1
|
Chohan DP, Biswas S, Wankhede M, Menon P, K A, Basha S, Rodrigues J, Mukunda DC, Mahato KK. Assessing Breast Cancer through Tumor Microenvironment Mapping of Collagen and Other Biomolecule Spectral Fingerprints─A Review. ACS Sens 2024; 9:4364-4379. [PMID: 39175278 PMCID: PMC11443534 DOI: 10.1021/acssensors.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Breast cancer is a major challenge in the field of oncology, with around 2.3 million cases and around 670,000 deaths globally based on the GLOBOCAN 2022 data. Despite having advanced technologies, breast cancer remains the major type of cancer among women. This review highlights various collagen signatures and the role of different collagen types in breast tumor development, progression, and metastasis, along with the use of photoacoustic spectroscopy to offer insights into future cancer diagnostic applications without the need for surgery or other invasive techniques. Through mapping of the tumor microenvironment and spotlighting key components and their absorption wavelengths, we emphasize the need for extensive preclinical and clinical investigations.
Collapse
Affiliation(s)
- Diya Pratish Chohan
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Shimul Biswas
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Mrunmayee Wankhede
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Poornima Menon
- Manipal
School of Life Sciences, Manipal Academy
of Higher Education, Karnataka, Manipal 576104, India
| | - Ameera K
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Shaik Basha
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Jackson Rodrigues
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | | | - Krishna Kishore Mahato
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| |
Collapse
|
2
|
Yadav R, Sharma A, Dahiya D, Bal A, Bhatia A. Comparative morphology of tumour microenvironment in claudin-low and claudin-high breast cancers. Pathol Res Pract 2024; 261:155502. [PMID: 39079385 DOI: 10.1016/j.prp.2024.155502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/18/2024]
Abstract
BACKGROUND Claudin-low breast cancers (BCs) exhibit more aggressive behaviour compared to claudin-high types. Claudin-low BCs are often characterized by features such as a higher grade, enrichment of stemness characteristics, and a propensity for metastasis. Tumour microenvironment (TME) defined as the intricate network of surrounding cells, blood vessels, and extracellular matrix components influences the behaviour of cancer cells within the breast tissue. Understanding the TME is crucial for comprehending the aggressive characteristics of claudin-low BCs. METHODS In this study, we have studied the morphology of immune and non-immune TME using Haematoxylin and eosin (H&E)-stained slides of 15 claudin-low and 12 claudin-high tissue samples of BC. RESULTS TME of claudin-low BCs was observed to have a significantly higher frequency of retraction clefts (66.6 %; n = 10/15), immature desmoplastic response (40 %; n = 6/15), higher stromal cellularity (60 %; n = 9/15); and fibroblastic proliferation (53.3 %; n = 8/15) with a low prevalence of elastosis (66.6 %; n = 10/15). The immune microenvironment revealed a higher frequency of total (80 %; n = 12/15) as well as stromal (86.67 %; n = 13/15) and intra-tumoural TILs (60 %; n = 9/15) in them. CONCLUSION The above morphology-based study revealed that claudin-low tumours have unique immune and non-immune TME as compared to claudin-high tumours. Future studies exploring the molecular correlates of each of the above morphological features can help in identifying novel therapeutic targets for the treatment of claudin-low BCs.
Collapse
Affiliation(s)
- Reena Yadav
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Aditti Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
3
|
Chatterji S, Krzoska E, Thoroughgood CW, Saganty J, Liu P, Elsberger B, Abu-Eid R, Speirs V. Defining genomic, transcriptomic, proteomic, epigenetic, and phenotypic biomarkers with prognostic capability in male breast cancer: a systematic review. Lancet Oncol 2023; 24:e74-e85. [PMID: 36725152 DOI: 10.1016/s1470-2045(22)00633-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 02/02/2023]
Abstract
Although similar phenotypically, there is evidence that male and female breast cancer differ in their molecular landscapes. In this systematic review, we consolidated all existing prognostic biomarker data in male breast cancer spanning genetics, transcriptomics, proteomics, and epigenetics, and phenotypic features of prognostic value from articles published over a 29-year period (March 16, 1992, to May 1, 2021). We identified knowledge gaps in the existing literature, discussed limitations of the included studies, and outlined potential approaches for translational biomarker discovery and validation in male breast cancer. We also recognised STC2, DDX3, and DACH1 as underexploited markers of male-specific prognostic value in breast cancer. Finally, beyond describing the cumulative knowledge on the extensively researched markers oestrogen receptor-α, progesterone receptor, HER2, androgen receptor, and BRCA2, we highlighted ATM, CCND1, FGFR2, GATA3, HIF1-α, MDM2, TP53, and c-Myc as well studied predictors of poor survival that also aligned with several hallmarks of cancer.
Collapse
Affiliation(s)
- Subarnarekha Chatterji
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Emma Krzoska
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - John Saganty
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Peng Liu
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Rasha Abu-Eid
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Dentistry, University of Aberdeen, Aberdeen, UK
| | - Valerie Speirs
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
4
|
Male breast cancer: an update. Virchows Arch 2021; 480:85-93. [PMID: 34458944 DOI: 10.1007/s00428-021-03190-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Male breast cancer (MBC) is rare, accounting for less than 1% of all breast cancer but the incidence has increased worldwide. Risk factors include increased longevity, obesity, testicular diseases and tumours, and germline mutations of BRCA2. BRCA2 carriers have 80 times the risk of the general population. Men generally present with breast cancer at an older age compared with women. Histologically, MBC is often of grade 2, hormone receptor positive, HER2 negative, and no special type carcinoma although in situ and invasive papillary carcinomas are common. Reporting and staging are similar to female breast cancer. Metastatic lesions to the male breast do occur and should be differentiated from primary carcinomas. Until recently, MBC was thought to be similar to the usual ER positive post-menopausal female counterpart. However, advances in MBC research and trials have highlighted significant differences between the two. This review provides an up to date overview of the biology, genetics, and histology of MBC with comparison to female breast cancers and differential diagnosis from histological mimics.
Collapse
|