read depth ≥ 500×. The orthogonal methods including amplification refractory mutation system (ARMS)-PCR and Sanger sequencing validated that NGS generated three false negatives (FNs) but no false positives (FPs) among 516 clinical samples for KRAS aberration detection. Genomic profiling of Chinese CRC patients with this assay revealed that 63.3% of the tumors harbored clinically actionable alterations. Besides the commonly mutated genes including TP53 (52.82%), KRAS (46.68%), APC (24.09%), PIK3CA (18.94%), SMAD4 (9.47%), BRAF (6.15%), FBXW7 (5.32%), and NRAS (4.15%), other less frequently mutated genes were also identified. Statistically significant association of specific mutated genes with certain clinicopathological features was detected, e.g., both BRAF and PIK3CA were more prevalent in right-side CRC (p < 0.001 and p = 0.002, respectively). We concluded this targeted NGS assay is qualified for clinical practice, and our findings could help the diagnosis and prognosis of Chinese CRC patients.
Collapse
Affiliation(s)
- Yajian Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.,Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haijing Liu
- Department of Pathology, Peking University Third Hospital, Beijing, 100000, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Li Liang
- Huayin Laboratory, Southern Medical University, Guangzhou, 510515, China
| | - Zhihong Zhang
- Department of Pathology, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Huaiyin Shi
- Department of Pathology, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, 100000, China
| | - Sanpeng Xu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peizhen Hu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zuyu Zheng
- Singlera Genomics Inc., Shanghai, 201318, China
| | - Rui Liu
- Singlera Genomics Inc., Shanghai, 201318, China
| | | | - Feng Ye
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.,Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
López JI, Angulo JC. Pathological Bases and Clinical Impact of Intratumor Heterogeneity in Clear Cell Renal Cell Carcinoma. Curr Urol Rep 2018; 19:3. [PMID: 29374850 DOI: 10.1007/s11934-018-0754-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Intratumor heterogeneity is an inherent event in tumor development that is receiving much attention in the last years since it is responsible for most failures of current targeted therapies. The purpose of this review is to offer clinicians an updated insight of the multiple manifestations of a complex event that impacts significantly patient's life. RECENT FINDINGS Clear cell renal cell carcinoma is the most common renal tumor and a paradigmatic example of a heterogeneous neoplasm. Next-generation sequencing has demonstrated that intratumor heterogeneity encompasses genetic, epigenetic, and microenvironmental variability. Currently accepted protocols of tumor sampling seem insufficient in unveiling intratumor heterogeneity with reliability and need to be updated. This variability challenges the precise morphological diagnosis, its molecular characterization, and the selection of optimal personalized therapies in clear cell renal cell carcinoma, a neoplasm traditionally considered chemo- and radio-resistant. We review the state of the art of the different approaches to intratumor heterogeneity in clear cell renal cell carcinomas, from the simple morphology to the most sophisticated massive sequencing tools.
Collapse
Affiliation(s)
- José I López
- Department of Pathology, Cruces University Hospital, Biocruces Research Institute, University of the Basque Country (UPV/EHU), 48903, Barakaldo, Spain.
| | - Javier C Angulo
- Clinical Department, Urology, Hospital Universitario de Getafe, Universidad Europea de Madrid, 28905, Madrid, Spain
| |
Collapse
|
10
|
A Microdevice Platform Recapitulating Hypoxic Tumor Microenvironments. Sci Rep 2017; 7:15233. [PMID: 29123197 PMCID: PMC5680268 DOI: 10.1038/s41598-017-15583-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022] Open
Abstract
Hypoxia plays a central role in cancer progression and resistance to therapy. We have engineered a microdevice platform to recapitulate the intratumor oxygen gradients that drive the heterogeneous hypoxic landscapes in solid tumors. Our design features a "tumor section"-like culture by incorporating a cell layer between two diffusion barriers, where an oxygen gradient is established by cellular metabolism and physical constraints. We confirmed the oxygen gradient by numerical simulation and imaging-based oxygen sensor measurement. We also demonstrated spatially-resolved hypoxic signaling in cancer cells through immunostaining, gene expression assay, and hypoxia-targeted drug treatment. Our platform can accurately generate and control oxygen gradients, eliminates complex microfluidic handling, allows for incorporation of additional tumor components, and is compatible with high-content imaging and high-throughput applications. It is well suited for understanding hypoxia-mediated mechanisms in cancer disease and other biological processes, and discovery of new therapeutics.
Collapse
|
11
|
Satow R, Inagaki S, Kato C, Shimozawa M, Fukami K. Identification of zinc finger protein of the cerebellum 5 as a survival factor of prostate and colorectal cancer cells. Cancer Sci 2017; 108:2405-2412. [PMID: 29024195 PMCID: PMC5715345 DOI: 10.1111/cas.13419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
Identification of specific drug targets is very important for cancer therapy. We recently identified zinc finger protein of the cerebellum 5 (ZIC5) as a factor that promotes melanoma aggressiveness by platelet-derived growth factor D (PDGFD) expression. However, its roles in other cancer types remain largely unknown. Here we determined the roles of ZIC5 in prostate cancer (PCa) and colorectal cancer (CRC) cells. Results showed that ZIC5 was highly expressed in CRC and dedifferentiated PCa tissues, whereas little expression was observed in relevant normal tissues. Knockdown of ZIC5 decreased proliferation of several PCa and CRC cell lines with induction of cell death. ZIC5 knockdown significantly suppressed PDGFD expression transcriptionally, and PDGFD suppression also decreased proliferation of PCa and CRC cell lines. In addition, suppression of ZIC5 or PDGFD expression decreased levels of phosphorylated focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) which are associated with PCa and CRC aggressiveness. Furthermore, knockdown of ZIC5 or PDGFD enhanced death of PCa and CRC cells induced by the anti-cancer drugs docetaxel or oxaliplatin, respectively. These results suggest that ZIC5 and PDGFD promote survival of PCa and CRC cells by enhancing FAK and STAT3 activity, and that the roles of ZIC5 are consistent across several cancer types.
Collapse
Affiliation(s)
- Reiko Satow
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Shota Inagaki
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Chiaki Kato
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Makoto Shimozawa
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
12
|
Benedetti R, Dell’Aversana C, Giorgio C, Astorri R, Altucci L. Breast Cancer Vaccines: New Insights. Front Endocrinol (Lausanne) 2017; 8:270. [PMID: 29081765 PMCID: PMC5645504 DOI: 10.3389/fendo.2017.00270] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/26/2017] [Indexed: 01/07/2023] Open
Abstract
Breast cancer (BC) is a persistent global challenge for its high frequency in women (although it seldom occurs in men), due to the large diffusion of risk factors and gene mutations, and for its peculiar biology and microenvironment. To date, BC can benefit from different therapeutic strategies involving surgery, ablation, chemotherapy, radiotherapy, and more specific approaches such as hormone therapy and the administration of various substances impairing cancer growth, aggressivity, and recurrence with different modalities. Despite these relatively wide chances, also used in combinatory protocols, relevant mortality and relapse rates, often associated with resistant phenotypes, stress the need for a personalized-medicine based on prompting the patient's immune system (IS) against cancer cells. BC immunogenicity was latterly proven, so the whole immunotherapy field for BC is still at a very early stage. This immunotherapeutic approach exploits both the high specificity of adaptive immune response and the immunological memory. This review is focused on some of the majorly relevant BC vaccines available (NeuVax, AVX901, and INO-1400), providing a description of the more promising clinical trials. The efficacy of cancer vaccines highly depends on the patient's IS, and a wide optimization is needed in terms of targets' selection, drug design and combinations, dose finding, protocol structuring, and patients' recruitment; moreover, new standards are being discussed for the outcome evaluation. However, early-phases excellent results suggest that the manipulation of the IS via specific vaccines is a highly attractive approach for BC.
Collapse
Affiliation(s)
- Rosaria Benedetti
- Dipartimento di Biochimica Biofisica e Patologia generale, Università degli Studi della Campania ‘L. Vanvitelli’ Naples, Naples, Italy
- *Correspondence: Rosaria Benedetti, ; Lucia Altucci,
| | - Carmela Dell’Aversana
- Dipartimento di Biochimica Biofisica e Patologia generale, Università degli Studi della Campania ‘L. Vanvitelli’ Naples, Naples, Italy
| | - Cristina Giorgio
- Dipartimento di Biochimica Biofisica e Patologia generale, Università degli Studi della Campania ‘L. Vanvitelli’ Naples, Naples, Italy
| | - Roberta Astorri
- Dipartimento di Biochimica Biofisica e Patologia generale, Università degli Studi della Campania ‘L. Vanvitelli’ Naples, Naples, Italy
- Dipartimento di Medicina e Scienze della Salute “Vincenzo Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Lucia Altucci
- Dipartimento di Biochimica Biofisica e Patologia generale, Università degli Studi della Campania ‘L. Vanvitelli’ Naples, Naples, Italy
- *Correspondence: Rosaria Benedetti, ; Lucia Altucci,
| |
Collapse
|