1
|
Singh U, Kokkanti RR, Patnaik S. Beyond chemotherapy: Exploring 5-FU resistance and stemness in colorectal cancer. Eur J Pharmacol 2025; 991:177294. [PMID: 39863147 DOI: 10.1016/j.ejphar.2025.177294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, demanding continuous advancements in treatment strategies. This review explores the complexities of targeting colorectal cancer stem cells (CSCs) and the mechanisms contributing to resistance to 5-fluorouracil (5-FU). The efficacy of 5-FU is enhanced by combination therapies such as FOLFOXIRI and targeted treatments like bevacizumab, cetuximab, and panitumumab, particularly in KRAS wild-type tumors, despite associated toxicity. Biomarkers like thymidylate synthase (TYMS), thymidine phosphorylase (TP), and dihydropyrimidine dehydrogenase (DPD) are crucial for predicting 5-FU efficacy and resistance. Targeting CRC-CSCs remains challenging due to their inherent resistance to conventional therapies, marker variability, and the protective influence of the tumor microenvironment which promotes stemness and survival. Personalized treatment strategies are increasingly essential to address CRC's genetic and phenotypic diversity. Advances in immunotherapy, including immune checkpoint inhibitors and cancer vaccines, along with nanomedicine-based therapies, offer promising targeted drug delivery systems that enhance specificity, reduce toxicity, and provide novel approaches for overcoming resistance mechanisms. Integrating these innovative strategies with traditional therapies may enhance the effectiveness of CRC therapy by addressing the underlying causes of 5-FU resistance in CSCs.
Collapse
Affiliation(s)
- Ursheeta Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
2
|
Chambuso R, Meena SS. Single-cell spatial immune profiling for precision immunotherapy in Lynch syndrome. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:3-7. [PMID: 40040872 PMCID: PMC11873620 DOI: 10.1016/j.jncc.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 03/06/2025] Open
Abstract
Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) predisposition syndrome, characterized by a high mutational burden and microsatellite instability-high (MSI-H) tumors. Immunology of LS-associated CRC (LS-CRC) is unique, with significant implications for treatment. Despite well-established knowledge of LS immunology, immunotherapy dose and treatment response can vary significantly based on local tumor immunity and specific germline pathogenic variant of LS genes. This variability necessitates tailored surveillance strategies and new personalised immunotherapy approaches for LS patients. LS-CRC often benefits from immunotherapy due to the distinct tumor microenvironment (TME) and the variety of tumor infiltrating lymphocytes (TILs). This perspective discusses a novel approach of analysing spatial TILs at a single-cell level using tumor whole slide images (WSIs) that accounts for the distinct TME of LS-CRC. By emphasizing the necessity of personalized medicine in hereditary cancer syndromes, the future research and clinical practices that enhance patient outcomes through precision oncology is inspired.
Collapse
Affiliation(s)
- Ramadhani Chambuso
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Stephene S Meena
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
3
|
Hrckulak D, Onhajzer J, Krausova M, Stastna M, Kriz V, Janeckova L, Korinek V. Development of a new flippase-dependent mouse model for red fluorescence-based isolation of KRAS G12D oncogene-expressing tumor cells. Transgenic Res 2025; 34:9. [PMID: 39786607 PMCID: PMC11717838 DOI: 10.1007/s11248-024-00429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
Proto-oncogene KRAS, GTPase (KRAS) is one of the most intensively studied oncogenes in cancer research. Although several mouse models allow for regulated expression of mutant KRAS, selective isolation and analysis of transforming or tumor cells that produce the KRAS oncogene remains a challenge. In our study, we present a knock-in model of oncogenic variant KRASG12D that enables the "activation" of KRASG12D expression together with production of red fluorescent protein tdTomato. Both proteins are expressed from the endogenous Kras locus after recombination of a transcriptional stop box in the genomic DNA by the enzyme flippase (Flp). We have demonstrated the functionality of the allele termed RedRas (abbreviated KrasRR) under in vitro conditions with mouse embryonic fibroblasts and organoids and in vivo in the lung and colon epithelium. After recombination with adenoviral vectors carrying the Flp gene, the KrasRR allele itself triggers formation of lung adenomas. In the colon epithelium, it causes the progression of adenomas that are triggered by the loss of tumor suppressor adenomatous polyposis coli (APC). Importantly, cells in which recombination has successfully occurred can be visualized and isolated using the fluorescence emitted by tdTomato. Furthermore, we show that KRASG12D production enables intestinal organoid growth independent of epidermal growth factor (EGF) signaling and that the KRASG12D function is effectively suppressed by specific inhibitor MRTX1133.
Collapse
Grants
- 20-31322S Grantová Agentura České Republiky
- 20-31322S Grantová Agentura České Republiky
- 20-31322S Grantová Agentura České Republiky
- 20-31322S Grantová Agentura České Republiky
- 20-31322S Grantová Agentura České Republiky
- 20-31322S Grantová Agentura České Republiky
- 20-31322S Grantová Agentura České Republiky
- EXCELES, LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy
- EXCELES, LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy
- EXCELES, LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy
- EXCELES, LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy
- EXCELES, LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy
- EXCELES, LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy
Collapse
Affiliation(s)
- Dusan Hrckulak
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Jakub Onhajzer
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Michaela Krausova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
- Institute of Pathology 1St Faculty of Medicine Charles University and General University Hospital, Prague, Czech Republic
| | - Monika Stastna
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Vitezslav Kriz
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Lucie Janeckova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
4
|
Bevanda D, Racetin A, Kelam N, Filipović N, Bevanda M, Rudan Dimlić M, Budimir J, Bevanda Glibo D, Bevanda I, Ramljak D, Vukojević K. Expression Pattern of AIFM3, VGLL4, and WNT4 in Patients with Different Stages of Colorectal Cancer. Cancers (Basel) 2025; 17:166. [PMID: 39857952 PMCID: PMC11763972 DOI: 10.3390/cancers17020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Colorectal cancer (CRC) remains a significant health burden, and its delayed diagnosis at advanced stages leads to poor survival outcome. Detection of known and novel prognostic markers is essential. In this study, the status of likely prognostic markers-the apoptotic inducing factor (AIFM3), vestigial-like family member 4 (VGLL4), and WNT4-was evaluated. METHODS AIFM3, VGLL4, and WNT4 expression in CRC tissues across different stages (Dukes A-D) were analyzed using histological immunofluorescence staining and RNA sequencing analyses. RESULTS In advanced CRC stages, progressive loss of normal crypt architecture, reduction of goblet cells, and necrotic debris were detected along with differential expression patterns of AIFM3, VGLL4, and WNT4. AIFM3 exhibited high reactivity in the lamina propria of healthy tissue and Dukes A, but this was diminished in advanced CRC stages. VGLL4 expression, initially confined to the lamina propria, increased significantly in the epithelium of Dukes B and C, with a cytoplasmic localization pattern. WNT4 expression was elevated in the CRC epithelium across all stages, contrasting with a significant reduction in lamina propria reactivity. RNA sequencing corroborated these findings, showing significant downregulation of AIFM3 and WNT4 and upregulation of VGLL4 in CRC tissues compared to controls. Expression of AIFM3 and WNT4 showed no correlation with survival outcome, while low VGLL4 expression was correlated with better survival outcome. CONCLUSIONS The results suggest distinct roles for AIFM3, VGLL4, and WNT4 in CRC progression, highlighting only VGLL4 as a potential prognostic marker. Further evaluation of VGLL4 and its specific role in CRC progression remains to be elucidated.
Collapse
Affiliation(s)
- Danijel Bevanda
- Department of Gastroenterology, School of Medicine, University of Mostar, University Hospital Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina; (D.B.); (D.B.G.)
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, Laboratory for Early Human Development, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (A.R.); (N.K.); (N.F.)
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, Laboratory for Early Human Development, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (A.R.); (N.K.); (N.F.)
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, Laboratory for Early Human Development, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (A.R.); (N.K.); (N.F.)
| | - Mateo Bevanda
- Department of Surgery, School of Medicine, University of Mostar, University Hospital Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
| | - Marina Rudan Dimlić
- Mediterranean Institute for Life Sciences (MedILS), University of Split, Meštrovićevo Šetalište 45, 21000 Split, Croatia; (M.R.D.); (J.B.); (D.R.)
| | - Jelena Budimir
- Mediterranean Institute for Life Sciences (MedILS), University of Split, Meštrovićevo Šetalište 45, 21000 Split, Croatia; (M.R.D.); (J.B.); (D.R.)
| | - Daniela Bevanda Glibo
- Department of Gastroenterology, School of Medicine, University of Mostar, University Hospital Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina; (D.B.); (D.B.G.)
| | - Ivana Bevanda
- Department of Endocrinology, School of Medicine, University of Mostar, University Hospital Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
| | - Danica Ramljak
- Mediterranean Institute for Life Sciences (MedILS), University of Split, Meštrovićevo Šetalište 45, 21000 Split, Croatia; (M.R.D.); (J.B.); (D.R.)
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, Laboratory for Early Human Development, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (A.R.); (N.K.); (N.F.)
- Mediterranean Institute for Life Sciences (MedILS), University of Split, Meštrovićevo Šetalište 45, 21000 Split, Croatia; (M.R.D.); (J.B.); (D.R.)
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| |
Collapse
|
5
|
Carreras J, Roncador G, Hamoudi R. Ulcerative Colitis, LAIR1 and TOX2 Expression, and Colorectal Cancer Deep Learning Image Classification Using Convolutional Neural Networks. Cancers (Basel) 2024; 16:4230. [PMID: 39766129 PMCID: PMC11674594 DOI: 10.3390/cancers16244230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Ulcerative colitis is a chronic inflammatory bowel disease of the colon mucosa associated with a higher risk of colorectal cancer. OBJECTIVE This study classified hematoxylin and eosin (H&E) histological images of ulcerative colitis, normal colon, and colorectal cancer using artificial intelligence (deep learning). METHODS A convolutional neural network (CNN) was designed and trained to classify the three types of diagnosis, including 35 cases of ulcerative colitis (n = 9281 patches), 21 colon control (n = 12,246), and 18 colorectal cancer (n = 63,725). The data were partitioned into training (70%) and validation sets (10%) for training the network, and a test set (20%) to test the performance on the new data. The CNNs included transfer learning from ResNet-18, and a comparison with other CNN models was performed. Explainable artificial intelligence for computer vision was used with the Grad-CAM technique, and additional LAIR1 and TOX2 immunohistochemistry was performed in ulcerative colitis to analyze the immune microenvironment. RESULTS Conventional clinicopathological analysis showed that steroid-requiring ulcerative colitis was characterized by higher endoscopic Baron and histologic Geboes scores and LAIR1 expression in the lamina propria, but lower TOX2 expression in isolated lymphoid follicles (all p values < 0.05) compared to mesalazine-responsive ulcerative colitis. The CNN classification accuracy was 99.1% for ulcerative colitis, 99.8% for colorectal cancer, and 99.1% for colon control. The Grad-CAM heatmap confirmed which regions of the images were the most important. The CNNs also differentiated between steroid-requiring and mesalazine-responsive ulcerative colitis based on H&E, LAIR1, and TOX2 staining. Additional classification of 10 new cases of colorectal cancer (adenocarcinoma) were correctly classified. CONCLUSIONS CNNs are especially suited for image classification in conditions such as ulcerative colitis and colorectal cancer; LAIR1 and TOX2 are relevant immuno-oncology markers in ulcerative colitis.
Collapse
Affiliation(s)
- Joaquim Carreras
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain;
| | - Rifat Hamoudi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Biomedically Informed Artificial Intelligence Laboratory (BIMAI-Lab), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Center of Excellence for Precision Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PF, UK
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
6
|
Svec J, Onhajzer J, Korinek V. Origin, development and therapy of colorectal cancer from the perspective of a biologist and an oncologist. Crit Rev Oncol Hematol 2024; 204:104544. [PMID: 39490796 DOI: 10.1016/j.critrevonc.2024.104544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
The intestinal epithelium, a rapidly renewing tissue, is characterized by a continuous cell turnover that occurs through a well-coordinated process of cell proliferation and differentiation. This dynamic is crucial for the long-term function of the gastrointestinal tract. Disruption of this process can lead to colorectal carcinoma, a common malignancy worldwide. The first part of the review focuses on the cellular composition of the epithelium and the molecular mechanisms that control its functions, and describes the pathways that lead to epithelial transformation and tumor progression. This forms the basis for understanding the development and progression of advanced colorectal cancer. The second part deals with current therapeutic approaches and presents the latest treatment options, ongoing clinical trials and new drugs. In addition, the biological and medical perspectives of the adverse effects of therapies and models of regeneration of the intestinal epithelium are highlighted and, finally, future treatment options are discussed.
Collapse
Affiliation(s)
- Jiri Svec
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Oncology, Third Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jakub Onhajzer
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
7
|
Ždralević M, Radović A, Raonić J, Popovic N, Klisic A, Vučković L. Advances in microRNAs as Emerging Biomarkers for Colorectal Cancer Early Detection and Diagnosis. Int J Mol Sci 2024; 25:11060. [PMID: 39456841 PMCID: PMC11507567 DOI: 10.3390/ijms252011060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Colorectal cancer (CRC) remains the second most common cause of cancer-related mortality worldwide, necessitating advancements in early detection and innovative treatment strategies. MicroRNAs (miRNAs), small non-coding RNAs involved in gene regulation, have emerged as crucial players in the pathogenesis of CRC. This review synthesizes the latest findings on miRNA deregulated in precancerous lesions and in CRC. By examining the deregulation patterns of miRNAs across different stages of CRC development, this review highlights their potential as diagnostic tools. We specifically analyse the roles and diagnostic relevance of four miRNAs-miR-15b, miR-21, miR-31, and miR-146a-that consistently exhibit altered expression in CRC. The current knowledge of their role in key oncogenic pathways, drug resistance, and clinical relevance is discussed. Despite challenges posed by the heterogeneity of the research findings on miRNA deregulation and their role in CRC, integrating miRNA diagnostics into current screening methods holds promise for enhancing personalized medicine approaches. This review emphasizes the transformative potential of miRNAs in CRC diagnosis, paving the way for improved patient outcomes and novel therapeutic paradigms.
Collapse
Affiliation(s)
- Maša Ždralević
- Institute for Advanced Studies, University of Montenegro, Cetinjska 2, 81000 Podgorica, Montenegro
| | - Andrijana Radović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
| | - Janja Raonić
- Center for Pathology, Clinical Center of Montenegro, Ljubljanska bb, 81000 Podgorica, Montenegro;
| | - Natasa Popovic
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| | - Ljiljana Vučković
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
- Center for Pathology, Clinical Center of Montenegro, Ljubljanska bb, 81000 Podgorica, Montenegro;
| |
Collapse
|
8
|
González A, Fullaondo A, Odriozola A. Host genetics-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:83-122. [PMID: 39396843 DOI: 10.1016/bs.adgen.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) represents the second leading cause of cancer incidence and the third leading cause of cancer deaths worldwide. There is currently a lack of understanding of the onset of CRC, hindering the development of effective prevention strategies, early detection methods and the selection of appropriate therapies. This article outlines the key aspects of host genetics currently known about the origin and development of CRC. The organisation of the colonic crypts is described. It discusses how the transformation of a normal cell to a cancer cell occurs and how that malignant cell can populate an entire colonic crypt, promoting colorectal carcinogenesis. Current knowledge about the cell of origin of CRC is discussed, and the two morphological pathways that can give rise to CRC, the classical and alternative pathways, are presented. Due to the molecular heterogeneity of CRC, each of these pathways has been associated with different molecular mechanisms, including chromosomal and microsatellite genetic instability, as well as the CpG island methylator phenotype. Finally, different CRC classification systems are described based on genetic, epigenetic and transcriptomic alterations, allowing diagnosis and treatment personalisation.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
9
|
Badiola I. What we need in colorectal cancer research, and why? ADVANCES IN GENETICS 2024; 112:1-29. [PMID: 39396835 DOI: 10.1016/bs.adgen.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Cancer is a complex disease that includes tumour and healthy cells surrounding and infiltrating the tumour. During cancer development, tumour cells release many extracellular signals in an autocrine and paracrine way, producing deep phenotypic changes in the surrounding cells, becoming protumoral actors. The entire entity composed of tumour cells and the recruited elements is known as the tumour microenvironment. Immune cells, fibroblasts and endothelial cells, mainly with the extracellular matrix, are the most common elements in different cancer types and coexist in a complex balance of protumoral and antitumoral factors. In this context, the spatial disposition of the tumour microenvironment elements is crucial to knowing the role of each one in the disease development, and the multiplex spatial technology is the way to map the tumours. The combination of spatial study with transcriptomic, proteomic, and epigenomic studies is the most modern tool in the hands of cancer researchers, and it has opened a new era in the study of cancer biology.
Collapse
Affiliation(s)
- Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
10
|
Brandaleone L, Dal Buono A, Gabbiadini R, Marcozzi G, Polverini D, Carvello M, Spinelli A, Hassan C, Repici A, Bezzio C, Armuzzi A. Hereditary Colorectal Cancer Syndromes and Inflammatory Bowel Diseases: Risk Management and Surveillance Strategies. Cancers (Basel) 2024; 16:2967. [PMID: 39272825 PMCID: PMC11394661 DOI: 10.3390/cancers16172967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Background and aims: Hereditary colorectal cancer syndromes (HCCS), including familial adenomatous polyposis (FAP) and Lynch syndrome (LS), are the two most important high-risk conditions for colorectal cancer (CRC). Inflammatory bowel disease (IBD) increases the risk by two to six times compared with that in the general population. The intersection of these two conditions has rarely been documented in literature. We aimed to summarize the prevalence, pathogenesis, and current evidence-based management of IBD and HCCS and the underlying molecular mechanisms of accelerated carcinogenesis due to combined inflammation and genetic predisposition. Methods: PubMed and Scopus were searched until June 2024 to identify relevant studies investigating the epidemiology, pathogenesis, and management of IBD and coexisting hereditary CRC syndromes. Results: Co-occurrence of IBD and hereditary CRC syndromes is exceptionally uncommon. Individuals with LS and IBD tend to develop CRC at a younger age than those without IBD, with patients with ulcerative colitis facing particularly elevated risks. The interaction between mismatch deficiency and chronic inflammation requires further investigation.
Collapse
Affiliation(s)
- Luca Brandaleone
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Arianna Dal Buono
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Roberto Gabbiadini
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Giacomo Marcozzi
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Davide Polverini
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Michele Carvello
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- Colon and Rectal Surgery Division, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- Colon and Rectal Surgery Division, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- Endoscopy Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- Endoscopy Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Cristina Bezzio
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| |
Collapse
|
11
|
Carreras J. Celiac Disease Deep Learning Image Classification Using Convolutional Neural Networks. J Imaging 2024; 10:200. [PMID: 39194989 DOI: 10.3390/jimaging10080200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Celiac disease (CD) is a gluten-sensitive immune-mediated enteropathy. This proof-of-concept study used a convolutional neural network (CNN) to classify hematoxylin and eosin (H&E) CD histological images, normal small intestine control, and non-specified duodenal inflammation (7294, 11,642, and 5966 images, respectively). The trained network classified CD with high performance (accuracy 99.7%, precision 99.6%, recall 99.3%, F1-score 99.5%, and specificity 99.8%). Interestingly, when the same network (already trained for the 3 class images), analyzed duodenal adenocarcinoma (3723 images), the new images were classified as duodenal inflammation in 63.65%, small intestine control in 34.73%, and CD in 1.61% of the cases; and when the network was retrained using the 4 histological subtypes, the performance was above 99% for CD and 97% for adenocarcinoma. Finally, the model added 13,043 images of Crohn's disease to include other inflammatory bowel diseases; a comparison between different CNN architectures was performed, and the gradient-weighted class activation mapping (Grad-CAM) technique was used to understand why the deep learning network made its classification decisions. In conclusion, the CNN-based deep neural system classified 5 diagnoses with high performance. Narrow artificial intelligence (AI) is designed to perform tasks that typically require human intelligence, but it operates within limited constraints and is task-specific.
Collapse
Affiliation(s)
- Joaquim Carreras
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
12
|
Reitsam NG, Grosser B, Steiner DF, Grozdanov V, Wulczyn E, L'Imperio V, Plass M, Müller H, Zatloukal K, Muti HS, Kather JN, Märkl B. Converging deep learning and human-observed tumor-adipocyte interaction as a biomarker in colorectal cancer. COMMUNICATIONS MEDICINE 2024; 4:163. [PMID: 39147895 PMCID: PMC11327259 DOI: 10.1038/s43856-024-00589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Tumor-Adipose-Feature (TAF) as well as SARIFA (Stroma AReactive Invasion Front Areas) are two histologic features/biomarkers linking tumor-associated adipocytes to poor outcomes in colorectal cancer (CRC) patients. Whereas TAF was identified by deep learning (DL) algorithms, SARIFA was established as a human-observed histopathologic biomarker. METHODS To study the overlap between TAF and SARIFA, we performed a systematic pathological review of TAF based on all published image tiles. Additionally, we analyzed the presence/absence of TAF in SARIFA-negative CRC cases to elucidate the biologic and prognostic role of a direct tumor-adipocyte contact. TCGA-CRC gene expression data is investigated to assess the association of FABP4 (fatty-acid binding protein 4) and CD36 (fatty-acid translocase) with both TAF and CRC prognosis. RESULTS By investigating the TAF/SARIFA overlap, we show that many TAF patches correspond to the recently described SARIFA-phenomenon. Even though there is a pronounced morphological and biological overlap, there are differences in the concepts. The presence of TAF in SARIFA-negative CRCs is not associated with poor outcomes in this cohort, potentially highlighting the importance of a direct tumor-adipocyte interaction. Upregulation of FABP4 and CD36 gene expression seem both linked to a poor prognosis in CRC. CONCLUSIONS By proving the substantial overlap between human-observed SARIFA and DL-based TAF as morphologic biomarkers, we demonstrate that linking DL-based image features to independently developed histopathologic biomarkers is a promising tool in the identification of clinically and biologically meaningful biomarkers. Adipocyte-tumor-cell interactions seem to be crucial in CRC, which should be considered as biomarkers for further investigations.
Collapse
Affiliation(s)
- Nic G Reitsam
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany.
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany.
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.
| | - Bianca Grosser
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | | | | | - Ellery Wulczyn
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
| | - Vincenzo L'Imperio
- Department of Medicine and Surgery, Pathology, University of Milano-Bicocca, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Markus Plass
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Graz, Austria
| | - Heimo Müller
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Graz, Austria
| | - Kurt Zatloukal
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Graz, Austria
| | - Hannah S Muti
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
- Department of Medicine I, University Hospital Dresden, Dresden, Germany
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Bruno Märkl
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| |
Collapse
|
13
|
Hu Q, Chen XP, Tang ZJ, Zhu XY, Liu C. Therapeutic effects of Buzhong Yiqi decoction in patients with spleen and stomach qi deficiency after routine surgery and chemotherapy for colorectal cancer. World J Gastrointest Surg 2024; 16:2183-2193. [PMID: 39087096 PMCID: PMC11287697 DOI: 10.4240/wjgs.v16.i7.2183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND According to the theory of traditional Chinese medicine (TCM), the spleen and stomach are the basis of acquired nature and the source of qi and blood biochemistry. After surgery and chemotherapy, patients with colorectal cancer often develop spleen and stomach qi deficiency syndrome, leading to decreased immune function. Buzhong Yiqi decoction, a classic TCM prescription, has the effect of tonifying middle-jiao and invigorating qi, boosting Yang, and suppressing immune-related inflammation. Moreover, it is widely used in the treatment of spleen and stomach qi deficiency syndrome.
AIM To investigate the effect of Buzhong Yiqi decoction on spleen and stomach qi deficiency in patients with colorectal cancer.
METHODS One hundred patients with colorectal cancer who underwent preoperative chemotherapy and laparoscopy at The First TCM Hospital of Changde from January 2022 to October 2023 were retrospectively analyzed. The patients were divided equally into control and observation groups. Both groups underwent conventional rehabilitation surgery, and the observation group was supplemented with Buzhong Yiqi decoction. SPSS 26.0 was used for statistical analyses. The χ2 test was used for univariate analysis; independent sample t-tests were used in all cases.
RESULTS No significant differences were observed preoperatively in the general characteristics of the two groups. Fourteen days post-surgery, the abdominal distension, emaciation, loose stool, loss of appetite, and vomiting scores were significantly lower in the observation group than in the control group (P < 0.05). Immune function and interleukin (IL)-10 levels in the observation group were significantly higher than those of the control group, whereas IL-6, tumor necrosis factor-α, and C-reactive protein levels, tumor biological indexes, and adverse reactions in the observation group were significantly lower than those of the control group (P < 0.05). One month after surgery, the patients’ quality of life in the observation group was significantly higher than that of the patients in the control group (P < 0.05).
CONCLUSION Buzhong Yiqi decoction can regulate inflammatory responses and metabolic processes by enhancing immune function, thereby promoting overall immune nutrition and restoring the body’s balance.
Collapse
Affiliation(s)
- Qi Hu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Xiao-Pin Chen
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhi-Jun Tang
- Department of Anorectal Surgery, The First Traditional Chinese Medicine Hospital of Changde, Changde 415000, Hunan Province, China
| | - Xue-Yuan Zhu
- Intensive Care Unit, The First Traditional Chinese Medicine Hospital of Changde, Changde 415000, Hunan Province, China
| | - Chun Liu
- Department of Anorectal Surgery, The First Traditional Chinese Medicine Hospital of Changde, Changde 415000, Hunan Province, China
| |
Collapse
|
14
|
Yang X, Liu J, Wang S, Al-Ameer WHA, Ji J, Cao J, Dhaen HMS, Lin Y, Zhou Y, Zheng C. Genome wide-scale CRISPR-Cas9 knockout screens identify a fitness score for optimized risk stratification in colorectal cancer. J Transl Med 2024; 22:554. [PMID: 38858785 PMCID: PMC11163718 DOI: 10.1186/s12967-024-05323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND The molecular complexity of colorectal cancer poses a significant challenge to the clinical implementation of accurate risk stratification. There is still an urgent need to find better biomarkers to enhance established risk stratification and guide risk-adapted treatment decisions. METHODS we systematically analyzed cancer dependencies of 17 colorectal cancer cells and 513 other cancer cells based on genome-scale CRISPR-Cas9 knockout screens to identify colorectal cancer-specific fitness genes. A regression model was built using colorectal cancer-specific fitness genes, which was validated in other three independent cohorts. 30 published gene expression signatures were also retrieved. FINDINGS We defined a total of 1828 genes that were colorectal cancer-specific fitness genes and identified a 22 colorectal cancer-specific fitness gene (CFG22) score. A high CFG22 score represented unfavorable recurrence and mortality rates, which was validated in three independent cohorts. Combined with age, and TNM stage, the CFG22 model can provide guidance for the prognosis of colorectal cancer patients. Analysis of genomic abnormalities and infiltrating immune cells in the CFG22 risk stratification revealed molecular pathological difference between the subgroups. Besides, drug analysis found that CFG22 high patients were more sensitive to clofibrate. INTERPRETATION The CFG22 model provided a powerful auxiliary prediction tool for identifying colorectal cancer patients with high recurrence risk and poor prognosis, optimizing precise treatment and improving clinical efficacy.
Collapse
Affiliation(s)
- Xiangchou Yang
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jieyu Liu
- Department of coloproctology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuaibin Wang
- Department of Urology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wail Hussein Ahmed Al-Ameer
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingting Ji
- Department of Infectious Disease, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Cao
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hassan Mansour S Dhaen
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Lin
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yangyang Zhou
- Department of oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Chenguo Zheng
- Department of coloproctology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|