1
|
Xing K, Ren G, Liu S, Zhang C. A case of primary osteosarcoma in the occipital bone: A relatively common tumor in an uncommon location. Acta Radiol Open 2024; 13:20584601241279134. [PMID: 39224614 PMCID: PMC11366106 DOI: 10.1177/20584601241279134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/23/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Osteosarcomas predominantly manifest in the long bones of the extremities, with rare occurrences in the skull. A case involving of a 53-year-old female who presented to the authors' hospital for examination due to dizziness was incidentally found to have an occipital bone mass, which was initially diagnosed as a benign tumor and did not receive sufficient attention. Two years later, owing to tumor enlargement, the patient underwent further evaluation at the same institution, which revealed evidence of occipital bone destruction. Pathological analysis confirmed the diagnosis of osteosarcoma. The patient underwent surgical resection followed by radiotherapy. Despite its infrequency and uncharacteristic initial presentation, skull osteosarcomas should not be overlooked.
Collapse
Affiliation(s)
- Kezhou Xing
- Department of Radiology, Liaocheng People’s Hospital, Liaocheng, China
| | - Guoli Ren
- Department of Radiology, Liaocheng People’s Hospital, Liaocheng, China
| | - Shuning Liu
- Department of Radiology, Liaocheng Brain Hospital, Liaocheng, China
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People’s Hospital, Liaocheng, China
| |
Collapse
|
2
|
Hiemcke-Jiwa LS, Sumathi VP, Baumhoer D, Smetsers SE, Haveman LM, van Noesel MM, van Langevelde K, Cleven AHG, van de Sande MAJ, Ter Horst SAJ, Kester LA, Flucke U. Small cell osteosarcoma versus fusion-driven round cell sarcomas of bone: retrospective clinical, radiological, pathological, and (epi)genetic comparison with clinical implications. Virchows Arch 2024; 484:451-463. [PMID: 38332052 PMCID: PMC11021258 DOI: 10.1007/s00428-024-03747-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
Small cell osteosarcoma (SCOS), a variant of conventional high-grade osteosarcoma (COS), may mimic fusion-driven round cell sarcomas (FDRCS) by overlapping clinico-radiological and histomorphological/immunohistochemical characteristics, hampering accurate diagnosis and consequently proper therapy. We retrospectively analyzed decalcified formalin-fixed paraffin-embedded (FFPE) samples of 18 bone tumors primarily diagnosed as SCOS by methylation profiling, fusion gene analysis, and immunohistochemistry.In eight cases, the diagnosis of SCOS was maintained, and in 10 cases it was changed into FDRCS, including three Ewing sarcomas (EWSR1::FLI1 in two cases and no identified fusion gene in the third case), two sarcomas with BCOR alterations (KMT2D::BCOR, CCNB3::BCOR, respectively), three mesenchymal chondrosarcomas (HEY1::NCOA2 in two cases and one case with insufficient RNA quality), and two sclerosing epithelioid fibrosarcomas (FUS::CREBL3 and EWSR1 rearrangement, respectively).Histologically, SCOS usually possessed more pleomorphic cells in contrast to the FDRCS showing mainly monomorphic cellular features. However, osteoid was seen in the latter tumors as well, often associated with slight pleomorphism. Also, the immunohistochemical profile (CD99, SATB2, and BCOR) overlapped.Clinically and radiologically, similarities between SCOS and FDRCS were observed, with by imaging only minimal presence or lack of (mineralized) osteoid in most of the SCOSs.In conclusion, discrimination of SCOS, epigenetically related to COS, versus FDRCS of bone can be challenging but is important due to different biology and therefore therapeutic strategies. Methylation profiling is a reliable and robust diagnostic test especially on decalcified FFPE material. Subsequent fusion gene analysis and/or use of specific immunohistochemical surrogate markers can be used to substantiate the diagnosis.
Collapse
Affiliation(s)
- Laura S Hiemcke-Jiwa
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | - Daniel Baumhoer
- Bone Tumor Reference Centre, Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Lianne M Haveman
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Max M van Noesel
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Division Imaging & Cancer, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Arjen H G Cleven
- Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel A J van de Sande
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Orthopedic Surgery, University Medical Center Leiden, Leiden, The Netherlands
| | - Simone A J Ter Horst
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lennart A Kester
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Uta Flucke
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Duan W, Chen Y, Shan J, Li Q. Targeted Regulation of Osteoblasts and Osteoclasts in Osteosarcoma Patients by CSF3R Receptor Inhibition of Osteolysis Caused by Tumor Inflammation Based on Transcriptional Spectrum Analysis and Drug Library Screening. Recent Pat Anticancer Drug Discov 2024; 19:635-651. [PMID: 37877147 DOI: 10.2174/0115748928259095231010055507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Osteosarcoma (OS) is a common primary malignant bone tumor that mainly occurs in children and adolescents. The use of IL-8 inhibitor compounds has been reported in patents, which can be used to treat and/or prevent osteosarcoma, but the pathogenesis of osteosarcoma remains to be investigated. At present, osteoblasts and osteoclasts play an important role in the occurrence and development of OS. However, the relationship between osteoblasts and osteoclasts in the specific participation mechanism and inflammatory response of OS patients has not been further studied. METHODS The transcriptome, clinical data, and other data related to OS were downloaded from the GEO database to analyze them with 200 known inflammatory response genes. We set the screening conditions as p < 0.05 and | log2FC| > 0.50, screened the differentially expressed genes (DEGs) related to OS, tested the correlation coefficient between the OS INF gene and clinical risk, and analyzed the survival prognosis. We further enriched and analyzed the DEGs and inflammatory response genes of OS with GO/KEGG to explore the potential biological function and signal pathway mechanism of OS inflammatory response genes. Moreover, the virtual screening of drug sensitivity of OS based on the FDA drug library was also carried out to explore potential therapeutic drugs targeted to regulate OS osteogenesis and osteoclast inflammation, and finally, the molecular dynamics simulation verification of OS core protein and potential drugs was carried out to explore the binding stability and mechanism between potential drugs and core protein. RESULTS Through differential analysis of GSE39058, GSE36001, GSE87624, and three other data sets closely related to OS osteoblasts and osteoclasts, we found that there was one upregulated gene (CADM1) and one down-regulated gene (PHF15) related to OS. In addition, GSEA enrichment analysis of the DEGs of OS showed that it was mainly involved in the progress of OS through biological functions, such as oxidative photosynthesis, acute junction, and epithelial-mesenchymal transition. The enrichment analysis of OS DEGs revealed that they mainly affect the occurrence and progress of OS by participating in the regulation of the actin skeleton, PI3K Akt signal pathway, complement and coagulation cascade. According to the expression of CSF3R in OS patients, a risk coefficient model and a diagnostic model were established. It was found that the more significant the difference in the CSF3R gene in OS patients, the greater the risk coefficient of disease (p < 0.05). The AUC under the curve of the CSF3R gene was greater than 0.65, which had a good diagnostic significance for OS. The above results showed that the prognosis risk gene CSF3R related to OS inflammation was closely related to the survival status of OS patients. Finally, through the virtual screening of the ZINC drug library and molecular dynamics simulation, it was found that the docking model formed by the core protein CSF3R and the compounds, Leucovorin and Methotrexate, were the most stable, which revealed that the compounds Leucovorin and Methotrexate might play a role in the treatment of OS by combining with the inflammatory response related factor CSF3R of OS. CONCLUSION CSF3R participates in the occurrence and development of OS bone destruction by regulating the inflammatory response of osteoblasts and osteoclasts and can affect the survival prognosis of OS patients.
Collapse
Affiliation(s)
- Wei Duan
- Department of Oncology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, 434020, China
| | - Yu Chen
- Department of Radiology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Jinlu Shan
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, 400042, P.R. China
| | - Qian Li
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, 400042, P.R. China
| |
Collapse
|
4
|
Pires SF, Barros JSD, Costa SSD, Carmo GBD, Scliar MDO, Lengert AVH, Boldrini É, Silva SRMD, Vidal DO, Maschietto M, Krepischi ACV. Analysis of the Mutational Landscape of Osteosarcomas Identifies Genes Related to Metastasis and Prognosis and Disrupted Biological Pathways of Immune Response and Bone Development. Int J Mol Sci 2023; 24:10463. [PMID: 37445641 DOI: 10.3390/ijms241310463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/15/2023] Open
Abstract
Osteosarcoma (OS) is the most prevalent type of bone tumor, but slow progress has been achieved in disentangling the full set of genomic events involved in its initiation and progression. We assessed by NGS the mutational spectrum of 28 primary OSs from Brazilian patients, and identified 445 potentially deleterious SNVs/indels and 1176 copy number alterations (CNAs). TP53 was the most recurrently mutated gene, with an overall rate of ~60%, considering SNVs/indels and CNAs. The most frequent CNAs (~60%) were gains at 1q21.2q21.3, 6p21.1, and 8q13.3q24.22, and losses at 10q26 and 13q14.3q21.1. Seven cases presented CNA patterns reminiscent of complex events (chromothripsis and chromoanasynthesis). Putative RB1 and TP53 germline variants were found in five samples associated with metastasis at diagnosis along with complex genomic patterns of CNAs. PTPRQ, KNL1, ZFHX4, and DMD alterations were prevalent in metastatic or deceased patients, being potentially indicative of poor prognosis. TNFRSF11B, involved in skeletal system development and maintenance, emerged as a candidate for osteosarcomagenesis due to its biological function and a high frequency of copy number gains. A protein-protein network enrichment highlighted biological pathways involved in immunity and bone development. Our findings reinforced the high genomic OS instability and heterogeneity, and led to the identification of novel disrupted genes deserving further evaluation as biomarkers due to their association with poor outcomes.
Collapse
Affiliation(s)
- Sara Ferreira Pires
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| | - Juliana Sobral de Barros
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| | - Silvia Souza da Costa
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| | - Gabriel Bandeira do Carmo
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| | - Marília de Oliveira Scliar
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| | | | - Érica Boldrini
- Barretos Children's Cancer Hospital, Barretos 14784-400, Brazil
| | | | - Daniel Onofre Vidal
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos 14784-384, Brazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-884, Brazil
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| |
Collapse
|
5
|
Gaeta R, Morelli M, Lessi F, Mazzanti CM, Menicagli M, Capanna R, Andreani L, Coccoli L, Aretini P, Franchi A. Identification of New Potential Prognostic and Predictive Markers in High-Grade Osteosarcoma Using Whole Exome Sequencing. Int J Mol Sci 2023; 24:10086. [PMID: 37373240 DOI: 10.3390/ijms241210086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Conventional high-grade osteosarcoma (OS) is the most common primary cancer of bone and it typically affects the extremities of adolescents. OS has a complex karyotype, and molecular mechanisms related to carcinogenesis, progression and resistance to therapy are still largely unknown. For this reason, the current standard of care is associated with considerable adverse effects. In this study, our aim was to identify gene alterations in OS patients using whole exome sequencing (WES) to find new potential prognostic biomarkers and therapeutic targets. We performed WES on formalin-fixed paraffin-embedded (FFPE) biopsy materials collected from 19 patients affected by conventional high-grade OS. The clinical and genetic data were analyzed according to response to therapy, presence of metastasis and disease status. By comparing good and poor responders to neoadjuvant therapy, we detected a clear prevalence of mutations in the ARID1A, CREBBP, BRCA2 and RAD50 genes in poor responders that negatively influence the progression-free survival time. Moreover, higher tumor mutational burden values correlated with worse prognosis. The identification of mutations in ARID1A, CREBBP, BRCA2 and RAD50 may support the use of a more specific therapy for tumors harboring these alterations. In particular, BRCA2 and RAD50 are involved in homologous recombination repair, and could thus be used as specific therapy targets of inhibitors of the enzyme Poly ADP Ribose Polymerase (PARP). Finally, tumor mutational burden is found to be a potential prognostic marker for OS.
Collapse
Affiliation(s)
- Raffaele Gaeta
- Section of Pathology, Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | | | - Francesca Lessi
- Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | | | - Michele Menicagli
- Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | - Rodolfo Capanna
- Section of Pathology, Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Lorenzo Andreani
- Department of Orthopedics and Trauma Surgery, Azienda Ospedaliera Universitaria Pisana, 56124 Pisa, Italy
| | - Luca Coccoli
- Pediatric Hematology Oncology Unit, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy
| | - Paolo Aretini
- Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy
| | - Alessandro Franchi
- Section of Pathology, Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
6
|
Pires SF, de Barros JS, da Costa SS, de Oliveira Scliar M, Van Helvoort Lengert A, Boldrini É, da Silva SRM, Tasic L, Vidal DO, Krepischi ACV, Maschietto M. DNA methylation patterns suggest the involvement of DNMT3B and TET1 in osteosarcoma development. Mol Genet Genomics 2023; 298:721-733. [PMID: 37020053 DOI: 10.1007/s00438-023-02010-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
DNA methylation may be involved in the development of osteosarcomas. Osteosarcomas commonly arise during the bone growth and remodeling in puberty, making it plausible to infer the involvement of epigenetic alterations in their development. As a highly studied epigenetic mechanism, we investigated DNA methylation and related genetic variants in 28 primary osteosarcomas aiming to identify deregulated driver alterations. Methylation and genomic data were obtained using the Illumina HM450K beadchips and the TruSight One sequencing panel, respectively. Aberrant DNA methylation was spread throughout the osteosarcomas genomes. We identified 3146 differentially methylated CpGs comparing osteosarcomas and bone tissue samples, with high methylation heterogeneity, global hypomethylation and focal hypermethylation at CpG islands. Differentially methylated regions (DMR) were detected in 585 loci (319 hypomethylated and 266 hypermethylated), mapped to the promoter regions of 350 genes. These DMR genes were enriched for biological processes related to skeletal system morphogenesis, proliferation, inflammatory response, and signal transduction. Both methylation and expression data were validated in independent groups of cases. Six tumor suppressor genes harbored deletions or promoter hypermethylation (DLEC1, GJB2, HIC1, MIR149, PAX6, and WNT5A), and four oncogenes presented gains or hypomethylation (ASPSCR1, NOTCH4, PRDM16, and RUNX3). Our analysis also revealed hypomethylation at 6p22, a region that contains several histone genes. Copy-number changes in DNMT3B (gain) and TET1 (loss), as well as overexpression of DNMT3B in osteosarcomas provide a possible explanation for the observed phenotype of CpG island hypermethylation. While the detected open-sea hypomethylation likely contributes to the well-known osteosarcoma genomic instability, enriched CpG island hypermethylation suggests an underlying mechanism possibly driven by overexpression of DNMT3B likely resulting in silencing of tumor suppressors and DNA repair genes.
Collapse
Affiliation(s)
- Sara Ferreira Pires
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Sobral de Barros
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Souza da Costa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Marília de Oliveira Scliar
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ljubica Tasic
- Laboratory of Biological Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Daniel Onofre Vidal
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
- Research Center, Boldrini Children's Hospital, Campinas, SP, Brazil.
| |
Collapse
|
7
|
Al-Dasuqi K, Cheng R, Moran J, Irshaid L, Maloney E, Porrino J. Update of pediatric bone tumors: osteogenic tumors and osteoclastic giant cell-rich tumors. Skeletal Radiol 2023; 52:671-685. [PMID: 36326880 DOI: 10.1007/s00256-022-04221-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
There are numerous bone tumors in the pediatric population, with imaging playing an essential role in diagnosis and management. Our understanding of certain bone tumors has rapidly evolved over the past decade with advancements in next-generation genetic sequencing techniques. This increased level of understanding has altered the nomenclature, management approach, and prognosis of certain lesions. We provide a detailed update of bone tumors that occur in the pediatric population with emphasis on the recently released nomenclature provided in the 5th edition of the World Health Organization Classification of Soft Tissue and Bone Tumours.
Collapse
Affiliation(s)
- Khalid Al-Dasuqi
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Ryan Cheng
- Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Jay Moran
- Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Lina Irshaid
- Pathology Associates at Beverly Hospital, 85 Herrick Street, Beverly, MA, 01915, USA
| | - Ezekiel Maloney
- Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA, 98105, USA
| | - Jack Porrino
- Yale Radiology and Biomedical Imaging, 330 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
8
|
Meyer J, Priemel M, Rolvien T, Frosch KH, Schlickewei C, Yarar-Schlickewei S. The Diagnostic Challenge of Osteoid Osteoma in the Bones of the Hand—A Case Series. Diagnostics (Basel) 2023; 13:diagnostics13071279. [PMID: 37046495 PMCID: PMC10093072 DOI: 10.3390/diagnostics13071279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Osteoid osteoma (OO) is a benign bone tumor that rarely occurs in the bones of the hand. Due to the comparatively non-specific symptoms when occurring in the hand, OO is often misdiagnosed at first presentation, posing a diagnostic challenge. In the present case study, six cases of phalangeal and carpal OO, treated surgically at our department between 2006 and 2020, were retrospectively reviewed. We compared all cases regarding demographic data, clinical presentation, imaging findings, time to diagnosis, surgical treatment, and clinical outcome in follow-up examinations. When OO occurs in the bones of the hand, it can lead to swelling and deformities, such as enlargement of the affected bone and nail hypertrophy. Initial misdiagnoses such as primary bone tumors other than OO, tendinitis, osteomyelitis, or arthritis are common. Most of the presented cases showed a prolonged time until diagnosis, whereby the primarily performed imaging modality was often not sensitive. CT proved to be the most sensitive sectional imaging modality for diagnosing OO. With adequate surgical treatment, complications and recurrence are rare.
Collapse
|
9
|
Allen H, Barnthouse NC, Chan BY. Periosteal Pathologic Conditions: Imaging Findings and Pathophysiology. Radiographics 2023; 43:e220120. [DOI: 10.1148/rg.220120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hailey Allen
- From the Department of Radiology and Imaging Sciences, University of Utah School of Medicine, 30 North 1900 East #1A071, Salt Lake City, UT 84132-2140
| | - Nicholas C. Barnthouse
- From the Department of Radiology and Imaging Sciences, University of Utah School of Medicine, 30 North 1900 East #1A071, Salt Lake City, UT 84132-2140
| | - Brian Y. Chan
- From the Department of Radiology and Imaging Sciences, University of Utah School of Medicine, 30 North 1900 East #1A071, Salt Lake City, UT 84132-2140
| |
Collapse
|
10
|
Dalili D, Dalili DE, Isaac A, Martel-Villagrán J, Fritz J. Treatment of Osteoid Osteoma. Semin Intervent Radiol 2023; 40:100-105. [PMID: 37152792 PMCID: PMC10159722 DOI: 10.1055/s-0043-1767692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Danoob Dalili
- Department of Radiology, Epsom and St. Helier University Hospitals NHS Trust, London, United Kingdom
| | - Daniel E. Dalili
- Department of Radiology, Mid and South Essex NHS Foundation Trust, Southend, United Kingdom
| | - Amanda Isaac
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, United Kingdom
| | | | - Jan Fritz
- Department of Radiology, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
11
|
Wang H, Zhou X, Li C, Yan S, Feng C, He J, Li Z, Tu C. The emerging role of pyroptosis in pediatric cancers: from mechanism to therapy. J Hematol Oncol 2022; 15:140. [PMID: 36209102 PMCID: PMC9547461 DOI: 10.1186/s13045-022-01365-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pediatric cancers are the driving cause of death for children and adolescents. Due to safety requirements and considerations, treatment strategies and drugs for pediatric cancers have been so far scarcely studied. It is well known that tumor cells tend to progressively evade cell death pathways, which is known as apoptosis resistance, one of the hallmarks of cancer, dominating tumor drug resistance. Recently, treatments targeting nonapoptotic cell death have drawn great attention. Pyroptosis, a newly specialized form of cell death, acts as a critical physiological regulator in inflammatory reaction, cell development, tissue homeostasis and stress response. The action in different forms of pyroptosis is of great significance in the therapy of pediatric cancers. Pyroptosis could be induced and consequently modulate tumorigenesis, progression, and metastasis if treated with local or systemic therapies. However, excessive or uncontrolled cell death might lead to tissue damage, acute inflammation, or even cytokine release syndrome, which facilitates tumor progression or recurrence. Herein, we aimed to describe the molecular mechanisms of pyroptosis, to highlight and discuss the challenges and opportunities for activating pyroptosis pathways through various oncologic therapies in multiple pediatric neoplasms, including osteosarcoma, neuroblastoma, leukemia, lymphoma, and brain tumors.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Xiaowen Zhou
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Shuxiang Yan
- Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
12
|
Primary Benign Tumors of the Spinal Canal. World Neurosurg 2022; 164:178-198. [PMID: 35552036 DOI: 10.1016/j.wneu.2022.04.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022]
Abstract
Benign tumors that grow in the spinal canal are heterogeneous neoplasms with low incidence; from these, meningiomas and nerve sheath tumors (neurofibromas and schwannomas) account for 60%-70% of all primary spinal tumors. Benign spinal canal tumors provoke nonspecific clinical manifestations, mostly related to the affected level of the spinal cord. These tumors present a challenge for the patient and healthcare professionals, for they are often difficult to diagnose and the high frequency of posttreatment complications. In this review, we describe the epidemiology, risk factors, clinical features, diagnosis, histopathology, molecular biology, and treatment of extramedullary benign meningiomas, osteoid osteomas, osteoblastomas, aneurysmal bone cysts, osteochondromas, neurofibromas, giant cell tumors of the bone, eosinophilic granulomas, hemangiomas, lipomas, and schwannomas located in the spine, as well as possible future targets that could lead to an improvement in their management.
Collapse
|
13
|
Honnicke MB, Tharun L, Sieren MM, Barkhausen J. Sarcomas of fat and bone: a case report. Discov Oncol 2022; 13:22. [PMID: 35384584 PMCID: PMC8986924 DOI: 10.1007/s12672-022-00484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/03/2022] [Indexed: 11/26/2022] Open
Abstract
Osteosarcomas are the most common primary malignant bone tumors and are classified by the WHO into several intramedullary and surface subtypes. One of these is the rare parosteal osteosarcoma. Liposarcomas are the second most common soft tissue sarcoma and are classified into several types ranging from intermediate to high grade tumors. In one of our recent patients we found an unusual combination of a parosteal osteosarcoma and a large fatty component, which fluorescence-in-situ-hybridization revealed as liposarcoma. Radiologists, pathologists, and surgeons should consider the possibility of bone and soft tissue malignancies consisting of different components, as this may be of paramount importance for oncologically complete resection.
Collapse
Affiliation(s)
- Miriam Beate Honnicke
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| | - Lars Tharun
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Malte Maria Sieren
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Jörg Barkhausen
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| |
Collapse
|
14
|
Tirrò E, Martorana F, Micale G, Inzerilli N, Carciotto R, Romano C, Longhitano C, Motta G, Lanzafame K, Stella S, Massimino M, Vitale SR, Salvatorelli L, Magro G, Manzella L, Vigneri P. Next generation sequencing in a cohort of patients with rare sarcoma histotypes: A single institution experience. Pathol Res Pract 2022; 232:153820. [DOI: 10.1016/j.prp.2022.153820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 10/19/2022]
|
15
|
Owen-Woods C, Kusumbe A. Fundamentals of bone vasculature: Specialization, interactions and functions. Semin Cell Dev Biol 2022; 123:36-47. [PMID: 34281770 DOI: 10.1016/j.semcdb.2021.06.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Angiogenesis, hematopoiesis and osteogenesis are fundamental processes mediating complex and essential biological functions. In the bone marrow, endothelial cells (ECs) are a principal mediator of regulatory signals that govern hematopoietic and mesenchymal stem cells. EC and osteoblast interactions and niche functions of ECs are fundamental in maintaining bone health and coordinating repair and regeneration following injury. These cellular interactions are subject to dysregulation and deterioration under stress, aging, chronic disease states and malignancy. Thus, the prospect of manipulating the bone vasculature has tremendous potential to advance therapeutic interventions for the management of bone diseases. This review discusses the current state of vascular-skeletal tissue interactions focusing on osteoblast and hematopoietic stem cells interaction with ECs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali Kusumbe
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
16
|
Les lésions ostéoformatrices et les réarrangements des gènes FOS. Ann Pathol 2022; 42:208-213. [DOI: 10.1016/j.annpat.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 11/18/2022]
|
17
|
|
18
|
Genome-Wide Analyses for Osteosarcoma in Leonberger Dogs Reveal the CDKN2A/B Gene Locus as a Major Risk Locus. Genes (Basel) 2021; 12:genes12121964. [PMID: 34946912 PMCID: PMC8700858 DOI: 10.3390/genes12121964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Dogs represent a unique spontaneous cancer model. Osteosarcoma (OSA) is the most common primary bone tumor in dogs (OMIA 001441-9615), and strongly resembles human forms of OSA. Several large- to giant-sized dog breeds, including the Leonberger, have a greatly increased risk of developing OSA. We performed genome-wide association analysis with high-density imputed SNP genotype data from 273 Leonberger cases with a median age of 8.1 [3.1–13.5] years and 365 controls older than eight years. This analysis revealed significant associations at the CDKN2A/B gene locus on canine chromosome 11, mirroring previous findings in other dog breeds, such as the greyhound, that also show an elevated risk for OSA. Heritability (h2SNP) was determined to be 20.6% (SE = 0.08; p-value = 5.7 × 10−4) based on a breed prevalence of 20%. The 2563 SNPs across the genome accounted for nearly all the h2SNP of OSA, with 2183 SNPs of small effect, 316 SNPs of moderate effect, and 64 SNPs of large effect. As with many other cancers it is likely that regulatory, non-coding variants underlie the increased risk for cancer development. Our findings confirm a complex genetic basis of OSA, moderate heritability, and the crucial role of the CDKN2A/B locus leading to strong cancer predisposition in dogs. It will ultimately be interesting to study and compare the known genetic loci associated with canine OSA in human OSA.
Collapse
|
19
|
Balzerano A, Paccosi E, Proietti-De-Santis L. Evolutionary Mechanisms of Cancer Suggest Rational Therapeutic Approaches. Cytogenet Genome Res 2021; 161:362-371. [PMID: 34461614 DOI: 10.1159/000516530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022] Open
Abstract
The goal in personalized therapeutic approaches for cancer medicine is to identify specific mutations with prognostic and therapeutic value in order to tailor the therapy for the single patient. The most powerful obstacle for personalized medicine arises from intratumor heterogeneity and clonal evolution, which can promote drug resistance. In this scenario, new technologies, such as next-generation sequencing, have emerged as a central diagnostic tool to profile cancer (epi)genomic landscapes. Therefore, a better understanding of the biological mechanisms underlying cancer evolution is mandatory and represents the current challenge to accurately predict whether cancer will recur after chemotherapy with the aim to tailor rational therapeutic approaches.
Collapse
Affiliation(s)
- Alessio Balzerano
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo, Italy
| | - Elena Paccosi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo, Italy
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo, Italy
| |
Collapse
|
20
|
Synoradzki KJ, Bartnik E, Czarnecka AM, Fiedorowicz M, Firlej W, Brodziak A, Stasinska A, Rutkowski P, Grieb P. TP53 in Biology and Treatment of Osteosarcoma. Cancers (Basel) 2021; 13:4284. [PMID: 34503094 PMCID: PMC8428337 DOI: 10.3390/cancers13174284] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The TP53 gene is mutated in 50% of human tumors. Oncogenic functions of mutant TP53 maintain tumor cell proliferation and tumor growth also in osteosarcomas. We collected data on TP53 mutations in patients to indicate which are more common and describe their role in in vitro and animal models. We also describe animal models with TP53 dysfunction, which provide a good platform for testing the potential therapeutic approaches. Finally, we have indicated a whole range of pharmacological compounds that modulate the action of p53, stabilize its mutated versions or lead to its degradation, cause silencing or, on the contrary, induce the expression of its functional version in genetic therapy. Although many of the described therapies are at the preclinical testing stage, they offer hope for a change in the approach to osteosarcoma treatment based on TP53 targeting in the future.
Collapse
Affiliation(s)
- Kamil Jozef Synoradzki
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna M. Czarnecka
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Wiktoria Firlej
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Brodziak
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Agnieszka Stasinska
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| | - Piotr Rutkowski
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| |
Collapse
|
21
|
Zhang W, Yao J, Zhong M, Zhang Y, Guo X, Wang HY. A Brief Overview and Update on Major Molecular Genomic Alterations in Solid, Bone and Soft Tissue Tumors, Hematopoietic As Well As Lymphoid Malignancies. Arch Pathol Lab Med 2021; 145:1358-1366. [PMID: 34270703 DOI: 10.5858/arpa.2021-0077-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Recent advances in comprehensive genomic profiling by next-generation sequencing have uncovered the genomic alterations at the molecular level for many types of tumors; as such, numerous small specific molecules that target these alterations have been developed and widely used in the management of these cancers. OBJECTIVE.— To provide a concise molecular genomic update in solid, bone and soft tissue tumors, hematopoietic as well as lymphoid malignancies; discuss its clinical applications; and familiarize practicing pathologists with the emerging cancer biomarkers and their diagnostic utilities. DATA SOURCES.— This review is based on the National Comprehensive Cancer Network guidelines and peer-reviewed English literature. CONCLUSIONS.— Tumor-specific biomarkers and molecular/genomic alterations, including pan-cancer markers, have been significantly expanded in the past decade thanks to large-scale high-throughput technologies and will continue to emerge in the future. These biomarkers can be of great value in diagnosis, prognosis, and/or targeted therapy/treatment. Familiarization with these emerging and ever-changing tumor biomarkers will undoubtedly aid pathologists in making accurate and state-of-the-art diagnoses and enable them to be more actively involved in the care of cancer patients.
Collapse
Affiliation(s)
- Wei Zhang
- From the Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison (W. Zhang).,W. Zhang and Yao are co-first authors.,W. Zhang and H.-Y. Wang are co-senior authors and supervised this manuscript equally
| | - Jinjuan Yao
- The Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York (Yao).,W. Zhang and Yao are co-first authors
| | - Minghao Zhong
- The Department of Pathology, Yale University School of Medicine, New Haven, Connecticut (Zhong)
| | - Yaxia Zhang
- The Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, New York (Y. Zhang).,The Department of Pathology and Laboratory Medicine, Weill Cornell College of Medicine, New York, New York (Y. Zhang)
| | - Xiaoling Guo
- The Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (Guo)
| | - Huan-You Wang
- The Department of Pathology, University of California San Diego, La Jolla (Wang).,W. Zhang and H.-Y. Wang are co-senior authors and supervised this manuscript equally
| |
Collapse
|
22
|
Jurcă MC, Ivaşcu ME, Jurcă AA, Kozma K, Magyar I, Şandor MI, Jurcă AD, Zaha DC, Albu CC, Pantiş C, Bembea M, Petcheşi CD. Genetics of congenital solid tumors. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:1039-1049. [PMID: 34171053 PMCID: PMC8343493 DOI: 10.47162/rjme.61.4.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
When we discuss the genetics of tumors, we cannot fail to remember that in the second decade of the twentieth century, more precisely in 1914, Theodore Boveri defined for the first time the chromosomal bases of cancer. In the last 30 years, progresses in genetics have only confirmed Boveri's remarkable predictions made more than 80 years ago. Before the cloning of the retinoblastoma 1 (RB1) gene, the existence of a genetic component in most, if not all, solid childhood tumors were well known. The existence of familial tumor aggregations has been found much more frequently than researchers expected to find at random. Sometimes, the demonstration of this family predisposition was very difficult, because the survival of children diagnosed as having a certain tumor, up to an age at which reproduction and procreation is possible, was very rare. In recent years, advances in the diagnosis and treatment of these diseases have made it possible for these children to survive until the age when they were able to start their own families, including the ability to procreate. Four distinct groups of so-called cancer genes have been identified: oncogenes, which promote tumor cell proliferation; tumor suppressor genes, which inhibit this growth/proliferation; anti-mutational genes, with a role in deoxyribonucleic acid (DNA) stability; and micro-ribonucleic acid (miRNA) genes, with a role in the posttranscriptional process.
Collapse
Affiliation(s)
- Maria Claudia Jurcă
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Romania; ,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Bone tumors are a rare and heterogeneous group of neoplasms that occur in the bone. The diversity and considerable morphologic overlap of bone tumors with other mesenchymal and nonmesenchymal bone lesions can complicate diagnosis. Accurate histologic diagnosis is crucial for appropriate management and prognostication. Since the publication of the fourth edition of the World Health Organization (WHO) classification of tumors of soft tissue and bone in 2013, significant advances have been made in our understanding of bone tumor molecular biology, classification, prognostication, and treatment. Detection of tumor-specific molecular alterations can facilitate the accurate diagnosis of histologically challenging cases. The fifth edition of the 2020 WHO classification of tumors of soft tissue and bone tumors provides an updated classification scheme and essential diagnostic criteria for bone tumors. Herein, we summarize these updates, focusing on major changes in each category of bone tumor, the newly described tumor entities and subtypes of existing tumor types, and newly described molecular and genetic data.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jae Y Ro
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Medical College of Cornell University, Houston, TX
| |
Collapse
|
24
|
Abstract
We present a review of several bone (osteoid)-forming tumors including enostosis, osteoid osteoma, osteoblastoma, and osteosarcoma. These entities were chosen because they are reasonably common-neither seen every day nor rare. When applicable, recent information about the lesions is included.
Collapse
Affiliation(s)
- Behrang Amini
- Department of Musculoskeletal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Raul Fernando Valenzuela
- Department of Musculoskeletal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Justin E Bird
- Department of Orthopaedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tamara Miner Haygood
- Department of Musculoskeletal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
25
|
Franceschini N, Verbruggen B, Tryfonidou MA, Kruisselbrink AB, Baelde H, de Visser KE, Szuhai K, Cleton-Jansen AM, Bovée JVMG. Transformed Canine and Murine Mesenchymal Stem Cells as a Model for Sarcoma with Complex Genomics. Cancers (Basel) 2021; 13:cancers13051126. [PMID: 33807947 PMCID: PMC7961539 DOI: 10.3390/cancers13051126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Sarcomas are rare cancers of mesenchymal origin, the majority of which are characterized by many copy number alterations, amplifications, or deletions. Because of these complex genomics, it is notoriously difficult to identify driver events of malignant transformation. In this study, we show that murine and canine mesenchymal stem cells (MSCs) can be used to model spontaneous malignant transformation towards sarcomas with complex genomics. We show that these MSCs have an abnormal karyotype, many structural variants, and point mutations at whole genome sequencing analysis, and form sarcomas after injection into mice. Our cross-species analysis reveals that p53 loss is an early event in sarcomagenesis, and it was shown that MSCs with a knock-out in Trp53 transform earlier compared to wild-type MSCs. Our study points to the importance of p53 loss in the transformation process towards sarcomas with complex genomics. Abstract Sarcomas are rare mesenchymal tumors with a broad histological spectrum, but they can be divided into two groups based on molecular pathology: sarcomas with simple or complex genomics. Tumors with complex genomics can have aneuploidy and copy number gains and losses, which hampers the detection of early, initiating events in tumorigenesis. Often, no benign precursors are known, which is why good models are essential. The mesenchymal stem cell (MSC) is the presumed cell of origin of sarcoma. In this study, MSCs of murine and canine origin are used as a model to identify driver events for sarcomas with complex genomic alterations as they transform spontaneously after long-term culture. All transformed murine but not canine MSCs formed sarcomas after subcutaneous injection in mice. Using whole genome sequencing, spontaneously transformed murine and canine MSCs displayed a complex karyotype with aneuploidy, point mutations, structural variants, inter-chromosomal translocations, and copy number gains and losses. Cross-species analysis revealed that point mutations in Tp53/Trp53 are common in transformed murine and canine MSCs. Murine MSCs with a cre-recombinase induced deletion of exon 2–10 of Trp53 transformed earlier compared to wild-type murine MSCs, confirming the contribution of loss of p53 to spontaneous transformation. Our comparative approach using transformed murine and canine MSCs points to a crucial role for p53 loss in the formation of sarcomas with complex genomics.
Collapse
Affiliation(s)
- Natasja Franceschini
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.F.); (B.V.); (A.B.K.); (H.B.); (A.-M.C.-J.)
| | - Bas Verbruggen
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.F.); (B.V.); (A.B.K.); (H.B.); (A.-M.C.-J.)
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Alwine B. Kruisselbrink
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.F.); (B.V.); (A.B.K.); (H.B.); (A.-M.C.-J.)
| | - Hans Baelde
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.F.); (B.V.); (A.B.K.); (H.B.); (A.-M.C.-J.)
| | - Karin E. de Visser
- Division of Tumour Biology & Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Jaarbeursplein 6, 3521 AL Utrecht, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Anne-Marie Cleton-Jansen
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.F.); (B.V.); (A.B.K.); (H.B.); (A.-M.C.-J.)
| | - Judith V. M. G. Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.F.); (B.V.); (A.B.K.); (H.B.); (A.-M.C.-J.)
- Correspondence: ; Tel.: +31-715266622
| |
Collapse
|
26
|
Tian B, Hua Z, Wang Z, Wang J. RETRACTED ARTICLE: Physcion 8-O-β-glucopyranoside mediates the NLRP3-associated pyroptosis and cell metastasis in the human osteosarcoma cells via ER stress activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:555. [PMID: 32072190 DOI: 10.1007/s00210-020-01836-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Baogang Tian
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China
| | - Zhen Hua
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China
| | - Zhijiong Wang
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China
| | - Jianwei Wang
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China.
| |
Collapse
|
27
|
Roessner A, Lohmann C, Jechorek D. Translational cell biology of highly malignant osteosarcoma. Pathol Int 2021; 71:291-303. [PMID: 33631032 DOI: 10.1111/pin.13080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/31/2021] [Indexed: 12/19/2022]
Abstract
Highly malignant osteosarcoma (HMO) is the most frequent malignant bone tumor preferentially occurring in adolescents and children with a second more flat peak in patients over the age of 60. The younger patients benefit from combined neoadjuvant chemotherapy with 65-70% 5-year survival rate. In patients with metastatic HMO the 5-year survival rate is consistently poor with approximately 30%. In the last several years strategies for target therapies have been developed by using next generation sequencing (NGS) for defining targetable molecular factors. However, it has so far been challenging to establish an effective target therapy for so-called 'orphan tumors' without recognizable driver mutations, including HMO. The molecular genetic studies using NGS have shown that HMOs are genomically unstable tumors with highly complex chaotic karyotypes. Before the background of this genetic complexity more investigations should be performed in the future for defining targetable biological factors. As the prognosis could not be improved for 40 years one may expect improvements for patients only by gaining a deeper understanding of the cell and molecular biology of HMO. The cell of origin of HMO is being clarified now. The majority of studies indicate that an osteoblastic progenitor cell is probably the cell of origin of HMO and not an undifferentiated mesenchymal stem cell. This means that the established histopathological definition of HMO through verification of osteoid production by the osteoblastic cells is well justified and will probably be the cornerstone for a precise differential diagnosis of HMO also in the years to come.
Collapse
Affiliation(s)
- Albert Roessner
- Department of Pathology, Otto-von-Guericke University, Magdeburg, Germany
| | - Christoph Lohmann
- Department of Orthopedics, Otto-von-Guericke University, Magdeburg, Germany
| | - Doerthe Jechorek
- Department of Pathology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
28
|
SATB2 is not a reliable diagnostic marker for distinguishing between oral osteosarcoma and fibro-osseous lesions of the jaws. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 131:572-581. [PMID: 33309262 DOI: 10.1016/j.oooo.2020.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Special AT-rich binding protein 2 (SATB2) is an immunohistochemical marker for osteoblast differentiation. Our aim was to investigate SATB2 expression in oral osteosarcoma and other bone-producing oral tumors/reactive lesions to evaluate its usefulness as a diagnostic marker. STUDY DESIGN A total of 74 intraosseous and soft tissue bone-producing surgical samples and 10 samples of reactive bone tissue were stained with SATB2, including osteosarcoma/chondrosarcoma (n = 16), fibro-osseous lesions (n = 42), central giant cell granuloma (n = 6), osteoblastoma (n = 1), and gingival lesions (n = 9). Nuclear labeling of the stromal spindle cells and intensity of staining was scored and analyzed. RESULTS The intraosseous (n = 65/65) and soft tissue samples (n = 9/9) diffusely expressed SATB2. The strongest expression was observed in juvenile aggressive ossifying fibroma (n = 2/2). Weak SATB2 expression was observed in the stromal spindle cells adjacent to reactive bone tissue (periosteal bone reaction). CONCLUSIONS Our results indicate that SATB2 is not a reliable diagnostic marker for oral osteosarcoma but has practical use in detecting cells with osteoblast differentiation in histologic samples with scant bone production or in differentiating between a periosteal bone reaction and neoplastic bone induced by the tumor mesenchymal cells. Targeting SATB2 as an alternative therapy in oral osteosarcoma, fibro-osseous lesions, and central giant cell granuloma should be further investigated.
Collapse
|
29
|
Cersosimo F, Lonardi S, Bernardini G, Telfer B, Mandelli GE, Santucci A, Vermi W, Giurisato E. Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy. Int J Mol Sci 2020; 21:E5207. [PMID: 32717819 PMCID: PMC7432207 DOI: 10.3390/ijms21155207] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Osteosarcomas (OSs) are bone tumors most commonly found in pediatric and adolescent patients characterized by high risk of metastatic progression and recurrence after therapy. Effective therapeutic management of this disease still remains elusive as evidenced by poor patient survival rates. To achieve a more effective therapeutic management regimen, and hence patient survival, there is a need to identify more focused targeted therapies for OSs treatment in the clinical setting. The role of the OS tumor stroma microenvironment plays a significant part in the development and dissemination of this disease. Important components, and hence potential targets for treatment, are the tumor-infiltrating macrophages that are known to orchestrate many aspects of OS stromal signaling and disease progression. In particular, increased infiltration of M2-like tumor-associated macrophages (TAMs) has been associated with OS metastasis and poor patient prognosis despite currently used aggressive therapies regimens. This review aims to provide a summary update of current macrophage-centered knowledge and to discuss the possible roles that macrophages play in the process of OS metastasis development focusing on the potential influence of stromal cross-talk signaling between TAMs, cancer-stem cells and additional OSs tumoral microenvironment factors.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (G.E.M.); (W.V.)
| | - Giulia Bernardini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
| | - Brian Telfer
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK;
| | - Giulio Eugenio Mandelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (G.E.M.); (W.V.)
| | - Annalisa Santucci
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (G.E.M.); (W.V.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|