1
|
Kallen ME, Koka R, Hausner PF, Benyounes A. Malignant Melanotic Nerve Sheath Tumor - A Pitfall in the Diagnosis of Schwannoma. Int J Surg Pathol 2024:10668969241271902. [PMID: 39289926 DOI: 10.1177/10668969241271902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Affiliation(s)
- Michael E Kallen
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rima Koka
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Petr F Hausner
- Department of Medicine, Division of Hematology/Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
2
|
Folpe AL, Tetzlaff MT, Billings SD, Torres-Mora J, Borowsky AD, Santiago TC, Ameline B, Baumhoer D. Superficial Neurocristic EWSR1::FLI1 Fusion Tumor: A Distinctive, Clinically Indolent, S100 Protein/SOX10-Positive Neoplasm. Mod Pathol 2024; 37:100537. [PMID: 38866368 DOI: 10.1016/j.modpat.2024.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
It is now understood that identical gene fusions may be shared by different entities. We report a distinctive neoplasm of the skin and subcutis, harboring the Ewing sarcoma-associated EWSR1::FLI1 fusion but differing otherwise from Ewing sarcoma. Slides and blocks for 5 cutaneous neoplasms coded as other than Ewing sarcoma and harboring EWSR1::FLI1 were retrieved. Immunohistochemical and molecular genetic results were abstracted from reports. Methylation profiling was performed. Clinical information was obtained. The tumors occurred in 4 men and 1 woman (median: 25 years of age; range: 19-69 years) and involved the skin/subcutis of the back (2), thigh, buttock, and chest wall (median: 2.4 cm; range: 1-11 cm). Two tumors were present "years" before coming to clinical attention. The lesions were multinodular and circumscribed and consisted of nests of bland, round cells admixed with hyalinized collagenous bands containing spindled cells. Hemorrhage and cystic change were often present; necrosis was absent. All were diffusely S100 protein/SOX10-positive; 4 of 5 were CD99-negative. One tested case was strongly positive for NKX2.2. A variety of other tested markers were either focally positive (glial fibrillary acidic protein, p63) or negative. Molecular genetic results were as follows: EWSR1 exon 7::FLI1 exon 8, EWSR1 exon 11::FLI1 exon 5, EWSR1 exon 11::FLI1 exon 6, EWSR1 exon 7::FLI1 exon 6, and EWSR1 exon 10::FLI1 exon 6. Methylation profiling (3 cases) showed these to form a unique cluster, distinct from Ewing sarcoma. All patients underwent excision with negative margins; one received 1 cycle of chemotherapy. Clinical follow-up showed all patients to be alive without disease (median: 17 months; range: 11-62 months). Despite similar gene fusions, the morphologic, immunohistochemical, epigenetic, and clinical features of these unique EWSR1::FLI1-fused neoplasms of the skin and subcutis differ substantially from Ewing sarcoma. Interestingly, EWSR1 rearrangements involved exons 10 or 11, only rarely seen in Ewing sarcoma, in a majority of cases. Superficial neurocristic EWSR1::FLI1 fusion tumors should be rigorously distinguished from true cutaneous Ewing sarcomas.
Collapse
Affiliation(s)
- Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| | - Michael T Tetzlaff
- Departments of Pathology and Dermatology, University of California-San Francisco, San Francisco, California
| | - Steven D Billings
- Department of Pathology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jorge Torres-Mora
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Baptiste Ameline
- Bone Tumor Reference Center at the Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Basel, Switzerland
| | - Daniel Baumhoer
- Bone Tumor Reference Center at the Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Basel, Switzerland; Basel Research Centre for Child Health, Basel, Switzerland
| |
Collapse
|
3
|
Argani P, Gross JM, Baraban E, Rooper LM, Chen S, Lin MT, Gocke C, Agaimy A, Lotan T, Suurmeijer AJH, Antonescu CR. TFE3 -Rearranged PEComa/PEComa-like Neoplasms : Report of 25 New Cases Expanding the Clinicopathologic Spectrum and Highlighting its Association With Prior Exposure to Chemotherapy. Am J Surg Pathol 2024; 48:777-789. [PMID: 38597260 PMCID: PMC11189753 DOI: 10.1097/pas.0000000000002218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Since their original description as a distinctive neoplastic entity, ~50 TFE3 -rearranged perivascular epithelioid cell tumors (PEComas) have been reported. We herein report 25 new TFE3 -rearranged PEComas and review the published literature to further investigate their clinicopathologic spectrum. Notably, 5 of the 25 cases were associated with a prior history of chemotherapy treatment for cancer. This is in keeping with prior reports, based mainly on small case series, with overall 11% of TFE3 -rearranged PEComas being diagnosed postchemotherapy. The median age of our cohort was 38 years. Most neoplasms demonstrated characteristic features such as nested architecture, epithelioid cytology, HMB45 positive, and muscle marker negative immunophenotype. SFPQ was the most common TFE3 fusion partner present in half of the cases, followed by ASPSCR1 and NONO genes. Four of 7 cases in our cohort with meaningful follow-up presented with or developed systemic metastasis, while over half of the reported cases either recurred locally, metastasized, or caused patient death. Follow-up for the remaining cases was limited (median 18.5 months), suggesting that the prognosis may be worse. Size, mitotic activity, and necrosis were correlated with aggressive behavior. There is little evidence that treatment with MTOR inhibitors, which are beneficial against TSC -mutated PEComas, is effective against TFE3 -rearranged PEComas: only one of 6 reported cases demonstrated disease stabilization. As co-expression of melanocytic and muscle markers, a hallmark of conventional TSC -mutated PEComa is uncommon in the spectrum of TFE3 -rearranged PEComa, an alternative terminology may be more appropriate, such as " TFE3 -rearranged PEComa-like neoplasms," highlighting their distinctive morphologic features and therapeutic implications.
Collapse
Affiliation(s)
- Pedram Argani
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - John M. Gross
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ezra Baraban
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Departments of Urology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Lisa M. Rooper
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Suping Chen
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ming-Tseh Lin
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Christopher Gocke
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Tamara Lotan
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Departments of Urology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Albert J. H. Suurmeijer
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
4
|
Takeiwa T, Ikeda K, Horie K, Inoue S. Role of RNA binding proteins of the Drosophila behavior and human splicing (DBHS) family in health and cancer. RNA Biol 2024; 21:1-17. [PMID: 38551131 PMCID: PMC10984136 DOI: 10.1080/15476286.2024.2332855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
RNA-binding proteins (RBPs) play crucial roles in the functions and homoeostasis of various tissues by regulating multiple events of RNA processing including RNA splicing, intracellular RNA transport, and mRNA translation. The Drosophila behavior and human splicing (DBHS) family proteins including PSF/SFPQ, NONO, and PSPC1 are ubiquitously expressed RBPs that contribute to the physiology of several tissues. In mammals, DBHS proteins have been reported to contribute to neurological diseases and play crucial roles in cancers, such as prostate, breast, and liver cancers, by regulating cancer-specific gene expression. Notably, in recent years, multiple small molecules targeting DBHS family proteins have been developed for application as cancer therapeutics. This review provides a recent overview of the functions of DBHS family in physiology and pathophysiology, and discusses the application of DBHS family proteins as promising diagnostic and therapeutic targets for cancers.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kuniko Horie
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
5
|
Flucke UE, Hiemcke-Jiwa LS, Wesseling P. Unraveling schwannomas. Neuro Oncol 2023; 25:2237-2238. [PMID: 37715980 PMCID: PMC10708923 DOI: 10.1093/neuonc/noad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 09/18/2023] Open
Affiliation(s)
- Uta E Flucke
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura S Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|