1
|
Reznicek J, Sharifai N, Jamshidi P, Wadhwani N, Ahrendsen JT. Embryonal and pineal tumours. Cytopathology 2024; 35:561-571. [PMID: 38100134 DOI: 10.1111/cyt.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 08/11/2024]
Abstract
Embryonal and pineal tumours represent a diverse group of central nervous system (CNS) neoplasms. While many of the small round blue cell tumours that make up the embryonal neoplasms share similar histologic qualities, there are several morphologic and cytologic characteristics that are useful in distinguishing different tumour types. Similarly, pineal parenchymal tumours represent clinically diverse tumours, ranging from benign to overtly malignant. The most recent iteration of the World Health Organization Classification of CNS Tumours expanded greatly on the significance of molecular alterations in brain tumour diagnostics. In this article, we summarize the salient cytologic and histologic features of CNS embryonal and pineal tumours, and highlight diagnostically relevant molecular alterations within each tumour type.
Collapse
Affiliation(s)
- Joseph Reznicek
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nima Sharifai
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nitin Wadhwani
- Department of Pathology, Lurie Children's Hospital, Chicago, Illinois, USA
| | - Jared T Ahrendsen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Robinson LJ, Goold E, Anderson D, Rennert RC, Couldwell WT, Xing C. A mass in the pineal region of a young woman. Brain Pathol 2024; 34:e13258. [PMID: 38527786 PMCID: PMC11007021 DOI: 10.1111/bpa.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Affiliation(s)
| | - Eric Goold
- Department of PathologyUniversity of UtahSalt Lake CityUtahUSA
| | - David Anderson
- Department of PathologyUniversity of UtahSalt Lake CityUtahUSA
| | | | | | - Changhong Xing
- Department of PathologyUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
3
|
Gastberger K, Fincke VE, Mucha M, Siebert R, Hasselblatt M, Frühwald MC. Current Molecular and Clinical Landscape of ATRT - The Link to Future Therapies. Cancer Manag Res 2023; 15:1369-1393. [PMID: 38089834 PMCID: PMC10712249 DOI: 10.2147/cmar.s379451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/28/2023] [Indexed: 10/16/2024] Open
Abstract
ATRT is a highly aggressive and rare pediatric CNS tumor of very young children. Its genetic hallmark is bi-allelic inactivation of SMARCB1 encoding INI1. Rarely SMARCA4 encoding BRG1 is affected. Up to 30% are associated with constitutional heterozygous pathogenic variants in one of the two genes, giving rise to the Rhabdoid-Tumor-Predisposition-Syndromes (RTPS) 1 and 2. Characteristic DNA methylation profiles distinguish ATRT from other SMARCB1-deficient entities. Three distinct subtypes ATRT-MYC, -TYR, and -SHH are on record. ATRT-SHH may be further divided into the subgroups ATRT-SHH1A, -SHH1B, and -SHH2. The cure of ATRT remains challenging, notwithstanding an increasing understanding of molecular pathomechanisms and genetic background. The implementation of multimodal institutional treatment protocols has improved prognosis. Regardless of treatment approaches, clinical risk factors such as age, metastases, and DNA methylation subtype affect survival probability. We provide a critical appraisal of current conventional multimodal regimens and emerging targeted treatment approaches investigated in clinical trials and entity-specific registries. Intense treatment approaches featuring radiotherapy (RT) and high-dose chemotherapy (HDCT) face the difficulty of balancing tumor control and treatment-related toxicity. Current approaches focus on minimizing radiation fields by proton beam therapy or to withhold RT in HDCT-only approaches. Still, a 40-75% relapse rate upon first-line treatment reveals the need for novel treatment strategies in primary and even more in recurrent/refractory (r/r) disease. Among targeted treatments, immune checkpoint inhibitors and epigenetically active agents appear most promising. Success remains limited in single agent approaches. We hypothesize that mechanism-informed combination therapy will enhance response, as the low mutational burden of ATRT may contribute to acquiring resistance to single targeted agents. As DNA methylation group-specific gene expression profiles appear to influence response to distinct agents, the future treatment of ATRT should respect clinical and biological heterogeneity in risk group adjusted treatment protocols.
Collapse
Affiliation(s)
- Katharina Gastberger
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Victoria E Fincke
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Marlena Mucha
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Michael C Frühwald
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| |
Collapse
|
4
|
Rigsby RK, Brahmbhatt P, Desai AB, Bathla G, Ebner BA, Gupta V, Vibhute P, Agarwal AK. Newly Recognized CNS Tumors in the 2021 World Health Organization Classification: Imaging Overview with Histopathologic and Genetic Correlation. AJNR Am J Neuroradiol 2023; 44:367-380. [PMID: 36997287 PMCID: PMC10084895 DOI: 10.3174/ajnr.a7827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/14/2022] [Indexed: 04/01/2023]
Abstract
In 2021, the World Health Organization released an updated classification of CNS tumors. This update reflects the growing understanding of the importance of genetic alterations related to tumor pathogenesis, prognosis, and potential targeted treatments and introduces 22 newly recognized tumor types. Herein, we review these 22 newly recognized entities and emphasize their imaging appearance with correlation to histologic and genetic features.
Collapse
Affiliation(s)
- R K Rigsby
- From the Department of Radiology (R.K.R., P.B., A.B.D., V.G., P.V., A.K.A.), Mayo Clinic, Jacksonville, Florida
| | - P Brahmbhatt
- From the Department of Radiology (R.K.R., P.B., A.B.D., V.G., P.V., A.K.A.), Mayo Clinic, Jacksonville, Florida
| | - A B Desai
- From the Department of Radiology (R.K.R., P.B., A.B.D., V.G., P.V., A.K.A.), Mayo Clinic, Jacksonville, Florida
| | - G Bathla
- Department of Radiology (G.B.), Mayo Clinic, Rochester, Minnesota
| | - B A Ebner
- Department of Laboratory Medicine and Pathology (B.A.E.), Mayo Clinic, Rochester, Minnesota
| | - V Gupta
- From the Department of Radiology (R.K.R., P.B., A.B.D., V.G., P.V., A.K.A.), Mayo Clinic, Jacksonville, Florida
| | - P Vibhute
- From the Department of Radiology (R.K.R., P.B., A.B.D., V.G., P.V., A.K.A.), Mayo Clinic, Jacksonville, Florida
| | - A K Agarwal
- From the Department of Radiology (R.K.R., P.B., A.B.D., V.G., P.V., A.K.A.), Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
5
|
Tomita T. Pediatric Pineal Region Tumors: Special Reference to Posterior Interhemispheric Trans-Tentorial Approach. Adv Tech Stand Neurosurg 2023; 48:291-325. [PMID: 37770689 DOI: 10.1007/978-3-031-36785-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Pediatric pineal region tumors consist of tumors of pineal gland origin and parapineal origin. The former are comprised of germ cell tumor (GCT) and pineal parenchymal tumor. The latter originate from the surrounding neural structures, such as the midbrain and thalamus; thus, they are often benign gliomas during childhood. Pineal region tumors often cause obstructive hydrocephalus, which is the main cause of presenting symptoms. Advanced imaging discloses precise location and extension of the tumor and associated anomalies such as hydrocephalous, dissemination, hemorrhage, etc. Hydrocephalus has been managed with CSF diversion, mostly using an endoscopic third ventriculostomy. Because of different treatment paradigms for each tumor type, histological confirmation is needed either through biopsy, tumor markers for GCTs, and/or surgical resection sampling. Radical resection of these tumors remains a challenge due to their deep-seated location and involvement of delicate neural and vascular structures. Comparison of common craniotomy approaches, occipital transtentorial (OT) and infratentorial supracerebellar (ITSC), is reviewed for their advantages and disadvantages. Surgical area exposure and blind spots are important factors for successful tumor removal. The surgical techniques and nuances that the author employs for tumor resection via a posterior interhemispheric transtentorial approach are presented.
Collapse
Affiliation(s)
- Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann & Robert Lurie Children's Hospital of Chicago, Chicago, IL, USA.
- Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
6
|
Diagnosis and Treatment of Pineal Region Tumors in Adults: A EURACAN Overview. Cancers (Basel) 2022; 14:cancers14153646. [PMID: 35954310 PMCID: PMC9367474 DOI: 10.3390/cancers14153646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Pineal region tumors are rare intracranial tumors. A deeper knowledge of these tumors’ molecular mechanisms has been gained in recent years, which has led to a new classification and new potential systemic treatments. Surgery remains the mainstay of treatment, while radiotherapy and systemic therapy depend on histological, molecular, and clinical characteristics. This paper highlights recent developments in the diagnosis and treatment of these tumors. Abstract Pineal region tumors are rare intracranial tumors, accounting for less than 1% of all adult intracranial tumor lesions. These lesions represent a histologically heterogeneous group of tumors. Among these tumors, pineal parenchymal tumors and germ cell tumors (GCT) represent the most frequent types of lesions. According to the new WHO 2021 classification, pineal parenchymal tumors include five distinct histotypes: pineocytoma (PC), pineal parenchymal tumors of intermediate differentiation (PPTID), papillary tumor of the pineal region (PTPR), pinealoblastoma (PB), and desmoplastic myxoid tumor of the pineal region, SMARCB1-mutant; GCTs include germinoma, embryonal carcinoma, yolk sac tumor, choriocarcinoma, teratoma, mixed GCTs. Neuroradiological assessment has a pivotal role in the diagnostic work-up, surgical planning, and follow-up of patients with pineal masses. Surgery can represent the mainstay of treatment, ranging from biopsy to gross total resection, yet pineal region tumors associated with obstructive hydrocephalus may be surgically managed via ventricular internal shunt or endoscopic third ventriculostomy. Radiotherapy remains an essential component of the multidisciplinary treatment approach for most pineal region tumors; however, treatment volumes depend on the histological subtypes, grading, extent of disease, and the combination with chemotherapy. For localized germinoma, the current standard of care is chemotherapy followed by reduced-dose whole ventricular irradiation plus a boost to the primary tumor. For pinealoblastoma patients, postoperative radiation has been associated with higher overall survival. For the other pineal tumors, the role of radiotherapy remains poorly studied and it is usually reserved for aggressive (grade 3) or recurrent tumors. The use of systemic treatments mainly depends on histology and prognostic factors such as residual disease and metastases. For pinealoblastoma patients, chemotherapy protocols are based on various alkylating or platinum-based agents, vincristine, etoposide, cyclophosphamide and are used in association with radiotherapy. About GCTs, their chemosensitivity is well known and is based on cisplatin or carboplatin and may include etoposide, cyclophosphamide, or ifosfamide prior to irradiation. Similar regimens containing platinum derivatives are also used for non-germinomatous GCTs with very encouraging results. However, due to a greater understanding of the biology of the disease’s various molecular subtypes, new agents based on targeted therapy are expected in the future. On behalf of the EURACAN domain 10 group, we reviewed the most important and recent developments in histopathological characteristics, neuro-radiological assessments, and treatments for pineal region tumors.
Collapse
|
7
|
Sefcikova V, Wong QHW, Fersht N, Samandouras G. Commentary: Malignant Pineal Parenchymal Tumors in Adults: A National Cancer Database Analysis. Neurosurgery 2022; 91:e97-e99. [PMID: 35876677 DOI: 10.1227/neu.0000000000002068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Viktoria Sefcikova
- The University of Queensland Medical School, Brisbane, Australia.,UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Naomi Fersht
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - George Samandouras
- UCL Queen Square Institute of Neurology, University College London, London, UK.,Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
8
|
Kurokawa R, Kurokawa M, Baba A, Ota Y, Pinarbasi E, Camelo-Piragua S, Capizzano AA, Liao E, Srinivasan A, Moritani T. Major Changes in 2021 World Health Organization Classification of Central Nervous System Tumors. Radiographics 2022; 42:1474-1493. [PMID: 35802502 DOI: 10.1148/rg.210236] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The World Health Organization (WHO) published the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5) in 2021, as an update of the WHO central nervous system (CNS) classification system published in 2016. WHO CNS5 was drafted on the basis of recommendations from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) and expounds the classification scheme of the previous edition, which emphasized the importance of genetic and molecular changes in the characteristics of CNS tumors. Multiple newly recognized tumor types, including those for which there is limited knowledge regarding neuroimaging features, are detailed in WHO CNS5. The authors describe the major changes introduced in WHO CNS5, including revisions to tumor nomenclature. For example, WHO grade IV tumors in the fourth edition are equivalent to CNS WHO grade 4 tumors in the fifth edition, and diffuse midline glioma, H3 K27M-mutant, is equivalent to midline glioma, H3 K27-altered. With regard to tumor typing, isocitrate dehydrogenase (IDH)-mutant glioblastoma has been modified to IDH-mutant astrocytoma. In tumor grading, IDH-mutant astrocytomas are now graded according to the presence or absence of homozygous CDKN2A/B deletion. Moreover, the molecular mechanisms of tumorigenesis, as well as the clinical characteristics and imaging features of the tumor types newly recognized in WHO CNS5, are summarized. Given that WHO CNS5 has become the foundation for daily practice, radiologists need to be familiar with this new edition of the WHO CNS tumor classification system. Online supplemental material and the slide presentation from the RSNA Annual Meeting are available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Ryo Kurokawa
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Mariko Kurokawa
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Akira Baba
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Yoshiaki Ota
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Emile Pinarbasi
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Sandra Camelo-Piragua
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Aristides A Capizzano
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Eric Liao
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Ashok Srinivasan
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Toshio Moritani
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| |
Collapse
|
9
|
Manoranjan B, Omar AT, Wu HB, Nordal R, Starreveld YP. Clinical management of desmoplastic myxoid tumor, SMARCB1-mutant. Neuro Oncol 2022; 24:847-848. [PMID: 35195707 PMCID: PMC9071305 DOI: 10.1093/neuonc/noac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Branavan Manoranjan
- Section of Neurosurgery, Department of Clinical Neurosciences, Foothills Medical Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Abdelsimar T Omar
- Section of Neurosurgery, Department of Clinical Neurosciences, Foothills Medical Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hai-Bo Wu
- Department of Pathology, Intelligent Pathology Institute, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Robert Nordal
- Department of Radiation Oncology, Tom Baker Cancer Center, Foothills Medical Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yves P Starreveld
- Section of Neurosurgery, Department of Clinical Neurosciences, Foothills Medical Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Zaccagna F, Brown FS, Allinson KSJ, Devadass A, Kapadia A, Massoud TF, Matys T. In and around the pineal gland: a neuroimaging review. Clin Radiol 2021; 77:e107-e119. [PMID: 34774298 DOI: 10.1016/j.crad.2021.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/30/2021] [Indexed: 01/16/2023]
Abstract
Lesions arising in or around the pineal gland comprise a heterogeneous group of pathologies ranging from benign non-neoplastic cysts to highly malignant neoplasms. Pineal cysts are frequently encountered as an incidental finding in daily radiology practice but there is no universal agreement on the criteria for, frequency of, and duration of follow-up imaging. Solid pineal neoplasms pose a diagnostic challenge owing to considerable overlap in their imaging characteristics, although a combination of radiological appearances, clinical findings, and tumour markers allows for narrowing of the differential diagnosis. In this review, we describe the radiological anatomy of the pineal region, clinical symptoms, imaging appearances, and differential diagnosis of lesions arising in this area, and highlight the clinical management of these conditions.
Collapse
Affiliation(s)
- F Zaccagna
- Department of Radiology, University of Cambridge, Cambridge, UK; Division of Neuroimaging, Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - F S Brown
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - K S J Allinson
- Department of Pathology, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - A Devadass
- Department of Pathology, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - A Kapadia
- Division of Neuroimaging, Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - T F Massoud
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - T Matys
- Department of Radiology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Doi M, Koike J, Yoshida Y, Nakamura H, Chosokabe M, Naruki S, Tajima S, Endo A, Matsumori T, Tanaka Y. A case of an atypical teratoid/rhabdoid tumor with distinctive histology in the pineal region in an adult patient. Pathol Int 2021; 71:777-782. [PMID: 34473883 PMCID: PMC9292907 DOI: 10.1111/pin.13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/14/2021] [Indexed: 11/26/2022]
Abstract
A 31‐year‐old man suffered from headaches and presented at a hospital after the symptom worsened. Obstructive hydrocephalus and a pineal tumor were identified, and he was transferred to our hospital for further investigation and treatment. Cranial computed tomography revealed a hypodense mass lesion on the right of the pineal region, and calcifications and enlargement of the lateral and third cerebral ventricles were also evident. Blood tests were negative for all tumor markers. Laparoscopic biopsy and third‐ventricle fenestration were performed that day as an emergency surgery to treat the obstructive hydrocephalus. Postoperative cranial magnetic resonance imaging revealed a solid tumor that was hypointense on T1‐weighted imaging, hyperintense on T2‐weighted imaging, and heterogeneously enhanced by Gd. Subsequently, the tumor increased in size, and craniotomy and tumorectomy were performed. Histologically, the tumor proliferated as round or short spindle‐shaped cells in a myxoid matrix, forming arrays that surrounded the blood vessels. As a few cells with eosinophilic cytoplasm were also present and immunostaining for INI‐1 was negative, the patient was diagnosed with atypical teratoid/rhabdoid tumor (AT/RT). AT/RT of the pineal region in adults is rare, and herein, we report the morphological characteristics of this case and reviewed the relevant literature.
Collapse
Affiliation(s)
- Masatomo Doi
- Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Junki Koike
- Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yasuyuki Yoshida
- Department of Neurosurgery, St. Marianna University School of Medicine, Toyoko Hospital, Kawasaki, Kanagawa, Japan
| | - Hisao Nakamura
- Department of Radiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Motohiro Chosokabe
- Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Saeko Naruki
- Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Shinya Tajima
- Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Akira Endo
- Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Takashi Matsumori
- Department of Neurosurgery, St. Marianna University School of Medicine, Toyoko Hospital, Kawasaki, Kanagawa, Japan
| | - Yuichiro Tanaka
- Department of Neurosurgery, St. Marianna University School of Medicine, Toyoko Hospital, Kawasaki, Kanagawa, Japan
| |
Collapse
|