1
|
Oner G, Broeckx G, Van Berckelaer C, Zwaenepoel K, Altintas S, Canturk Z, Tjalma W, Berneman Z, Peeters M, Pauwels P, van Dam PA. The immune microenvironment characterisation and dynamics in hormone receptor-positive breast cancer before and after neoadjuvant endocrine therapy. Cancer Med 2023; 12:17901-17913. [PMID: 37553911 PMCID: PMC10524081 DOI: 10.1002/cam4.6425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Oestrogen receptor positive (ER+)/HER-2 negative breast cancer (BC) is considered to be an immunologically cold tumour compared to triple negative breast cancer. Therefore, the tumour microenvironment (TME) of ER+/HER-2 negative BC is understudied. The aim of this project is to investigate the TME and the immune response during neoadjuvant endocrine therapy (NET) and to correlate this with the treatment response in a real life setting. METHODS Expression of immune checkpoint receptors and immune cells was examined immunohistochemically, pre- and post-NET in a cohort of 56 ER+/HER-2 negative BC patients. They were treated with tamoxifen (n = 16), an aromatase inhibitor (n = 40) or a combination of an aromatase inhibitor with a PI3K inhibitor (n = 11) for a median duration of 6 months (range 1-32 months). Immunohistochemical staining with monoclonal antibodies for PDL-1, PD-1, TIM-3, LAG-3, CTLA-4, CD4, CD68 and FOXP3 were performed. All staining procedures were done according to validated protocols, and scoring was done by a pathologist specialized in breast cancer. Positivity was defined as staining >1% on TILs. Response to NET was evaluated according to tumour size change on imaging and Ki-67 change. RESULTS The median age was 61.02 (37-90) years. Diameter of tumour size decreased with a mean of 8.1 mm (-16 mm to 45 mm) (p < 0.001) during NET and the value of Ki-67 value decreased with a median of 9 after NET (p < 0.001). An increase in PD-L1 expression after NET showed a trend towards significant (p = 0.088) and CD-4+ T cells significantly increased after NET (p = 0.03). A good response to NET defined as a decrease in tumour size and/or decrease of Ki-67 was found to be associated with a longer duration of NET, a change of CD4+ T-cells and a higher number of CD68+ tumour-associated macrophages before the start of NET. CONCLUSION The immune microenvironment plays an important role in ER+/HER-2 negative BC. NET influences the composition and functional state of the infiltrating immune cells. Furthermore, changes in the immune microenvironment are also associated with treatment response.
Collapse
Affiliation(s)
- Gizem Oner
- Multidisciplinary Oncologic Centre Antwerp (MOCA)Antwerp University HospitalEdegemBelgium
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
- Department of General SurgeryKocaeli UniversityKocaeliTurkey
| | - Glenn Broeckx
- Department of HistopathologyAntwerp University HospitalEdegemBelgium
| | | | - Karen Zwaenepoel
- Department of HistopathologyAntwerp University HospitalEdegemBelgium
| | - Sevilay Altintas
- Multidisciplinary Oncologic Centre Antwerp (MOCA)Antwerp University HospitalEdegemBelgium
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
| | - Zafer Canturk
- Department of General SurgeryKocaeli UniversityKocaeliTurkey
| | - Wiebren Tjalma
- Multidisciplinary Oncologic Centre Antwerp (MOCA)Antwerp University HospitalEdegemBelgium
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
| | - Zwi Berneman
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
- Department of HematologyAntwerp University HospitalEdegemBelgium
| | - Marc Peeters
- Multidisciplinary Oncologic Centre Antwerp (MOCA)Antwerp University HospitalEdegemBelgium
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
- Department of HistopathologyAntwerp University HospitalEdegemBelgium
| | - Peter A. van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA)Antwerp University HospitalEdegemBelgium
- Center for Oncological Research (CORE)University of AntwerpWilrijkBelgium
| |
Collapse
|
2
|
Zhang Y, Xu Z, Chen H, Sun X, Zhang Z. Survival comparison between postoperative and preoperative radiotherapy for stage I-III non-inflammatory breast cancer. Sci Rep 2022; 12:14288. [PMID: 35995985 PMCID: PMC9395522 DOI: 10.1038/s41598-022-18251-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
To compare the survival benefit between preoperative and postoperative radiotherapy for stage I-III non-inflammatory breast cancer patients, we conducted a retrospective cohort study using surveillance, epidemiology and end results databases. Our study recruited patients who had been diagnosed with stage I-III breast cancer and underwent surgery and radiotherapy. The overall survival was calculated by Kaplan-Meier method. Cox risk model was used to determine the impact of radiotherapy according to stage, molecular subtype and other risk factors. Propensity score matching was used to balance measurable confounding factors. Of all the 411,279 enrolled patients varying from 1975 to 2016, 1712 patients received preoperative radiotherapy, and 409,567 patients received postoperative radiotherapy. Compared with the postoperative radiotherapy group, the preoperative radiotherapy group showed significantly higher risks of overall mortality and breast cancer-specific mortality. Survival differences in treatment sequences were correlated with stage, molecular subtypes and other risk factors. According to the results of this study, preoperative radiotherapy did not show a survival advantage, and postoperative radiotherapy is still the primary treatment. However, preoperative radiotherapy also has some theoretical advantages, such as phase reduction and recurrence reduction. Therefore, it is still worthy of further exploration.
Collapse
Affiliation(s)
- Yuxi Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Hui Chen
- Department of Radiation Oncology, Jiangsu Province Hospital, Nanjing, China
| | - Xinchen Sun
- Department of Radiation Oncology, Jiangsu Province Hospital, Nanjing, China.
| | - Zhaoyue Zhang
- Department of Radiation Oncology, Jiangsu Province Hospital, Nanjing, China.
| |
Collapse
|
3
|
Akhmanova M, Emtenani S, Krueger D, Gyoergy A, Guarda M, Vlasov M, Vlasov F, Akopian A, Ratheesh A, De Renzis S, Siekhaus DE. Cell division in tissues enables macrophage infiltration. Science 2022; 376:394-396. [PMID: 35446632 DOI: 10.1101/2021.04.19.438995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cells migrate through crowded microenvironments within tissues during normal development, immune response, and cancer metastasis. Although migration through pores and tracks in the extracellular matrix (ECM) has been well studied, little is known about cellular traversal into confining cell-dense tissues. We find that embryonic tissue invasion by Drosophila macrophages requires division of an epithelial ectodermal cell at the site of entry. Dividing ectodermal cells disassemble ECM attachment formed by integrin-mediated focal adhesions next to mesodermal cells, allowing macrophages to move their nuclei ahead and invade between two immediately adjacent tissues. Invasion efficiency depends on division frequency, but reduction of adhesion strength allows macrophage entry independently of division. This work demonstrates that tissue dynamics can regulate cellular infiltration.
Collapse
Affiliation(s)
- Maria Akhmanova
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Shamsi Emtenani
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Daniel Krueger
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Attila Gyoergy
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Mariana Guarda
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | | - Fedor Vlasov
- Bundesgymnasium Klosterneuburg, Klosterneuburg, Austria
| | | | - Aparna Ratheesh
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Stefano De Renzis
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Daria E Siekhaus
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
4
|
Kaigorodova EV, Kozik AV, Zavaruev IS, Grishchenko MY. Hybrid/Atypical Forms of Circulating Tumor Cells: Current State of the Art. BIOCHEMISTRY (MOSCOW) 2022; 87:380-390. [PMID: 35527376 PMCID: PMC8993035 DOI: 10.1134/s0006297922040071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cancer is one of the most common diseases worldwide, and its treatment is associated with many challenges such as drug and radioresistance and formation of metastases. These difficulties are due to tumor heterogeneity, which has many causes. One may be the cell fusion, a process that is relevant to both physiological (e.g., wound healing) and pathophysiological (cancer and viral infection) processes. This literature review aimed to summarize the existing data on the hybrid/atypical forms of circulating cancer cells and their role in tumor progression. For that, the bioinformatics search in universal databases, such as PubMed, NCBI, and Google Scholar was conducted by using the keywords “hybrid cancer cells”, “cancer cell fusion”, etc. In this review the latest information related to the hybrid tumor cells, theories of their genesis, characteristics of different variants with data from our own researches are presented. Many aspects of the hybrid cell research are still in their infancy. However, with the level of knowledge already accumulated, circulating hybrids such as CAML and CHC could be considered as promising biomarkers of cancerous tumors, and even more as a new approach to cancer treatment.
Collapse
Affiliation(s)
- Evgeniya V Kaigorodova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
- Siberian State Medical University, Tomsk, 634050, Russia
| | - Alexey V Kozik
- Siberian State Medical University, Tomsk, 634050, Russia
| | | | | |
Collapse
|
5
|
Can the Mitochondrial Metabolic Theory Explain Better the Origin and Management of Cancer than Can the Somatic Mutation Theory? Metabolites 2021; 11:metabo11090572. [PMID: 34564387 PMCID: PMC8467939 DOI: 10.3390/metabo11090572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
A theory that can best explain the facts of a phenomenon is more likely to advance knowledge than a theory that is less able to explain the facts. Cancer is generally considered a genetic disease based on the somatic mutation theory (SMT) where mutations in proto-oncogenes and tumor suppressor genes cause dysregulated cell growth. Evidence is reviewed showing that the mitochondrial metabolic theory (MMT) can better account for the hallmarks of cancer than can the SMT. Proliferating cancer cells cannot survive or grow without carbons and nitrogen for the synthesis of metabolites and ATP (Adenosine Triphosphate). Glucose carbons are essential for metabolite synthesis through the glycolysis and pentose phosphate pathways while glutamine nitrogen and carbons are essential for the synthesis of nitrogen-containing metabolites and ATP through the glutaminolysis pathway. Glutamine-dependent mitochondrial substrate level phosphorylation becomes essential for ATP synthesis in cancer cells that over-express the glycolytic pyruvate kinase M2 isoform (PKM2), that have deficient OxPhos, and that can grow in either hypoxia (0.1% oxygen) or in cyanide. The simultaneous targeting of glucose and glutamine, while elevating levels of non-fermentable ketone bodies, offers a simple and parsimonious therapeutic strategy for managing most cancers.
Collapse
|
6
|
Goldberg J, Pastorello RG, Vallius T, Davis J, Cui YX, Agudo J, Waks AG, Keenan T, McAllister SS, Tolaney SM, Mittendorf EA, Guerriero JL. The Immunology of Hormone Receptor Positive Breast Cancer. Front Immunol 2021; 12:674192. [PMID: 34135901 PMCID: PMC8202289 DOI: 10.3389/fimmu.2021.674192] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized the treatment of cancer patients. The main focus of ICB has been on reinvigorating the adaptive immune response, namely, activating cytotoxic T cells. ICB has demonstrated only modest benefit against advanced breast cancer, as breast tumors typically establish an immune suppressive tumor microenvironment (TME). Triple-negative breast cancer (TNBC) is associated with infiltration of tumor infiltrating lymphocytes (TILs) and patients with TNBC have shown clinical responses to ICB. In contrast, hormone receptor positive (HR+) breast cancer is characterized by low TIL infiltration and minimal response to ICB. Here we review how HR+ breast tumors establish a TME devoid of TILs, have low HLA class I expression, and recruit immune cells, other than T cells, which impact response to therapy. In addition, we review emerging technologies that have been employed to characterize components of the TME to reveal that tumor associated macrophages (TAMs) are abundant in HR+ cancer, are highly immune-suppressive, associated with tumor progression, chemotherapy and ICB-resistance, metastasis and poor survival. We reveal novel therapeutic targets and possible combinations with ICB to enhance anti-tumor immune responses, which may have great potential in HR+ breast cancer.
Collapse
Affiliation(s)
- Jonathan Goldberg
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Ricardo G. Pastorello
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Tuulia Vallius
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Janae Davis
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Yvonne Xiaoyong Cui
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Adrienne G. Waks
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Tanya Keenan
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Sandra S. McAllister
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Sara M. Tolaney
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Elizabeth A. Mittendorf
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, United States
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, United States
| | - Jennifer L. Guerriero
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Kolarova I, Melichar B, Vanasek J, Ryska A, Horackova K, Petera J, Vosmik M, Sirak I, Dolezel M. Controversies of radiotherapy in human epidermal growth factor receptor (HER)-2 positive breast cancer patients. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165:19-25. [PMID: 33542544 DOI: 10.5507/bp.2021.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/15/2021] [Indexed: 11/23/2022] Open
Abstract
Tumor biology plays a crucial role in the systemic treatment, specifically in HER2-positive tumors. Distinct biological behavior of breast cancer subtypes is associated with different rates of locoregional recurrence (LRR). HER2- positive breast cancer patients treated with surgery in combination with radiation, without trastuzumab have poor outcome, including high LRR. The efficacy of radiotherapy in HER-2-positive breast cancer appears to be associated with the expression of estrogen receptors. In patients with HER-2-positive breast cancer, studies conducted before the introduction of trastuzumab indicated higher benefit of adjuvant radiation in patients with hormone receptor-positive tumors compared to patients with tumors not expressing hormone receptors. The introduction of agents targeting HER-2 has transformed the management of these patients, resulting in improved outcomes. The data of clinical studies show that the administration of trastuzumab as part of a multimodality approach (with radiation based on standard guidelines) results in improved outcomes, including lower locoregional recurrence. The risk of cardiac toxicity associated with radiation to the heart and administration of potential cardiotoxic trastuzumab is not clear. In patients treated concomitantly with regional lymph node irradiation and anti-HER-2 agents after prior anthracycline-based chemotherapy minimizing the dose to the myocardium, e.g. respiratory gating or proton beam radiotherapy, have been suggested.
Collapse
Affiliation(s)
- Iveta Kolarova
- Department of Oncology and Radiotherapy, University Hospital Hradec Kralove, Czech Republic.,Faculty of Health Studies, Pardubice University, Pardubice, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology and Radiotherapy, University Hospital Hradec Kralove, Czech Republic.,Department of Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic.,Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Jaroslav Vanasek
- Faculty of Health Studies, Pardubice University, Pardubice, Czech Republic.,Oncology Centre, Multiscan, Pardubice, Czech Republic
| | - Ales Ryska
- The Fingerland Department of Pathology, Charles University Medical Faculty and University Hospital Hradec Kralove, Czech Republic
| | - Katerina Horackova
- Faculty of Health Studies, Pardubice University, Pardubice, Czech Republic
| | - Jiri Petera
- Department of Oncology and Radiotherapy, University Hospital Hradec Kralove, Czech Republic.,Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Milan Vosmik
- Department of Oncology and Radiotherapy, University Hospital Hradec Kralove, Czech Republic.,Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Igor Sirak
- Department of Oncology and Radiotherapy, University Hospital Hradec Kralove, Czech Republic.,Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Martin Dolezel
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic.,Department of Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Abstract
ATP is required for mammalian cells to remain viable and to perform genetically programmed functions. Maintenance of the ΔG′ATP hydrolysis of −56 kJ/mole is the endpoint of both genetic and metabolic processes required for life. Various anomalies in mitochondrial structure and function prevent maximal ATP synthesis through OxPhos in cancer cells. Little ATP synthesis would occur through glycolysis in cancer cells that express the dimeric form of pyruvate kinase M2. Mitochondrial substrate level phosphorylation (mSLP) in the glutamine-driven glutaminolysis pathway, substantiated by the succinate-CoA ligase reaction in the TCA cycle, can partially compensate for reduced ATP synthesis through both OxPhos and glycolysis. A protracted insufficiency of OxPhos coupled with elevated glycolysis and an auxiliary, fully operational mSLP, would cause a cell to enter its default state of unbridled proliferation with consequent dedifferentiation and apoptotic resistance, i.e., cancer. The simultaneous restriction of glucose and glutamine offers a therapeutic strategy for managing cancer.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Gabriel Arismendi-Morillo
- Electron Microscopy Laboratory, Biological Researches Institute, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
9
|
Wei J, Jiang Y, Shao Z. The survival benefit of postmastectomy radiotherapy for breast cancer patients with T1-2N1 disease according to molecular subtype. Breast 2020; 51:40-49. [PMID: 32200207 PMCID: PMC7375676 DOI: 10.1016/j.breast.2020.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To evaluate the significance of postmastectomy radiotherapy (PMRT) in female breast cancer patients with T1-2N1M0 disease according to molecular subtypes and other risk factors. METHOD We conducted a retrospective cohort-based study utilizing the Surveillance, Epidemiology, and End Results database. Patients who were diagnosed with T1-2N1M0 invasive breast cancer and received mastectomy between 2010 and 2014 were enrolled in our study. Overall survival (OS) was calculated with Kaplan-Meier method, and multivariant Cox hazard model was conducted to identify the impact of PMRT according to molecular subtypes and other risk factors. Propensity score matching (PSM) was applied to balance measurable confounders. RESULTS Of all the 16,521 enrolled patients, 5775 (35.0%) cases received PMRT. The distribution of molecular subtype is 71.4% for Luminal A, 13.2% for Luminal B, 5.1% for HER2 enriched, and 10.3% for TNBC. The OS was significantly better for patients in PMRT group than the Non-PMRT group (P < 0.0001). Stratified by molecular subtype, PMRT significantly prolonged survival in Luminal A patients (HR: 0.759, 95% CI: 0.651-0.884, P < 0.001), Yet it brought no significant survival advantage in Luminal B, TNBC or HER2 enriched subtype (P = 0.914, P = 0.124, P = 0.103, respectively). Also, PMRT bore prognostic significance among those patients who were older than 56 years old, single, white, exempt from reconstruction and chemotherapy, and were with ductal, GradeⅡtumor (all P < 0.05). After PSM, the survival benefit of PRMT sustained in Luminal A patients with T1 tumor concomitant with one positive lymph node. CONCLUSION Our study demonstrates a beneficial impact for PMRT on overall survival among Luminal A subtype breast cancer patients with T1-2N1 disease. The selection of PMRT should be stratified by molecular subtype and other risk factors.
Collapse
Affiliation(s)
- Jinli Wei
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, PR China
| | - Yizhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, PR China
| | - Zhimin Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, PR China.
| |
Collapse
|
10
|
Shabo I, Svanvik J, Lindström A, Lechertier T, Trabulo S, Hulit J, Sparey T, Pawelek J. Roles of cell fusion, hybridization and polyploid cell formation in cancer metastasis. World J Clin Oncol 2020; 11:121-135. [PMID: 32257843 PMCID: PMC7103524 DOI: 10.5306/wjco.v11.i3.121] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/02/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
Cell-cell fusion is a normal biological process playing essential roles in organ formation and tissue differentiation, repair and regeneration. Through cell fusion somatic cells undergo rapid nuclear reprogramming and epigenetic modifications to form hybrid cells with new genetic and phenotypic properties at a rate exceeding that achievable by random mutations. Factors that stimulate cell fusion are inflammation and hypoxia. Fusion of cancer cells with non-neoplastic cells facilitates several malignancy-related cell phenotypes, e.g., reprogramming of somatic cell into induced pluripotent stem cells and epithelial to mesenchymal transition. There is now considerable in vitro, in vivo and clinical evidence that fusion of cancer cells with motile leucocytes such as macrophages plays a major role in cancer metastasis. Of the many changes in cancer cells after hybridizing with leucocytes, it is notable that hybrids acquire resistance to chemo- and radiation therapy. One phenomenon that has been largely overlooked yet plays a role in these processes is polyploidization. Regardless of the mechanism of polyploid cell formation, it happens in response to genotoxic stresses and enhances a cancer cell’s ability to survive. Here we summarize the recent progress in research of cell fusion and with a focus on an important role for polyploid cells in cancer metastasis. In addition, we discuss the clinical evidence and the importance of cell fusion and polyploidization in solid tumors.
Collapse
Affiliation(s)
- Ivan Shabo
- Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE 171 77, Sweden
- Patient Area of Breast Cancer, Sarcoma and Endocrine Tumours, Theme Cancer, Karolinska University Hospital, Stockholm SE 171 76, Sweden
| | - Joar Svanvik
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg SE 413 45, Sweden
- Division of Surgery, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE 581 83, Sweden
| | - Annelie Lindström
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE 581 85, Sweden
| | - Tanguy Lechertier
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - Sara Trabulo
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - James Hulit
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - Tim Sparey
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - John Pawelek
- Department of Dermatology and the Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, United States
| |
Collapse
|
11
|
Schnellhardt S, Erber R, Büttner-Herold M, Rosahl MC, Ott OJ, Strnad V, Beckmann MW, King L, Hartmann A, Fietkau R, Distel L. Accelerated Partial Breast Irradiation: Macrophage Polarisation Shift Classification Identifies High-Risk Tumours in Early Hormone Receptor-Positive Breast Cancer. Cancers (Basel) 2020; 12:E446. [PMID: 32075091 PMCID: PMC7072550 DOI: 10.3390/cancers12020446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
Studies have demonstrated correlations between accumulations of tumour-associated macrophages (TAMs), especially of M2-like phenotype, and increased mortality in advanced breast cancer. We investigated the prognostic potential of both main macrophage phenotypes in early hormone receptor-positive (HR+) breast cancer. The studied cohort of 136 patients participated in an institutional APBI phase II trial. Patient selection was characterized by HR+, small tumour size and no metastasis. Tissue microarrays from pre-RT resection samples were double stained for CD68/CD163 using immunohistochemistry. CD68+/CD163- cells were considered M1-like macrophages and CD68+/CD163+ was representative of M2-like macrophages. M1 and M2 macrophage densities were analysed semi-automatically in the stromal and intraepithelial tumour compartment. Low M1 and high M2 densities were strongly associated with decreased disease-free survival (DFS). Combined TAM phenotype densities were studied after defining a macrophage shift classification: M1-shifted (M1 high, M2 low) and non-shifted (M1 low, M2 low; M1 high, M2 high) tumours entailed a favourable outcome. In contrast, M2-shifted (M1 low, M2 high) TAM populations were associated with extremely reduced DFS. Thus, the full predictive potential of TAMs was revealed in a combined analysis of both phenotypes. The M2-shifted subgroup of tumours is classified as high-risk and probably not suitable for partial breast irradiation.
Collapse
Affiliation(s)
- Sören Schnellhardt
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, D-91054 Erlangen, Germany; (S.S.); (M.-C.R.); (O.J.O.); (V.S.); (R.F.)
| | - Ramona Erber
- Institute of Pathology, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 8-10, D-91054 Erlangen, Germany; (R.E.); (A.H.)
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 8-10, D-91054 Erlangen, Germany;
| | - Marie-Charlotte Rosahl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, D-91054 Erlangen, Germany; (S.S.); (M.-C.R.); (O.J.O.); (V.S.); (R.F.)
| | - Oliver J. Ott
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, D-91054 Erlangen, Germany; (S.S.); (M.-C.R.); (O.J.O.); (V.S.); (R.F.)
| | - Vratislav Strnad
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, D-91054 Erlangen, Germany; (S.S.); (M.-C.R.); (O.J.O.); (V.S.); (R.F.)
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 21, D-91054 Erlangen, Germany;
| | - Lillian King
- Intensive Care Unit, Redcliffe Hospital; University of Queensland, 4072 Brisbane, Queensland, Australia;
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 8-10, D-91054 Erlangen, Germany; (R.E.); (A.H.)
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, D-91054 Erlangen, Germany; (S.S.); (M.-C.R.); (O.J.O.); (V.S.); (R.F.)
| | - Luitpold Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, D-91054 Erlangen, Germany; (S.S.); (M.-C.R.); (O.J.O.); (V.S.); (R.F.)
| |
Collapse
|
12
|
He L, Lv Y, Song Y, Zhang B. The prognosis comparison of different molecular subtypes of breast tumors after radiotherapy and the intrinsic reasons for their distinct radiosensitivity. Cancer Manag Res 2019; 11:5765-5775. [PMID: 31303789 PMCID: PMC6612049 DOI: 10.2147/cmar.s213663] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy can increase the cell cycle arrest that promotes apoptosis, reduces the risk of tumor recurrence and has become an irreplaceable component of systematic treatment for patients with breast cancer. Substantial advances in precise radiotherapy unequivocally indicate that the benefits of radiotherapy vary depending on intrinsic subtypes of the disease; luminal A breast cancer has the highest benefit whereas human epidermal growth factor receptor 2 (HER2)-positive and triple negative breast cancer (TNBC) are affected to a lesser extent irrespective of the selection of radiotherapy strategies, such as conventional whole-breast irradiation (CWBI), accelerated partial-breast irradiation (APBI), and hypofractionated whole-breast irradiation (HWBI). The benefit disparity correlates with the differential invasiveness, malignance, and radiosensitivity of the subtypes. A combination of a number of molecular mechanisms leads to the strong radioresistant profile of HER2-positive breast cancer, and sensitization to irradiation can be induced by multiple drugs or compounds in luminal disease and TNBC. In this review, we aimed to summarize the prognostic differences between various subtypes of breast tumors after CWBI, APBI, and HWBI, the potential reasons for drug-enhanced radiosensitivity in luminal breast tumors and TNBC, and the robust radioresistance of HER2-positive cancer. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/ugTrSMuQVI8
Collapse
Affiliation(s)
- Lin He
- Breast Center B Ward, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Yang Lv
- Department of Oncology, The PLA Navy Anqing Hospital, Anqing, Anhui Province, People's Republic of China
| | - Yuhua Song
- Breast Center B Ward, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Biyuan Zhang
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| |
Collapse
|