1
|
Tan J, Zhang H, Liu L, Li J, Fu Q, Li Y, Wu C, Deng R, Wang J, Xu B, Chen W, Yang S, Wang C. Value of original and modified pathological scoring systems for prognostic prediction in paraffin-embedded donor kidney core biopsy. Ren Fail 2024; 46:2314630. [PMID: 38345067 PMCID: PMC10863519 DOI: 10.1080/0886022x.2024.2314630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND No study has validated, compared and adapted scoring systems for prognosis prediction based on donor kidney core biopsy (CB), with less glomeruli than wedge biopsy. METHODS A total of 185 donor kidney CB specimens were reviewed using seven scoring systems. The association between the total score, item scores, score-based grading, and allograft prognosis was investigated. In specimens with less than ten glomeruli (88/185, 47.6%), scoring systems were modified by adjusting weights of the item scores. RESULTS The Maryland aggregate pathology index (MAPI) score-based grading and periglomerular fibrosis (PGF) associated with delayed graft function (DGF) (Grade: OR = 1.59, p < 0.001; PGF: OR = 1.06, p = 0.006). Total score, score-based grading and chronic lesion score in scoring systems associated with one-year and 3-year eGFR after transplantation. Total-score-based models had similar predictive capacities for eGFR in all scoring systems, except MAPI and Ugarte. Score of glomerulosclerosis (GS), interstitial fibrosis (IF), tubular atrophy (TA), and arteriolar hyalinosis (AH) had good eGFR predictive capacities. In specimens with less than ten glomeruli, modified scoring systems had better eGFR predictive capacities than original scoring systems. CONCLUSIONS Scoring systems could predict allograft prognosis in paraffin-embedded CB with ten more glomeruli. A simple and pragmatic scoring system should include GS, IF, TA and AH, with weights assigned based on predictive capacity for prognosis. Replacing GS scores with tubulointerstitial scores could significantly improve the predictive capacity of eGFR. The conclusion should be further validated in frozen section.
Collapse
Affiliation(s)
- Jinghong Tan
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huanxi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jun Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Fu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenglin Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ronghai Deng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiali Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bowen Xu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenfang Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shicong Yang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changxi Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Prediction of Renal Function in Living Kidney Donors and Recipients of Living Donor Kidneys Using Quantitative Histology. Transplantation 2023; 107:264-273. [PMID: 35883240 DOI: 10.1097/tp.0000000000004266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Living kidney donors (LKDs) are at increased risk of chronic kidney disease, whereas transplant recipients experience progressive reduction of graft function. We examined the predictive value of quantitative stereology on renal function in LKDs and recipients of living donor kidneys, based on perioperative biopsies from the donated kidney. METHODS Cortex volume of both donor kidneys was determined by contrast-enhanced computed tomography and single-kidney glomerular filtration rate (GFR) by 51 chrome-EDTA clearance together with renography. Glomerular density was used to estimate total glomeruli number in addition to glomerular volume, glomerular sclerosis, kidney fibrosis, and arteriole dimensions. GFR measurements were repeated 1 y after transplantation in both LKDs and recipients. Associations between GFR at follow-up and cortex volume and histomorphometric parameters after adjustment of age, gender, body mass index, smoking status, 24-h blood pressure, and single-kidney GFR were examined. RESULTS We included 49 LKDs (age, 51 ± 12 y) and 51 recipients (age, 44 ± 13 y). At follow-up, GFR was 71 ± 16 mL/min in LKDs and 61 ± 18 mL/min in recipients with hyperfiltration being more prominent in LKDs (30.4%) as compared to recipients (16.4%; P < 0.05). One-year GFR in donors correlated to cortex volume ( P < 0.001) but not to any histological parameters, whereas GFR in recipients correlated to the amount of interstitial fibrosis ( P < 0.01) but not to other histological parameters or cortex volume. CONCLUSIONS Kidney cortex volume, but not renal histology parameters, predicts 1-y renal outcome in LKDs. In contrast, the amount of interstitial fibrosis, but not cortex volume, predicts 1-y graft function in recipients.
Collapse
|
3
|
Schutter R, van Varsseveld OC, Lantinga VA, Pool MBF, Hamelink TH, Potze JH, Leuvenink HGD, Laustsen C, Borra RJH, Moers C. Magnetic resonance imaging during warm ex vivo kidney perfusion. Artif Organs 2023; 47:105-116. [PMID: 35996889 PMCID: PMC10086841 DOI: 10.1111/aor.14391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND The shortage of donor organs for transplantation remains a worldwide problem. The utilization of suboptimal deceased donors enlarges the pool of potential organs, yet consequently, clinicians face the difficult decision of whether these sub-optimal organs are of sufficient quality for transplantation. Novel technologies could play a pivotal role in making pre-transplant organ assessment more objective and reliable. METHODS Ex vivo normothermic machine perfusion (NMP) at temperatures around 35-37°C allows organ quality assessment in a near-physiological environment. Advanced magnetic resonance imaging (MRI) techniques convey unique information about an organ's structural and functional integrity. The concept of applying magnetic resonance imaging during renal normothermic machine perfusion is novel in both renal and radiological research and we have developed the first MRI-compatible NMP setup for human-sized kidneys. RESULTS We were able to obtain a detailed and real-time view of ongoing processes inside renal grafts during ex vivo perfusion. This new technique can visualize structural abnormalities, quantify regional flow distribution, renal metabolism, and local oxygen availability, and track the distribution of ex vivo administered cellular therapy. CONCLUSION This platform allows for advanced pre-transplant organ assessment, provides a new realistic tool for studies into renal physiology and metabolism, and may facilitate therapeutic tracing of pharmacological and cellular interventions to an isolated kidney.
Collapse
Affiliation(s)
- Rianne Schutter
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Otis C van Varsseveld
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Veerle A Lantinga
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Merel B F Pool
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim H Hamelink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Hendrik Potze
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christoffer Laustsen
- Department of Clinical Medicine, The MR Research Center, Aarhus University, Aarhus, Denmark
| | - Ronald J H Borra
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|