1
|
Mu Y, Zhang Z, Zhou H, Ma L, Wang DA. Applications of nanotechnology in remodeling the tumour microenvironment for glioblastoma treatment. Biomater Sci 2024; 12:4045-4064. [PMID: 38993162 DOI: 10.1039/d4bm00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
With the increasing research and deepening understanding of the glioblastoma (GBM) tumour microenvironment (TME), novel and more effective therapeutic strategies have been proposed. The GBM TME involves intricate interactions between tumour and non-tumour cells, promoting tumour progression. Key therapeutic goals for GBM treatment include improving the immunosuppressive microenvironment, enhancing the cytotoxicity of immune cells against tumours, and inhibiting tumour growth and proliferation. Consequently, remodeling the GBM TME using nanotechnology has emerged as a promising approach. Nanoparticle-based drug delivery enables targeted delivery, thereby improving treatment specificity, facilitating combination therapies, and optimizing drug metabolism. This review provides an overview of the GBM TME and discusses the methods of remodeling the GBM TME using nanotechnology. Specifically, it explores the application of nanotechnology in ameliorating immune cell immunosuppression, inducing immunogenic cell death, stimulating, and recruiting immune cells, regulating tumour metabolism, and modulating the crosstalk between tumours and other cells.
Collapse
Affiliation(s)
- Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
| | - Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| | - Liang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
- Centre for Neuromusculoskeletal Restorative Medicine, InnoHK, HKSTP, Sha Tin, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Li G, Ping M, Zhang W, Wang Y, Zhang Z, Su Z. Establishment of the molecular subtypes and a risk model for stomach adenocarcinoma based on genes related to reactive oxygen species. Heliyon 2024; 10:e27079. [PMID: 38463816 PMCID: PMC10923688 DOI: 10.1016/j.heliyon.2024.e27079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024] Open
Abstract
Background Oxidative stress promotes the development of stomach adenocarcinoma (STAD) and resistance of STAD patients to chemotherapy. This study developed a risk classification and prognostic model for STAD based on genes related to oxidative stress. Methods Univariate Cox regression and least absolute shrinkage and selection operator (Lasso) regression analysis were performed using transcriptome data of STAD from The Cancer Genome Atlas (TCGA) and reactive oxygen species (ROS)-related genes from Gene Set Enrichment Analysis (GSEA) website to develop a risk model. Genetic landscape, pathway characteristics and immune characteristics between the two risk groups were assessed to evaluate patients' response to anti-tumor therapy. Further, a nomogram was created to evaluate the clinical outcomes of STAD patients. The mRNA levels of genes were detected by reverse transcription quantitative PCR (RT-qPCR). Results Two ROS-related molecular subtypes (subtype C1 and C2) were classified, with subtype C2 having unfavorable prognosis, higher immune score, and greater infiltration of macrophages, myeloid-derived suppressor cells (MDSCs), mast cells, regulatory T cells, and C-C chemokine receptor (CCR). Five ROS-related genes (ASCL2, COMP, NOX1, PEG10, and VPREB3) were screened to develop a prognostic model, the robustness of which was validated in TCGA and external cohorts. RT-qPCR analysis showed that ASCL2, COMP, NOX1, and PEG10 were upregulated, while the mRNA level of VPREB3 was downregulated in gastric cancer cells. The risk score showed a negative relation to tumor mutation burden (TMB). Low-risk patients exhibited higher mutation frequencies of TTN, SYNE1, and ARID1A, higher response rate to immunotherapy and were more sensitive to 32 traditional chemotherapeutic drugs, while high-risk patients were sensitive to 13 drugs. Calibration curve and DCA confirmed the accuracy and reliability of the nomogram. Conclusion These findings provided novel understanding on the mechanism of ROS in STAD. The current study developed a ROS-related signature to help predict the prognosis of patients suffering from STAD and to guide personalized treatment.
Collapse
Affiliation(s)
- Guangyao Li
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, 241000, China
| | - Miaomiao Ping
- Department of Pathophysiology, College of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Weiwei Zhang
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, 241000, China
| | - Yandong Wang
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, 241000, China
| | - Zhengjun Zhang
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, 241000, China
| | - Zhaoran Su
- Department of Gastrointestinal Surgery, People's Hospital of Tongling City, Tongling, 244000, China
| |
Collapse
|
3
|
Gulia S, Chandra P, Das A. The Prognosis of Cancer Depends on the Interplay of Autophagy, Apoptosis, and Anoikis within the Tumor Microenvironment. Cell Biochem Biophys 2023; 81:621-658. [PMID: 37787970 DOI: 10.1007/s12013-023-01179-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Within the tumor microenvironment, the fight between the immune system and cancer influences tumor transformation. Metastasis formation is an important stage in the progression of cancer. This process is aided by cellular detachment and resistance to anoikis, which are achieved by altering intercellular signaling. Autophagy, specifically pro-survival autophagy, aids cancer cells in developing treatment resistance. Numerous studies have shown that autophagy promotes tumor growth and resistance to anoikis. To regulate protective autophagy, cancer-related genes phosphorylate both pro- and anti-apoptotic proteins. Apoptosis, a type of controlled cell death, eliminates damaged or unwanted cells. Anoikis is a type of programmed cell death in which cells lose contact with the extracellular matrix. The dysregulation of these cellular pathways promotes tumor growth and spread. Apoptosis, anoikis, and autophagy interact meticulously and differently depending on the cellular circumstances. For instance, autophagy can protect cancer cells from apoptosis by removing cellular components that are damaged and might otherwise trigger apoptotic pathways. Similarly, anoikis dysregulation can trigger autophagy by causing cellular harm and metabolic stress. In order to prevent or treat metastatic disease, specifically, targeting these cellular mechanisms may present a promising prospect for cancer therapy. This review discourses the state of our understanding of the molecular and cellular mechanisms underlying tumor transformation and the establishment of metastatic tumors. To enhance the prognosis for cancer, we highlight and discuss potential therapeutic approaches that target these processes and genes involved in them.
Collapse
Affiliation(s)
- Shweta Gulia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
4
|
Wang J, Ge H, Tian Z. Immunotherapy Plus Radiotherapy for the Treatment of Sarcomas: Is There a Potential for Synergism? Onco Targets Ther 2023; 16:385-397. [PMID: 37313391 PMCID: PMC10258041 DOI: 10.2147/ott.s410693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Soft tissue sarcoma (STS) is a highly heterogeneous malignant tumor derived from mesenchymal tissue. Advanced STS has a poor response to the current anti-cancer therapeutic options, with a median overall survival of less than two years. Thus, new and more effective treatment methods for STS are needed. Increasing evidence has shown that immunotherapy and radiotherapy have synergistic therapeutic effects against malignant tumors. In addition, immunoradiotherapy has yielded positive results in clinical trials for various cancers. In this review, we discuss the synergistic mechanism of immunoradiotherapy in cancer treatment and the application of this combined regimen for the treatment of several cancers. In addition, we summarize the existing evidence on the use of immunoradiotherapy for the treatment of STS and the relevant clinical trials that are currently ongoing. Furthermore, we identify challenges in the use of immunoradiotherapy for the treatment of sarcomas and propose methods and precautions for overcoming these challenges. Lastly, we propose clinical research strategies and future research directions to help in the research and treatment of STS.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Department of Bone and Soft Tissue, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People’s Republic of China
| | - Hong Ge
- Department of Radiotherapy, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People’s Republic of China
| | - Zhichao Tian
- Department of Bone and Soft Tissue, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People’s Republic of China
| |
Collapse
|
5
|
Zahavi D, Hodge JW. Targeting Immunosuppressive Adenosine Signaling: A Review of Potential Immunotherapy Combination Strategies. Int J Mol Sci 2023; 24:ijms24108871. [PMID: 37240219 DOI: 10.3390/ijms24108871] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The tumor microenvironment regulates many aspects of cancer progression and anti-tumor immunity. Cancer cells employ a variety of immunosuppressive mechanisms to dampen immune cell function in the tumor microenvironment. While immunotherapies that target these mechanisms, such as immune checkpoint blockade, have had notable clinical success, resistance is common, and there is an urgent need to identify additional targets. Extracellular adenosine, a metabolite of ATP, is found at high levels in the tumor microenvironment and has potent immunosuppressive properties. Targeting members of the adenosine signaling pathway represents a promising immunotherapeutic modality that can potentially synergize with conventional anti-cancer treatment strategies. In this review, we discuss the role of adenosine in cancer, present preclinical and clinical data on the efficacy adenosine pathway inhibition, and discuss possible combinatorial approaches.
Collapse
Affiliation(s)
- David Zahavi
- Center for Immuno-Oncology (CIO), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10, Rm 8B13, 9000 Rockville Pike, Bethesda, MD 20879, USA
| | - James W Hodge
- Center for Immuno-Oncology (CIO), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10, Rm 8B13, 9000 Rockville Pike, Bethesda, MD 20879, USA
| |
Collapse
|
6
|
Mao Y, Liu X, He K, Lin C, He B, Gao J. Xuanhusuo powder has an anti-breast cancer effect by inhibiting myeloid-derived suppressor cell differentiation in the spleen of mice through down-regulating granulocyte colony stimulating factor. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:88-100. [PMID: 37283122 PMCID: PMC10407995 DOI: 10.3724/zdxbyxb-2022-0353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/30/2022] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To investigate the mechanism of Xuanhusuo powder (XHSP) inhibiting the differentiation of spleen myeloid-derived suppressor cells (MDSCs) in breast cancer mice. METHODS Forty-eight BALB/c female mice aged 4-5 weeks were selected, 6 of them were in normal control group, while others were in tumor-bearing models established by orthotopic injection of 4T1 cells into the subcutaneous fat pad of the second pair of left mammary glands. The tumor-bearing mice were divided into granulocyte colony stimulating factor (G-CSF) control group, G-CSF knock-down group, model control group, XHSP small dose group, XHSP medium dose group, XHSP high dose group, and cyclophosphamide (CTX) group, with 6 mice in each group. G-CSF control group and G-CSF knock-down group were constructed by stably transfecting 4T1 cells established by shRNA lentivirus combined with puromycin selection. 48 h after the model was established, XHSP small, medium, high dose group were given 2, 4, 8 g·kg-1·d-1 intragastric administration once a day, respectively. CTX was given 30 mg/kg by intraperitoneal injection, once every other day. The other groups were given an equal volume of 0.5% hydroxymethylcellulose sodium. The drugs in each group were continuously administered for 25 d. Histological changes in spleen were observed by HE staining, the proportion of MDSCs subsets in the spleen were detected by flow cytometry, the co-expression of CD11b and Ly6G in the spleen was detected by immunofluorescence, and the concentration of G-CSF in peripheral blood was detected by ELISA. The spleen of tumor-bearing mice was co-cultured with 4T1 stably transfected cell lines in vitro, treated with XHSP (30 μg/mL) for 24 h, and the co-expression of CD11b and Ly6G in the spleen was detected by immunofluorescence. 4T1 cells were treated by XHSP (10, 30, 100 μg/mL) for 12 h. The mRNA level of G-CSF was detected by realtime RT-PCR. RESULTS Compared with normal mice, the red pulp of the spleen in tumor-bearing mice was widened with megakaryocyte infiltration. The proportion of spleen polymorphonucleocyte-like MDSCs (PMN-MDSCs) was significantly increased (P<0.01) and the co-expression of CD11b and Ly6G was increased, and the concentration of G-CSF in peripheral blood was significantly increased (P<0.01). However, XHSP could significantly reduce the proportion of PMN-MDSCs (P<0.05) and the co-expression of CD11b and Ly6G in the spleen, down-regulate the mRNA level of G-CSF in 4T1 cells (P<0.01). The concentration of G-CSF in peripheral blood of tumor-bearing mice also decreased (P<0.05) and tumor volume was reduced and splenomegaly was improved (all P<0.05). CONCLUSIONS XHSP may play an anti-breast cancer role by down-regulating G-CSF, negatively regulating the differentiation of MDSCs, and reconstruct the spleen myeloid microenvironment.
Collapse
Affiliation(s)
- Youer Mao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, Zhejiang Province, China.
| | - Xi Liu
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 311499, China.
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, Zhejiang Province, China.
| | - Kai He
- Department of Traditional Chinese Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chen Lin
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 311499, China
| | - Bingqian He
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 311499, China
| | - Jianli Gao
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 311499, China.
| |
Collapse
|
7
|
Tian Z, Yao W. PD-1/L1 inhibitor plus chemotherapy in the treatment of sarcomas. Front Immunol 2022; 13:898255. [PMID: 36072581 PMCID: PMC9441887 DOI: 10.3389/fimmu.2022.898255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
There is an urgent clinical need for new therapeutic regimens for the effective treatment of advanced sarcomas. Accumulating evidence suggests that programmed death receptor-1/programmed death protein ligand-1 (PD-1/L1) inhibitors have synergistic effects with chemotherapy and have been approved for treatment of lung cancer, gastroesophageal cancer, and breast cancer. In this review, we reviewed the synergistic mechanism of PD-1/L1 inhibitors plus chemotherapy in the treatment of cancers, and the application of this combined regimen in several cancers, followed by a summary of the current evidence on the application of this combined regimen in the treatment of sarcomas as well as the main clinical trials currently underway. Based on the findings of this review, we believe that this combined approach will play an important role in the treatment of some subtypes of sarcomas in the future.
Collapse
|
8
|
Exploring dendrimer-based drug delivery systems and their potential applications in cancer immunotherapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Zhang Y, Zhang X, Li H, Liu J, Wei W, Gao J. Membrane-Coated Biomimetic Nanoparticles: A State-of-the-Art Multifunctional Weapon for Tumor Immunotherapy. MEMBRANES 2022; 12:membranes12080738. [PMID: 36005653 PMCID: PMC9412372 DOI: 10.3390/membranes12080738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
The advent of immunotherapy, which improves the immune system’s ability to attack and eliminate tumors, has brought new hope for tumor treatment. However, immunotherapy regimens have seen satisfactory results in only some patients. The development of nanotechnology has remarkably improved the effectiveness of tumor immunotherapy, but its application is limited by its passive immune clearance, poor biocompatibility, systemic immunotoxicity, etc. Therefore, membrane-coated biomimetic nanoparticles have been developed by functional, targeting, and biocompatible cell membrane coating technology. Membrane-coated nanoparticles have the advantages of homologous targeting, prolonged circulation, and the avoidance of immune responses, thus remarkably improving the therapeutic efficacy of tumor immunotherapy. Herein, this review explores the recent advances and future perspectives of cell membrane-coated nanoparticles for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China;
| | - Xinyi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
| | - Haitao Li
- Department of Vascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefangdadao Road, Wuhan 430022, China; (H.L.); (J.L.)
| | - Jianyong Liu
- Department of Vascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefangdadao Road, Wuhan 430022, China; (H.L.); (J.L.)
| | - Wei Wei
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China;
- Correspondence: (W.W.); (J.G.)
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China;
- Correspondence: (W.W.); (J.G.)
| |
Collapse
|
10
|
Deng K, Yang D, Zhou Y. Nanotechnology-Based siRNA Delivery Systems to Overcome Tumor Immune Evasion in Cancer Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14071344. [PMID: 35890239 PMCID: PMC9315482 DOI: 10.3390/pharmaceutics14071344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Immune evasion is a common reason causing the failure of anticancer immune therapy. Small interfering RNA (siRNA), which can activate the innate and adaptive immune system responses by silencing immune-relevant genes, have been demonstrated to be a powerful tool for preventing or reversing immune evasion. However, siRNAs show poor stability in biological fluids and cannot efficiently cross cell membranes. Nanotechnology has shown great potential for intracellular siRNA delivery in recent years. Nano-immunotherapy can efficiently penetrate the tumor microenvironment (TME) and deliver multiple immunomodulatory agents simultaneously, which appears to be a promising method for combination therapy. Therefore, it provides a new perspective for siRNA delivery in immunomodulation and cancer immunotherapy. The current advances and challenges in nanotechnology-based siRNA delivery strategies for overcoming immune evasion will be discussed in this review. In addition, we also offer insights into therapeutic options, which may expand its applications in clinical cancer treatment.
Collapse
Affiliation(s)
- Kaili Deng
- Department of Gastroenterology and Hepatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; (K.D.); (D.Y.)
- School of Medicine, Ningbo University, Ningbo 315021, China
| | - Dongxue Yang
- Department of Gastroenterology and Hepatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; (K.D.); (D.Y.)
- Institute of Digestive Disease of Ningbo University, Ningbo 315020, China
| | - Yuping Zhou
- Department of Gastroenterology and Hepatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; (K.D.); (D.Y.)
- Institute of Digestive Disease of Ningbo University, Ningbo 315020, China
- Correspondence:
| |
Collapse
|
11
|
Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. BIOMATERIALS ADVANCES 2022; 135:212725. [PMID: 35929205 DOI: 10.1016/j.bioadv.2022.212725] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
The increasing cancer morbidity and mortality requires the development of high-efficiency and low-toxicity anticancer approaches. In recent years, photodynamic therapy (PDT) has attracted much attention in cancer therapy due to its non-invasive features and low side effects. Photosensitizer (PS) is one of the key factors of PDT, and its successful delivery largely determines the outcome of PDT. Although a few PS molecules have been approved for clinical use, PDT is still limited by the low stability and poor tumor targeting capacity of PSs. Various nanomaterial systems have shown great potentials in improving PDT, such as metal nanoparticles, graphene-based nanomaterials, liposomes, ROS-sensitive nanocarriers and supramolecular nanomaterials. The small molecular PSs can be loaded in functional nanomaterials to enhance the PS stability and tumor targeted delivery, and some functionalized nanomaterials themselves can be directly used as PSs. Herein, we aim to provide a comprehensive understanding of PDT, and summarize the recent progress of nanomaterials-based PSs and delivery systems in anticancer PDT. In addition, the concerns of nanomaterials-based PDT including low tumor targeting capacity, limited light penetration, hypoxia and nonspecific protein corona formation are discussed. The possible solutions to these concerns are also discussed.
Collapse
Affiliation(s)
- Xiao-Tong Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shang-Yan Sui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-Xuan He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Hao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Feng W, Zhang Y, Liu W, Wang X, Lei T, Yuan Y, Chen Z, Song W. A Prognostic Model Using Immune-Related Genes for Colorectal Cancer. Front Cell Dev Biol 2022; 10:813043. [PMID: 35252182 PMCID: PMC8893267 DOI: 10.3389/fcell.2022.813043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022] Open
Abstract
There is evidence suggesting that immune genes play pivotal roles in the development and progression of colorectal cancer (CRC). Colorectal carcinoma patient data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) were randomly classified into a training set, a test set, and an external validation set. Differentially expressed gene (DEG) analyses, univariate Cox regression, and the least absolute shrinkage and selection operator (LASSO) were used to identify survival-associated immune genes and develop a prognosis model. Receiver operating characteristic (ROC) analysis and principal component analysis (PCA) were used to evaluate the discrimination of the risk models. The model genes predicted were verified using the Human Protein Atlas (HPA) databases, colorectal cell lines, and fresh CRC and adjacent tissues. To understand the relationship between IRGs and immune invasion and the TME, we analyzed the content of immune cells and scored the TME using CIBERSORT and ESTIMATE algorithms. Finally, we predicted the potential sensitive chemotherapeutic drugs in different risk score groups by the Genomics of Drug Sensitivity in Cancer (GDSC). A total of 491 IRGs were screened, and 14 IRGs were identified to be significantly related to overall survival (OS) and applied to construct an immune-related gene (IRG) prognostic signature (IRGSig) for CRC patients. Calibration plots showed that nomograms have powerful predictive ability. PCA and ROC analysis further verified the predictive value of this fourteen-gene prognostic model in three independent databases. Furthermore, we discovered that the tumor microenvironment changed significantly during the tumor development process, from early to middle to late stage, which may be an essential factor for tumor deterioration. Finally, we selected six commonly used chemotherapeutic drugs that have the potential to be useful in the treatment of CRC. Altogether, immune genes were used to construct a prognosis model for CRC patients, and a variety of methods were used to test the accuracy of this model. In addition, we explored the immune mechanisms of CRC through immune cell infiltration and TME in CRC. Furthermore, we assessed the therapeutic sensitivity of many commonly used chemotherapeutic medicines in individuals with varying risk factors. Finally, the immune risk model and immune mechanism of CRC were thoroughly investigated in this paper.
Collapse
Affiliation(s)
- Wei Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongxin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenwei Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaofeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianxiang Lei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yujie Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wu Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Rawding PA, Bu J, Wang J, Kim D, Drelich AJ, Kim Y, Hong S. Dendrimers for cancer immunotherapy: Avidity-based drug delivery vehicles for effective anti-tumor immune response. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1752. [PMID: 34414690 PMCID: PMC9485970 DOI: 10.1002/wnan.1752] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
Cancer immunotherapy, or the utilization of a patient's own immune system to treat cancer, has shifted the paradigm of cancer treatment. Despite meaningful responses being observed in multiple studies, currently available immunotherapy platforms have only proven effective to a small subset of patients. To address this, nanoparticles have been utilized as a novel carrier for immunotherapeutic drugs, achieving robust anti-tumor effects with increased adaptive and durable responses. Specifically, dendrimer nanoparticles have attracted a great deal of scientific interest due to their versatility in various therapeutic applications, resulting from their unique physicochemical properties and chemically well-defined architecture. This review offers a comprehensive overview of dendrimer-based immunotherapy technologies, including their formulations, biological functionalities, and therapeutic applications. Common formulations include: (1) modulators of cytokine secretion of immune cells (adjuvants); (2) facilitators of the recognition of tumorous antigens (vaccines); (3) stimulators of immune effectors to selectively attack cells expressing specific antigens (antibodies); and (4) inhibitors of immune-suppressive responses (immune checkpoint inhibitors). On-going works and prospects of dendrimer-based immunotherapies are also discussed. Overall, this review provides a critical overview on rapidly growing dendrimer-based immunotherapy technologies and serves as a guideline for researchers and clinicians who are interested in this field. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Piper A Rawding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jianxin Wang
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - DaWon Kim
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Adam J Drelich
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Youngsoo Kim
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
14
|
Fonseca M, Macedo AS, Lima SAC, Reis S, Soares R, Fonte P. Evaluation of the Antitumour and Antiproliferative Effect of Xanthohumol-Loaded PLGA Nanoparticles on Melanoma. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6421. [PMID: 34771946 PMCID: PMC8585140 DOI: 10.3390/ma14216421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Cutaneous melanoma is the deadliest type of skin cancer and current treatment is still inadequate, with low patient survival rates. The polyphenol xanthohumol has been shown to inhibit tumourigenesis and metastasization, however its physicochemical properties restrict its application. In this work, we developed PLGA nanoparticles encapsulating xanthohumol and tested its antiproliferative, antitumour, and migration effect on B16F10, malignant cutaneous melanoma, and RAW 264.7, macrophagic, mouse cell lines. PLGA nanoparticles had a size of 312 ± 41 nm and a PdI of 0.259, while achieving a xanthohumol loading of about 90%. The viability study showed similar cytoxicity between the xanthohumol and xanthohumol-loaded PLGA nanoparticles at 48 h with the IC50 established at 10 µM. Similar antimigration effects were observed for free and the encapsulated xanthohumol. It was also observed that the M1 antitumor phenotype was stimulated on macrophages. The ultimate anti-melanoma effect emerges from an association between the viability, migration and macrophagic phenotype modulation. These results display the remarkable antitumour effect of the xanthohumol-loaded PLGA nanoparticles and are the first advance towards the application of a nanoformulation to deliver xanthohumol to reduce adverse effects by currently employed chemotherapeutics.
Collapse
Affiliation(s)
- Magda Fonseca
- Department of Biomedicine, Faculty of Medicine, University of Porto, Al Prof Hernani Monteiro, 4200-319 Porto, Portugal; (M.F.); (R.S.)
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ana S. Macedo
- LAQV, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.S.M.); (S.A.C.L.); (S.R.)
| | - Sofia A. Costa Lima
- LAQV, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.S.M.); (S.A.C.L.); (S.R.)
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.S.M.); (S.A.C.L.); (S.R.)
| | - Raquel Soares
- Department of Biomedicine, Faculty of Medicine, University of Porto, Al Prof Hernani Monteiro, 4200-319 Porto, Portugal; (M.F.); (R.S.)
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Fonte
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
15
|
Mashukov A, Shapochka D, Seleznov O, Kobyliak N, Falalyeyeva T, Kirkilevsky S, Yarema R, Sulaieva O. Histological differentiation impacts the tumor immune microenvironment in gastric carcinoma: Relation to the immune cycle. World J Gastroenterol 2021; 27:5259-5271. [PMID: 34497449 PMCID: PMC8384749 DOI: 10.3748/wjg.v27.i31.5259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/01/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Various histological types of gastric carcinomas (GCs) differ in terms of their pathogenesis and their preexisting background, both of which could impact the tumor immune microenvironment (TIME). However, the current understanding of the immune contexture of GC is far from complete. AIM To clarify the tumor-host immune interplay through histopathological features and the tumor immune cycle concept. METHODS In total, 50 GC cases were examined (15 cases of diffuse GC, 31 patients with intestinal-type GC and 4 cases of mucinous GC). The immunophenotype of GC was assessed and classified as immune desert (ID), immune excluded (IE) or inflamed (Inf) according to CD8+ cell count and spatial pattern. In addition, CD68+ and CD163+ macrophages and programmed death-ligand 1 (PD-L1) expression were estimated. RESULTS We found that GCs with different histological differentiation demonstrated distinct immune contexture. Most intestinal-type GCs had inflamed TIMEs rich in both CD8+ cells and macrophages. In contrast, more aggressive diffuse-type GC more often possessed ID characteristics with few CD8+ lymphocytes but abundant CD68+ macrophages, while mucinous GC had an IE-TIME with a prevalence of CD68+ macrophages and CD8+ lymphocytes in the peritumor stroma. PD-L1 expression prevailed mostly in intestinal-type Inf-GC, with numerous CD163+ cells observed. Therefore, GCs of different histological patterns have specific mechanisms of immune escape. While intestinal-type GC was more often related to PD-L1 expression, diffuse and mucinous GCs possessing more aggressive behavior demonstrated low immunogenicity and a lack of tumor antigen recognition or immune cell recruitment into the tumor clusters. CONCLUSION These data help to clarify the links between tumor histogenesis and immunogenicity for a better understanding of GC biology and more tailored patient management.
Collapse
Affiliation(s)
- Artem Mashukov
- Department of Oncology, Odessa National Medical University, Odessa 65082, Ukraine
| | - Dmytro Shapochka
- Department of Molecular Pathology and Genetics, Medical Laboratory CSD, Kyiv 03022, Ukraine
| | - Oleksii Seleznov
- Department of Pathology, Medical Laboratory CSD, Kyiv 03022, Ukraine
| | - Nazarii Kobyliak
- Department of Pathology, Medical Laboratory CSD, Kyiv 03022, Ukraine
- Department of Endocrinology, Bogomolets National Medical University, Kyiv 01601, Ukraine
| | - Tetyana Falalyeyeva
- Biomedicine, Educational-Scientific Center, "Institute of Biology and Medicine" Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | | | - Roman Yarema
- Department of Oncology and Medical Radiology, Danylo Halytsky Lviv National Medical University, Lviv 79010, Ukraine
| | - Oksana Sulaieva
- Department of Pathology, Medical Laboratory CSD, Kyiv 03022, Ukraine
| |
Collapse
|
16
|
Ding G, Gong Q, Ma J, Liu X, Wang Y, Cheng X. Immunosuppressive activity is attenuated by Astragalus polysaccharides through remodeling the gut microenvironment in melanoma mice. Cancer Sci 2021; 112:4050-4063. [PMID: 34289209 PMCID: PMC8486201 DOI: 10.1111/cas.15078] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
Astragalus polysaccharides (APS), the main effective component of Astragalus membranaceus, can inhibit tumor growth, but the underlying mechanisms remain unclear. Previous studies have suggested that APS can regulate the gut microenvironment, including the gut microbiota and fecal metabolites. In this work, our results showed that APS could control tumor growth in melanoma-bearing mice. It could reduce the number of myeloid-derived suppressor cells (MDSC), as well as the expression of MDSC-related molecule Arg-1 and cytokines IL-10 and TGF-β, so that CD8+ T cells could kill tumor cells more effectively. However, while APS were administered with an antibiotic cocktail (ABX), MDSC could not be reduced, and the growth rate of tumors was accelerated. Consistent with the changes in MDSC, the serum levels of IL-6 and IL-1β were lowest in the APS group. Meanwhile, we found that fecal suspension from mice in the APS group could also reduce the number of MDSC in tumor tissues. These results revealed that APS regulated the immune function in tumor-bearing mice through remodeling the gut microbiota. Next, we focused on the results of 16S rRNA, which showed that APS significantly regulated most microorganisms, such as Bifidobacterium pseudolongum, Lactobacillus johnsonii and Lactobacillus. According to the Spearman analysis, the changes in abundance of these microorganisms were related to the increase of metabolites like glutamate and creatine, which could control tumor growth. The present study demonstrates that APS attenuate the immunosuppressive activity of MDSC in melanoma-bearing mice by remodeling the gut microbiota and fecal metabolites. Our findings reveal the therapeutic potential of APS to control tumor growth.
Collapse
Affiliation(s)
- Guiqing Ding
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianyi Gong
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Liu
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Tazzari M, Bergamaschi L, De Vita A, Collini P, Barisella M, Bertolotti A, Ibrahim T, Pasquali S, Castelli C, Vallacchi V. Molecular Determinants of Soft Tissue Sarcoma Immunity: Targets for Immune Intervention. Int J Mol Sci 2021; 22:ijms22147518. [PMID: 34299136 PMCID: PMC8303572 DOI: 10.3390/ijms22147518] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 01/05/2023] Open
Abstract
Soft tissue sarcomas (STSs) are a family of rare malignant tumors encompassing more than 80 histologies. Current therapies for metastatic STS, a condition that affects roughly half of patients, have limited efficacy, making innovative therapeutic strategies urgently needed. From a molecular point of view, STSs can be classified as translocation-related and those with a heavily rearranged genotype. Although only the latter display an increased mutational burden, molecular profiles suggestive of an “immune hot” tumor microenvironment are observed across STS histologies, and response to immunotherapy has been reported in both translocation-related and genetic complex STSs. These data reinforce the notion that immunity in STSs is multifaceted and influenced by both genetic and epigenetic determinants. Cumulative evidence indicates that a fine characterization of STSs at different levels is required to identify biomarkers predictive of immunotherapy response and to discover targetable pathways to switch on the immune sensitivity of “immune cold” tumors. In this review, we will summarize recent findings on the interplay between genetic landscape, molecular profiling and immunity in STSs. Immunological and molecular features will be discussed for their prognostic value in selected STS histologies. Finally, the local and systemic immunomodulatory effects of the targeted drugs imatinib and sunitinib will be discussed.
Collapse
Affiliation(s)
- Marcella Tazzari
- Immunotherapy-Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Laura Bergamaschi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (L.B.); (V.V.)
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (T.I.)
| | - Paola Collini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.C.); (M.B.); (A.B.)
| | - Marta Barisella
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.C.); (M.B.); (A.B.)
| | - Alessia Bertolotti
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.C.); (M.B.); (A.B.)
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (T.I.)
| | - Sandro Pasquali
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (L.B.); (V.V.)
- Correspondence:
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (L.B.); (V.V.)
| |
Collapse
|
18
|
Combination chemotherapeutic and immune-therapeutic anticancer approach via anti-PD-L1 antibody conjugated albumin nanoparticles. Int J Pharm 2021; 605:120816. [PMID: 34161810 DOI: 10.1016/j.ijpharm.2021.120816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Anticancer regimens have been substantially enriched through monoclonal antibodies targeting immune checkpoints, programmed cell death-1/programmed cell death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen-4. Inconsistent clinical efficacy after solo immunotherapy may be compensated by nanotechnology-driven combination therapy. We loaded human serum albumin (HSA) nanoparticles with paclitaxel (PTX) via nanoparticle albumin-bound technology and pooled them with anti-PD-L1 monoclonal antibody through a pH-sensitive linker for targeting and immune response activation. Our tests demonstrated satisfactory preparation of paclitaxel-loaded, PD-L1-targeted albumin nanoparticles (PD-L1/PTX@HSA). They had small particle size (~200 nm) and polydispersity index (~0.12) and successfully incorporated each constituent. Relative to normal physiological pH, the formulation exhibited higher drug-release profiles favoring cancer cell-targeted release at low pH. Modifying nanoparticles with programmed cell death-ligand 1 increased cancer cell internalization in vitro and tumor accumulation in vivo in comparison with non-PD-L1-modified nanoparticles. PD-L1/PTX@HSA constructed by nanoparticle albumin-bound technology displayed successful tumor inhibition efficacy both in vitro and in vivo. There was successful effector T-cell infiltration, immunosuppressive programmed cell death-ligand 1, and regulatory T-cell suppression because of cytotoxic T-lymphocyte antigen-4 synergy. Moreover, PD-L1/PTX@HSA had low organ toxicity. Hence, the anti-tumor immune responses of PD-L1/PTX@HSA combined with chemotherapy and cytotoxic T-lymphocyte antigen-4 is a potential anti-tumor strategy for improving quantitative and qualitative clinical efficacy.
Collapse
|
19
|
Falvo P, Orecchioni S, Roma S, Raveane A, Bertolini F. Drug Repurposing in Oncology, an Attractive Opportunity for Novel Combinatorial Regimens. Curr Med Chem 2021; 28:2114-2136. [PMID: 33109033 DOI: 10.2174/0929867327999200817104912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 11/22/2022]
Abstract
The costs of developing, validating and buying new drugs are dramatically increasing. On the other hand, sobering economies have difficulties in sustaining their healthcare systems, particularly in countries with an elderly population requiring increasing welfare. This conundrum requires immediate action, and a possible option is to study the large, already present arsenal of drugs approved and to use them for innovative therapies. This possibility is particularly interesting in oncology, where the complexity of the cancer genome dictates in most patients a multistep therapeutic approach. In this review, we discuss a) Computational approaches; b) preclinical models; c) currently ongoing or already published clinical trials in the drug repurposing field in oncology; and d) drug repurposing to overcome resistance to previous therapies.
Collapse
Affiliation(s)
- Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Stefania Roma
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alessandro Raveane
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
20
|
Myeloid-derived suppressor cells regulate the immunosuppressive functions of PD-1 -PD-L1 + Bregs through PD-L1/PI3K/AKT/NF-κB axis in breast cancer. Cell Death Dis 2021; 12:465. [PMID: 33967272 PMCID: PMC8107179 DOI: 10.1038/s41419-021-03745-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells that are closely related to tumor immune escape, but the mechanism by which MDSCs regulate B cells has not been elucidated. Our previous studies revealed that breast cancer-derived MDSCs could induce a group of PD-1-PD-L1+ Bregs with immunosuppressive functions. Here, we reported that blocking PD-1/PD-L1 interaction between MDSCs and B cells could reverse the immunosuppressive functions of PD-1-PD-L1+ Bregs. The activation of PI3K/AKT/NF-κB signaling pathway is essential for PD-1-PD-L1+ Bregs to exert immunosuppressive effects. MDSCs activated the PI3K/AKT/NF-κB pathway in B cells via the PD-1/PD-L1 axis. Furthermore, inhibition of PD-1/PD-L1 or PI3K/AKT signaling suppressed both tumor growth and the immunosuppressive functions of PD-1-PD-L1+ Bregs. Dual suppression of PD-1/PD-L1 and PI3K/AKT exerted better antitumor effect. Finally, MDSCs and PD-1-PD-L1+ Bregs were colocalized in breast cancer tissues and PD-1-PD-L1+ Bregs were positively correlated with poor prognosis. Thus, MDSC-educated PD-1-PD-L1+ Bregs and their regulatory mechanisms could contribute to the immunosuppressive tumor microenvironment. Our study proposes a novel mechanism for MDSC-mediated regulation of B cell immunity, which might shed new light on tumor immunotherapy.
Collapse
|
21
|
Human hydatid cyst fluid-induced therapeutic anti-cancer immune responses via NK1.1 + cell activation in mice. Cancer Immunol Immunother 2021; 70:3617-3627. [PMID: 33944981 DOI: 10.1007/s00262-021-02948-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/19/2021] [Indexed: 01/21/2023]
Abstract
Echinococcus granulosus is a cestode parasite which causes cystic echinococcosis disease. Previously we observed that vaccination with E. granulosus antigens from human hydatid cyst fluid (HCF) significantly inhibits colon cancer growth. In the present work, we evaluate the anti-tumor immune response induced by human HCF against LL/2 lung cancer in mice. HCF vaccination protected from tumor growth, both in prophylactic and therapeutic settings, and significantly increased mouse survival compared to control mice. Considering that tumor-associated carbohydrate antigens are expressed in E. granulosus, we oxidized terminal carbohydrates in HCF with sodium periodate. This treatment abrogates the anti-tumor activity induced by HCF vaccination. We found that HCF vaccination-induced IgG antibodies that recognize LL/2 tumor cells by flow cytometry. An antigen-specific immune response is induced with HCF vaccination in the tumor-draining lymph nodes and spleen characterized by the production of IL-5 and, in less extent, IFNɣ. In the tumor microenvironment, we found that NK1.1 positive cells from HCF-treated mice showed higher expression of CD69 than control mice ones, indicating a higher level of activation. When we depleted these cells by administrating the NK-specific antibody NK1.1, a significantly decreased survival was observed in HCF-induced mice, suggesting that NK1.1+ cells mediate the anti-tumor protection induced by HCF. These results suggest that HCF can evoke an integrated anti-tumor immune response involving both, the innate and adaptive components, and provide novel insights into the understanding of the intricate relationship between HCF vaccination and tumor growth.
Collapse
|
22
|
Raza F, Zafar H, Zhang S, Kamal Z, Su J, Yuan W, Mingfeng Q. Recent Advances in Cell Membrane-Derived Biomimetic Nanotechnology for Cancer Immunotherapy. Adv Healthc Mater 2021; 10:e2002081. [PMID: 33586322 DOI: 10.1002/adhm.202002081] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/13/2021] [Indexed: 12/17/2022]
Abstract
Immunotherapy will significantly impact the standard of care in cancer treatment. Recent advances in nanotechnology can improve the efficacy of cancer immunotherapy. However, concerns regarding efficiency of cancer nanomedicine, complex tumor microenvironment, patient heterogeneity, and systemic immunotoxicity drive interest in more novel approaches to be developed. For this purpose, biomimetic nanoparticles are developed to make innovative changes in the delivery and biodistribution of immunotherapeutics. Biomimetic nanoparticles have several advantages that can advance the clinical efficacy of cancer immunotherapy. Thus there is a greater push toward the utilization of biomimetic nanotechnology for developing effective cancer immunotherapeutics that demonstrate increased specificity and potency. The recent works and state-of-the-art strategies for anti-tumor immunotherapeutics are highlighted here, and particular emphasis has been given to the applications of cell-derived biomimetic nanotechnology for cancer immunotherapy.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hajra Zafar
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Shulei Zhang
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zul Kamal
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
- Department of Pharmacy Shaheed Benazir Bhutto University Sheringal Dir (Upper) Khyber Pakhtunkhwa 18000 Pakistan
| | - Jing Su
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Wei‐En Yuan
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Qiu Mingfeng
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
23
|
Digital Immunophenotyping Predicts Disease Free and Overall Survival in Early Stage Melanoma Patients. Cells 2021; 10:cells10020422. [PMID: 33671367 PMCID: PMC7922113 DOI: 10.3390/cells10020422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background: the prognostic significance of tumor infiltrating lymphocytes (TILs) in intermediate/thick primary cutaneous melanoma (PCM) remains controversial, partially because conventional evaluation is not reliable, due to inter-observer variability and diverse scoring methods. We aimed to assess the prognostic impact of the density and spatial distribution of immune cells in early stage intermediate/thick PCM. Materials and Methods: digital image acquisition and quantitative analysis of tissue immune biomarkers (CD3, CD4, CD8, CD68, PD-L1, CD163, FOX-P3, and PD-1) was carried out in a training cohort, which included patients with primary PCM ≥ 2 mm diagnosed, treated, and followed-up prospectively in three Italian centers. Results were validated in an independent Italian cohort. Results: in the training cohort, 100 Stage II–III melanoma patients were valuable. At multivariable analysis, a longer disease free survival (DFS) was statistically associated with higher levels of CD4+ intratumoral T-cells (aHR [100 cell/mm2 increase] 0.98, 95%CI 0.95–1.00, p = 0.041) and CD163+ inner peritumoral (aHR [high vs. low] 0.56, 95%CI 0.32–0.99, p = 0.047). A statistically significant longer DFS (aHR [high-high vs. low-low] 0.52, 95%CI 0.28–0.99, p = 0.047) and overall survival (OS) (aHR [high-high vs. low-low] 0.39, 95%CI 0.18–0.85, p = 0.018) was found in patients with a high density of both intratumoral CD8+ T-cells and CD68+ macrophages as compared to those with low density of both intratumoral CD8+ T-cells and CD68+ macrophages. Consistently, in the validation cohort, patients with high density of both intratumoral CD8+ and CD3+ T-cells were associated to a statistically better DFS (aHR[high-high vs. low-low] 0.24, 95%CI 0.10–0.56, p < 0.001) and those with high density of both intratumoral CD8+ and CD68+ were associated to a statistically longer OS (aHR[high-high vs. low-low] 0.28, 95%CI 0.09–0.86, p = 0.025). Conclusion: our findings suggest that a specific preexisting profile of T cells and macrophages distribution in melanomas may predict the risk of recurrence and death with potential implications for the stratification of stage II–III melanoma patients.
Collapse
|
24
|
Wickenhauser C, Bethmann D, Kappler M, Eckert AW, Steven A, Bukur J, Fox BA, Beer J, Seliger B. Tumor Microenvironment, HLA Class I and APM Expression in HPV-Negative Oral Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13040620. [PMID: 33557271 PMCID: PMC7914856 DOI: 10.3390/cancers13040620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Oral squamous cell carcinoma has developed different strategies to escape from T-cell-mediated immune surveillance, which is mediated by changes in the composition of cellular and soluble components of the tumor microenvironment as well as an impaired expression of molecules of the antigen processing machinery leading to a downregulation of HLA class I surface antigens. In depth characterization of these escape mechanisms might help to develop strategies to overcome this tolerance. In this study, human papilloma virus negative oral squamous cell carcinoma lesions were analyzed regarding the protein expression of major components of the HLA class I antigen processing/presentation pathway in correlation to the intra-tumoral immune cell composition, IFN-γ signaling and clinical parameters, which was further confirmed by bioinformatics analyses of datasets obtained from The Cancer Genome Atlas. This novel knowledge could be used for optimizing the design of immunotherapeutic approaches of this disease. Abstract Progression of oral squamous cell carcinoma (OSCC) has been associated with an escape of tumor cells from the host immune surveillance due to an increased knowledge of its underlying molecular mechanisms and its modulation by the tumor microenvironment and immune cell repertoire. In this study, the expression of HLA class I (HLA-I) antigens and of components of the antigen processing machinery (APM) was analyzed in 160 pathologically classified human papilloma virus (HPV)-negative OSCC lesions and correlated to the intra-tumoral immune cell response, IFN-γ signaling and to the patient’s outcome. A heterogeneous but predominantly lower constitutive protein expression of HLA-I APM components was found in OSCC sections when compared to non-neoplastic cells. Tumoral HLA-I APM component expression was further categorized into the three major phenotypes HLA-Ihigh/APMhigh, HLA-Ilow/APMlow and HLA-Idiscordant high/low/APMhigh. In the HLA-Ihigh/APMhigh group, the highest frequency of intra-tumoral CD8+ T cells and lowest number of CD8+ T cells close to FoxP3+ cells were found. Patients within this group presented the most unfavorable survival, which was significantly evident in stage T2 tumors. Despite a correlation with the number of intra-tumoral CD8+ T cells, tumoral JAK1 expression as a surrogate marker for IFN-γ signaling was not associated with HLA-I/APM expression. Thus, the presented findings strongly indicate the presence of additional factors involved in the immunomodulatory process of HPV-negative OSCC with a possible tumor-burden-dependent complex network of immune escape mechanisms beyond HLA-I/APM components and T cell infiltration in this tumor entity.
Collapse
Affiliation(s)
- Claudia Wickenhauser
- Institute of Pathology, University Hospital Halle (Saale), 06112 Halle (Saale), Germany; (C.W.); (D.B.); (J.B.)
| | - Daniel Bethmann
- Institute of Pathology, University Hospital Halle (Saale), 06112 Halle (Saale), Germany; (C.W.); (D.B.); (J.B.)
| | - Matthias Kappler
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany; (M.K.); or (A.W.E.)
| | - Alexander Walter Eckert
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany; (M.K.); or (A.W.E.)
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital of the Paracelsus Private Medical University of South Nuremberg, 90471 Nuremberg, Germany
| | - André Steven
- Institute of Medical Immunology, University Hospital Halle (Saale), 06112 Halle (Saale), Germany; (A.S.); (J.B.)
| | - Jürgen Bukur
- Institute of Medical Immunology, University Hospital Halle (Saale), 06112 Halle (Saale), Germany; (A.S.); (J.B.)
| | - Bernard Aloysius Fox
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Portland, OR 97213, USA;
| | - Jana Beer
- Institute of Pathology, University Hospital Halle (Saale), 06112 Halle (Saale), Germany; (C.W.); (D.B.); (J.B.)
| | - Barbara Seliger
- Institute of Medical Immunology, University Hospital Halle (Saale), 06112 Halle (Saale), Germany; (A.S.); (J.B.)
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-(0)-345-557-4054; Fax: +49-(0)-345-557-4055
| |
Collapse
|
25
|
Antonioli L, Fornai M, Pellegrini C, D'Antongiovanni V, Turiello R, Morello S, Haskó G, Blandizzi C. Adenosine Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:145-167. [PMID: 33123998 DOI: 10.1007/978-3-030-47189-7_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenosine, deriving from ATP released by dying cancer cells and then degradated in the tumor environment by CD39/CD73 enzyme axis, is linked to the generation of an immunosuppressed niche favoring the onset of neoplasia. Signals delivered by extracellular adenosine are detected and transduced by G-protein-coupled cell surface receptors, classified into four subtypes: A1, A2A, A2B, and A3. A critical role of this nucleoside is emerging in the modulation of several immune and nonimmune cells defining the tumor microenvironment, providing novel insights about the development of novel therapeutic strategies aimed at undermining the immune-privileged sites where cancer cells grow and proliferate.
Collapse
Affiliation(s)
- Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Roberta Turiello
- Department of Pharmacy, University of Salerno, Fisciano, Italy.,PhD Program in Drug discovery and Development, Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
26
|
Oh CM, Chon HJ, Kim C. Combination Immunotherapy Using Oncolytic Virus for the Treatment of Advanced Solid Tumors. Int J Mol Sci 2020; 21:E7743. [PMID: 33086754 PMCID: PMC7589893 DOI: 10.3390/ijms21207743] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virus (OV) is a new therapeutic strategy for cancer treatment. OVs can selectively infect and destroy cancer cells, and therefore act as an in situ cancer vaccine by releasing tumor-specific antigens. Moreover, they can remodel the tumor microenvironment toward a T cell-inflamed phenotype by stimulating widespread host immune responses against the tumor. Recent evidence suggests several possible applications of OVs against cancer, especially in combination with immune checkpoint inhibitors. In this review, we describe the molecular mechanisms of oncolytic virotherapy and OV-induced immune responses, provide a brief summary of recent preclinical and clinical updates on this rapidly evolving field, and discuss a combinational strategy that is able to overcome the limitations of OV-based monotherapy.
Collapse
Affiliation(s)
- Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| | - Hong Jae Chon
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13497, Korea
| | - Chan Kim
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13497, Korea
| |
Collapse
|
27
|
Cavallari C, Camussi G, Brizzi MF. Extracellular Vesicles in the Tumour Microenvironment: Eclectic Supervisors. Int J Mol Sci 2020; 21:E6768. [PMID: 32942702 PMCID: PMC7555174 DOI: 10.3390/ijms21186768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
The tumour microenvironment (TME) plays a crucial role in the regulation of cell survival and growth by providing inhibitory or stimulatory signals. Extracellular vesicles (EV) represent one of the most relevant cell-to-cell communication mechanism among cells within the TME. Moreover, EV contribute to the crosstalk among cancerous, immune, endothelial, and stromal cells to establish TME diversity. EV contain proteins, mRNAs and miRNAs, which can be locally delivered in the TME and/or transferred to remote sites to dictate tumour behaviour. EV in the TME impact on cancer cell proliferation, invasion, metastasis, immune-escape, pre-metastatic niche formation and the stimulation of angiogenesis. Moreover, EV can boost or inhibit tumours depending on the TME conditions and their cell of origin. Therefore, to move towards the identification of new targets and the development of a novel generation of EV-based targeting approaches to gain insight into EV mechanism of action in the TME would be of particular relevance. The aim here is to provide an overview of the current knowledge of EV released from different TME cellular components and their role in driving TME diversity. Moreover, recent proposed engineering approaches to targeting cells in the TME via EV are discussed.
Collapse
Affiliation(s)
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
| | | |
Collapse
|
28
|
Ma J, Cheng P, Chen X, Zhou C, Zheng W. Mining of prognosis-related genes in cervical squamous cell carcinoma immune microenvironment. PeerJ 2020; 8:e9627. [PMID: 32904067 PMCID: PMC7450998 DOI: 10.7717/peerj.9627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose The aim of this study was to explore the effective immune scoring method and mine the novel and potential immune microenvironment-related diagnostic and prognostic markers for cervical squamous cell carcinoma (CSSC). Materials and Methods The Cancer Genome Atlas (TCGA) data was downloaded and multiple data analysis approaches were initially used to search for the immune-related scoring system on the basis of Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data (ESTIMATE) algorithm. Afterwards, the representative genes in the gene modules correlated with immune-related scores based on ESTIMATE algorithm were further screened using Weighted Gene Co-expression Network Analysis (WGCNA) and network topology analysis. Gene functions were mined through enrichment analysis, followed by exploration of the correlation between these genes and immune checkpoint genes. Finally, survival analysis was applied to search for genes with significant association with overall survival and external database was employed for further validation. Results The immune-related scores based on ESTIMATE algorithm was closely associated with other categories of scores, the HPV infection status, prognosis and the mutation levels of multiple CSCC-related genes (HLA and TP53). Eighteen new representative immune microenvironment-related genes were finally screened closely associated with patient prognosis and were further validated by the independent dataset GSE44001. Conclusion Our present study suggested that the immune-related scores based on ESTIMATE algorithm can help to screen out novel immune-related diagnostic indicators, therapeutic targets and prognostic predictors in CSCC.
Collapse
Affiliation(s)
- Jiong Ma
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China
| | - Pu Cheng
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hang Zhou, China
| | - Xuejun Chen
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China
| | - Chunxia Zhou
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China
| | - Wei Zheng
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China
| |
Collapse
|
29
|
Daveri E, Vergani E, Shahaj E, Bergamaschi L, La Magra S, Dosi M, Castelli C, Rodolfo M, Rivoltini L, Vallacchi V, Huber V. microRNAs Shape Myeloid Cell-Mediated Resistance to Cancer Immunotherapy. Front Immunol 2020; 11:1214. [PMID: 32793185 PMCID: PMC7387687 DOI: 10.3389/fimmu.2020.01214] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy with immune checkpoint inhibitors can achieve long-term tumor control in subsets of patients. However, its effect can be blunted by myeloid-induced resistance mechanisms. Myeloid cells are highly plastic and physiologically devoted to wound healing and to immune homeostasis maintenance. In cancer, their physiological activities can be modulated, leading to an expansion of pro-inflammatory and immunosuppressive cells, the myeloid-derived suppressor cells (MDSCs), with detrimental consequences. The involvement of MDSCs in tumor development and progression has been widely investigated and MDSC-induced immunosuppression is acknowledged as a mechanism hindering effective immune checkpoint blockade. Small non-coding RNA molecules, the microRNAs (miRs), contribute to myeloid cell regulation at different levels, comprising metabolism and function, as well as their skewing to a MDSC phenotype. miR expression can be indirectly induced by cancer-derived factors or through direct miR import via extracellular vesicles. Due to their structural stability and their presence in body fluids miRs represent promising predictive biomarkers of resistance, as we recently found by investigating plasma samples of melanoma patients undergoing immune checkpoint blockade. Dissection of the miR-driven involved mechanisms would pave the way for the identification of new druggable targets. Here, we discuss the role of these miRs in shaping myeloid resistance to immunotherapy with a special focus on immunosuppression and immune escape.
Collapse
Affiliation(s)
- Elena Daveri
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Vergani
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eriomina Shahaj
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Bergamaschi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano La Magra
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michela Dosi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
30
|
Law AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020; 9:cells9030561. [PMID: 32121014 PMCID: PMC7140518 DOI: 10.3390/cells9030561] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of immunotherapy has been an astounding breakthrough in cancer treatments. In particular, immune checkpoint inhibitors, targeting PD-1 and CTLA-4, have shown remarkable therapeutic outcomes. However, response rates from immunotherapy have been reported to be varied, with some having pronounced success and others with minimal to no clinical benefit. An important aspect associated with this discrepancy in patient response is the immune-suppressive effects elicited by the tumour microenvironment (TME). Immune suppression plays a pivotal role in regulating cancer progression, metastasis, and reducing immunotherapy success. Most notably, myeloid-derived suppressor cells (MDSC), a heterogeneous population of immature myeloid cells, have potent mechanisms to inhibit T-cell and NK-cell activity to promote tumour growth, development of the pre-metastatic niche, and contribute to resistance to immunotherapy. Accumulating research indicates that MDSC can be a therapeutic target to alleviate their pro-tumourigenic functions and immunosuppressive activities to bolster the efficacy of checkpoint inhibitors. In this review, we provide an overview of the general immunotherapeutic approaches and discuss the characterisation, expansion, and activities of MDSCs with the current treatments used to target them either as a single therapeutic target or synergistically in combination with immunotherapy.
Collapse
Affiliation(s)
- Andrew M. K. Law
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| | - Fatima Valdes-Mora
- Histone Variants Group, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| | - David Gallego-Ortega
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| |
Collapse
|
31
|
Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev 2020; 57:100998. [PMID: 31838128 DOI: 10.1016/j.arr.2019.100998] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Chronic low-grade inflammation has a key role in the aging process, a state called inflammaging. It is known that the chronic inflammatory condition generates counteracting immunosuppressive state in many diseases. Inflammaging is also associated with an immune deficiency; generally termed as immunosenescence, although it is not known whether it represents the senescence of immune cells or the active remodeling of immune system. Evidence has accumulated since the 1970's indicating that immunosenescence might be caused by an increased activity of immunosuppressive cells rather than cellular senescence. Immune cells display remarkable plasticity; many of these cells can express both proinflammatory and immunosuppressive phenotypes in a context-dependent manner. The immunosuppressive network involves the regulatory subtypes of T (Treg) and B (Breg) cells as well as regulatory phenotypes of macrophages (Mreg), dendritic (DCreg), natural killer (NKreg), and type II natural killer T (NKT) cells. The immunosuppressive network also includes monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC) myeloid-derived suppressor cells which are immature myeloid cells induced by inflammatory mediators. This co-operative network is stimulated in chronic inflammatory conditions preventing excessive inflammatory responses but at the same time they exert harmful effects on the immune system and tissue homeostasis. Recent studies have revealed that the aging process is associated with the activation of immunosuppressive network, especially the functions of MDSCs, Tregs, and Mregs are increased. I will briefly review the properties of the regulatory phenotypes of immune cells and examine in detail the evidences for an activation of immunosuppressive network with aging.
Collapse
|
32
|
Guevara ML, Persano F, Persano S. Nano-immunotherapy: Overcoming tumour immune evasion. Semin Cancer Biol 2019; 69:238-248. [PMID: 31883449 DOI: 10.1016/j.semcancer.2019.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
Abstract
Immunotherapy is emerging as a groundbreaking cancer treatment, offering the unprecedented opportunity to effectively treat and in several cases, even cure previously untreatable malignancies. Anti-tumour immunotherapies designed to amplify T cell responses against defined tumour antigens have long been considered effective approaches for cancer treatment. Despite a clear rationale behind such immunotherapies, extensive past efforts were unsuccessful in mediating clinically relevant anti-tumour activity in humans. This is mainly because tumours adopt specific mechanisms to circumvent the host´s immunity. Emerging data suggest that the full potential of cancer immunotherapy will be only achieved by combining immunotherapies designed to generate or amplify anti-tumour T cell responses with strategies able to impair key tumour immune-evasion mechanisms. However, many approaches aimed to re-shape the tumour immune microenvironment (TIME) are commonly associated with severe systemic toxicity, require frequent administration, and only show modest efficacy in clinical settings. The use of nanodelivery systems is revealing as a valid means to overcome these limitations by improving the targeting efficiency, minimising systemic exposure of immunomodulatory agents, and enabling the development of novel combinatorial immunotherapies. In this review, we examine the emerging field of therapeutic modulation of TIME by the use of nanoparticle-based immunomodulators and potential future directions for TIME-targeting nanotherapies.
Collapse
Affiliation(s)
- Maria L Guevara
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Francesca Persano
- Department of Mathematics and Physics, University of Salento, Lecce, Italy
| | - Stefano Persano
- Formulation Testing & Discovery, BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany.
| |
Collapse
|
33
|
Schcolnik-Cabrera A, Dominguez-Gómez G, Chávez-Blanco A, Ramírez-Yautentzi M, Morales-Bárcenas R, Chávez-Díaz J, Taja-Chayeb L, Dueáas-González A. A combination of inhibitors of glycolysis, glutaminolysis and de novo fatty acid synthesis decrease the expression of chemokines in human colon cancer cells. Oncol Lett 2019; 18:6909-6916. [PMID: 31788130 DOI: 10.3892/ol.2019.11008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022] Open
Abstract
Lonidamine, 6-Diazo-5-oxo-L-norleucine (DON) and orlistat are well known inhibitors of glycolysis, glutaminolysis and of de novo fatty acid synthesis, respectively. Although their antitumor effects have been explored in detail, the potential inhibition of the malignant metabolic phenotype and its influence on the expression of chemokines and growth factors involved in colon cancer, have not been previously reported to the best of our knowledge. In the present study, dose-response curves with orlistat, lonidamine or DON were generated from cell viability assays conducted in SW480 colon cancer cells. In addition, the synergistic effect of these compounds was evaluated in SW480 human colon cancer cells. The determination of the doses used for maximum synergistic efficacy led to the exploration of the mRNA levels of the target genes hexokinase-2 (HK2), glutaminase-1 (GLS-1) and fatty acid synthase (FASN) in human SW480 and murine CT26.WT colon cancer cells. The cell viability was evaluated following transfection with small interfering (si)RNA targeting these genes and was assessed with trypan blue. The expression levels of chemokines and growth factors were quantified in the supernatant of SW480 cells with LEGENDplex™. The combination of lonidamine, DON and orlistat resulted in a synergistic cytotoxic effect and induced the transcription of the corresponding gene targets but their corresponding proteins were actually downregulated. The downregulation of the expression levels of HK2, GLS-1 and FASN following transfection of the cells with the corresponding siRNA sequences decreased their viability. The treatment significantly reduced the expression levels of 9 chemokines [interleukin-9, C-X-C motif chemokine ligand (CXCL) 10, eotaxin, chemokine ligand (CCL) 9, CXCL5, CCL20, CXCL1, CXCL11 and CCCL4] and one growth factor (stem cell factor). These changes were associated with decreased phosphorylated-nuclear factor κB-p65. The data demonstrate that lonidamine, DON and orlistat in combination reduce the expression levels of chemokines and growth factors in colon cancer cells. Additional research is required to investigate the exact way by which both tumor and stromal cells regulate the expression levels of chemokines and growth factors.
Collapse
Affiliation(s)
| | | | - Alma Chávez-Blanco
- Basic Research Division, National Cancer Institute, Mexico City 14080, Mexico
| | | | | | - José Chávez-Díaz
- Basic Research Division, National Cancer Institute, Mexico City 14080, Mexico
| | - Lucía Taja-Chayeb
- Basic Research Division, National Cancer Institute, Mexico City 14080, Mexico
| | - Alfonso Dueáas-González
- Basic Research Division, National Cancer Institute, Mexico City 14080, Mexico.,Biomedical Research Unit in Cancer, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City 14080, Mexico
| |
Collapse
|
34
|
Sag D, Ayyildiz ZO, Gunalp S, Wingender G. The Role of TRAIL/DRs in the Modulation of Immune Cells and Responses. Cancers (Basel) 2019; 11:cancers11101469. [PMID: 31574961 PMCID: PMC6826877 DOI: 10.3390/cancers11101469] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022] Open
Abstract
Expression of TRAIL (tumor necrosis factor–related apoptosis–inducing ligand) by immune cells can lead to the induction of apoptosis in tumor cells. However, it becomes increasingly clear that the interaction of TRAIL and its death receptors (DRs) can also directly impact immune cells and influence immune responses. Here, we review what is known about the role of TRAIL/DRs in immune cells and immune responses in general and in the tumor microenvironment in particular.
Collapse
Affiliation(s)
- Duygu Sag
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova/Izmir, Turkey.
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Zeynep Ozge Ayyildiz
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Sinem Gunalp
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Gerhard Wingender
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova/Izmir, Turkey.
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| |
Collapse
|
35
|
Seliger B. The Role of the Lymphocyte Functional Crosstalk and Regulation in the Context of Checkpoint Inhibitor Treatment-Review. Front Immunol 2019; 10:2043. [PMID: 31555274 PMCID: PMC6743269 DOI: 10.3389/fimmu.2019.02043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
During the last decade, the dynamics of the cellular crosstalk have highlighted the significance of the host vs. tumor interaction. This resulted in the development of novel immunotherapeutic strategies in order to modulate/inhibit the mechanisms leading to escape of tumor cells from immune surveillance. Different monoclonal antibodies directed against immune checkpoints, e.g., the T lymphocyte antigen 4 and the programmed cell death protein 1/ programmed cell death ligand 1 have been successfully implemented for the treatment of cancer. Despite their broad activity in many solid and hematologic tumor types, only 20–40% of patients demonstrated a durable treatment response. This might be due to an impaired T cell tumor interaction mediated by immune escape mechanisms of tumor and immune cells as well as alterations in the composition of the tumor microenvironment, peripheral blood, and microbiome. These different factors dynamically regulate different steps of the cancer immune process thereby negatively interfering with the T cell –mediated anti-tumoral immune responses. Therefore, this review will summarize the current knowledge of the different players involved in inhibiting tumor immunogenicity and mounting resistance to checkpoint inhibitors with focus on the role of tumor T cell interaction. A better insight of this process might lead to the development of strategies to revert these inhibitory processes and represent the rational for the design of novel immunotherapies and combinations in order to improve their efficacy.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
36
|
Pötsch I, Baier D, Keppler BK, Berger W. Challenges and Chances in the Preclinical to Clinical Translation of Anticancer Metallodrugs. METAL-BASED ANTICANCER AGENTS 2019. [DOI: 10.1039/9781788016452-00308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite being “sentenced to death” for quite some time, anticancer platinum compounds are still the most frequently prescribed cancer therapies in the oncological routine and recent exciting news from late-stage clinical studies on combinations of metallodrugs with immunotherapies suggest that this situation will not change soon. It is perhaps surprising that relatively simple molecules like cisplatin, discovered over 50 years ago, are still widely used clinically, while none of the highly sophisticated metal compounds developed over the last decade, including complexes with targeting ligands and multifunctional (nano)formulations, have managed to obtain clinical approval. In this book chapter, we summarize the current status of ongoing clinical trials for anticancer metal compounds and discuss the reasons for previous failures, as well as new opportunities for the clinical translation of metal complexes.
Collapse
Affiliation(s)
- Isabella Pötsch
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| | - Dina Baier
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
| | - Walter Berger
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| |
Collapse
|
37
|
Fu Q, Chen N, Ge C, Li R, Li Z, Zeng B, Li C, Wang Y, Xue Y, Song X, Li H, Li G. Prognostic value of tumor-infiltrating lymphocytes in melanoma: a systematic review and meta-analysis. Oncoimmunology 2019; 8:1593806. [PMID: 31143514 PMCID: PMC6527267 DOI: 10.1080/2162402x.2019.1593806] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 12/23/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are associated with prognosis in various tumors. However, it remains controversial whether the presence of TILs is related to an improved prognosis in melanoma. This meta-analysis confirmed the favorable prognostic role of the CD3+, CD4+, CD8+, FOXP3+, and CD20+ TILs in the overall survival of melanoma patients and found an association between the TILs present and improved overall survival. Additionally, subgroup analysis demonstrated that brisk TILs were obviously associated with OS, RFS and DSS/MSS. Thus, TILs may be a predictive biomarker in melanoma. This analysis will provide more insight into the study of TILs and predictive biomarker.
Collapse
Affiliation(s)
- Qiaofen Fu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China.,Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Nan Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Chunlei Ge
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Zhen Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Baozhen Zeng
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Chunyan Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Ying Wang
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Yuanbo Xue
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Xin Song
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Heng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| | - Gaofeng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China
| |
Collapse
|