1
|
Bakoyiannis I, Ducourneau EG, Parkes SL, Ferreira G. Pathway specific interventions reveal the multiple roles of ventral hippocampus projections in cognitive functions. Rev Neurosci 2023; 34:825-838. [PMID: 37192533 DOI: 10.1515/revneuro-2023-0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
Since the 1950s study of Scoville and Milner on the case H.M., the hippocampus has attracted neuroscientists' attention. The hippocampus has been traditionally divided into dorsal and ventral parts, each of which projects to different brain structures and mediates various functions. Despite a predominant interest in its dorsal part in animal models, especially regarding episodic-like and spatial cognition, recent data highlight the role of the ventral hippocampus (vHPC), as the main hippocampal output, in cognitive processes. Here, we review recent studies conducted in rodents that have used advanced in vivo functional techniques to specifically monitor and manipulate vHPC efferent pathways and delineate the roles of these specific projections in learning and memory processes. Results highlight that vHPC projections to basal amygdala are implicated in emotional memory, to nucleus accumbens in social memory and instrumental actions and to prefrontal cortex in all the above as well as in object-based memory. Some of these hippocampal projections also modulate feeding and anxiety-like behaviours providing further evidence that the "one pathway-one function" view is outdated and future directions are proposed to better understand the role of hippocampal pathways and shed further light on its connectivity and function.
Collapse
Affiliation(s)
- Ioannis Bakoyiannis
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077 Bordeaux, France
| | - Eva-Gunnel Ducourneau
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077 Bordeaux, France
| | - Shauna L Parkes
- University of Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Guillaume Ferreira
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077 Bordeaux, France
| |
Collapse
|
2
|
Rampon M, Carponcy J, Missaire M, Bouet R, Parmentier R, Comte JC, Malleret G, Salin PA. Synapse-Specific Modulation of Synaptic Responses by Brain States in Hippocampal Pathways. J Neurosci 2023; 43:1191-1210. [PMID: 36631268 PMCID: PMC9962785 DOI: 10.1523/jneurosci.0772-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Synaptic changes play a major role in memory processes. Modulation of synaptic responses by brain states remains, however, poorly understood in hippocampal networks, even in basal conditions. We recorded evoked synaptic responses at five hippocampal pathways in freely moving male rats. We showed that, at the perforant path to dentate gyrus (PP-DG) synapse, responses increase during wakefulness compared with sleep. At the Schaffer collaterals to CA1 (SC-CA1) synapse, responses increase during non-REM sleep (NREM) compared with the other states. During REM sleep (REM), responses decreased at the PP-DG and SC-CA1 synapses compared with NREM, while they increased at the fornix to nucleus accumbens synapse (Fx-NAc) during REM compared with the other states. In contrast, responses at the fornix to medial PFC synapse (Fx-PFC) and at the fornix to amygdala synapse (Fx-Amy) were weakly modulated by vigilance states. Extended sleep periods led to synaptic changes at PP-DG and Fx-Amy synapses but not at the other synapses. Synaptic responses were also linked to local oscillations and were highly correlated between Fx-PFC and Fx-NAc but not between Fx-Amy and these synapses. These results reveal synapse-specific modulations that may contribute to memory consolidation during the sleep-wake cycle.SIGNIFICANCE STATEMENT Surprisingly, the cortical network dynamics remains poorly known at the synaptic level. We tested the hypothesis that brain states would modulate synaptic changes in the same way at different cortical connections. To tackle this issue, we implemented an approach to explore the synaptic behavior of five connections upstream and downstream the rat hippocampus. Our study reveals that synaptic responses are modulated in a highly synapse-specific manner by wakefulness and sleep states as well as by local oscillations at these connections. Moreover, we found rapid synaptic changes during wake and sleep transitions as well as synaptic down and upregulations after extended periods of sleep. These synaptic changes are likely related to the mechanisms of sleep-dependent memory consolidation.
Collapse
Affiliation(s)
- Manon Rampon
- Forgetting processes and cortical dynamics' team, Centre de Recherche en Neurosciences de Lyon, University Claude Bernard Lyon 1, Bron, F-69500, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
| | - Julien Carponcy
- Forgetting processes and cortical dynamics' team, Centre de Recherche en Neurosciences de Lyon, University Claude Bernard Lyon 1, Bron, F-69500, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, United Kingdom
| | - Mégane Missaire
- Forgetting processes and cortical dynamics' team, Centre de Recherche en Neurosciences de Lyon, University Claude Bernard Lyon 1, Bron, F-69500, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
| | - Romain Bouet
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
| | - Regis Parmentier
- Forgetting processes and cortical dynamics' team, Centre de Recherche en Neurosciences de Lyon, University Claude Bernard Lyon 1, Bron, F-69500, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
| | - Jean-Christophe Comte
- Forgetting processes and cortical dynamics' team, Centre de Recherche en Neurosciences de Lyon, University Claude Bernard Lyon 1, Bron, F-69500, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
| | - Gael Malleret
- Forgetting processes and cortical dynamics' team, Centre de Recherche en Neurosciences de Lyon, University Claude Bernard Lyon 1, Bron, F-69500, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
| | - Paul A Salin
- Forgetting processes and cortical dynamics' team, Centre de Recherche en Neurosciences de Lyon, University Claude Bernard Lyon 1, Bron, F-69500, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
| |
Collapse
|
3
|
Brault V, Nguyen TL, Flores-Gutiérrez J, Iacono G, Birling MC, Lalanne V, Meziane H, Manousopoulou A, Pavlovic G, Lindner L, Selloum M, Sorg T, Yu E, Garbis SD, Hérault Y. Dyrk1a gene dosage in glutamatergic neurons has key effects in cognitive deficits observed in mouse models of MRD7 and Down syndrome. PLoS Genet 2021; 17:e1009777. [PMID: 34587162 PMCID: PMC8480849 DOI: 10.1371/journal.pgen.1009777] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/16/2021] [Indexed: 12/03/2022] Open
Abstract
Perturbation of the excitation/inhibition (E/I) balance leads to neurodevelopmental diseases including to autism spectrum disorders, intellectual disability, and epilepsy. Loss-of-function mutations in the DYRK1A gene, located on human chromosome 21 (Hsa21,) lead to an intellectual disability syndrome associated with microcephaly, epilepsy, and autistic troubles. Overexpression of DYRK1A, on the other hand, has been linked with learning and memory defects observed in people with Down syndrome (DS). Dyrk1a is expressed in both glutamatergic and GABAergic neurons, but its impact on each neuronal population has not yet been elucidated. Here we investigated the impact of Dyrk1a gene copy number variation in glutamatergic neurons using a conditional knockout allele of Dyrk1a crossed with the Tg(Camk2-Cre)4Gsc transgenic mouse. We explored this genetic modification in homozygotes, heterozygotes and combined with the Dp(16Lipi-Zbtb21)1Yey trisomic mouse model to unravel the consequence of Dyrk1a dosage from 0 to 3, to understand its role in normal physiology, and in MRD7 and DS. Overall, Dyrk1a dosage in postnatal glutamatergic neurons did not impact locomotor activity, working memory or epileptic susceptibility, but revealed that Dyrk1a is involved in long-term explicit memory. Molecular analyses pointed at a deregulation of transcriptional activity through immediate early genes and a role of DYRK1A at the glutamatergic post-synapse by deregulating and interacting with key post-synaptic proteins implicated in mechanism leading to long-term enhanced synaptic plasticity. Altogether, our work gives important information to understand the action of DYRK1A inhibitors and have a better therapeutic approach. The Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A, DYRK1A, drives cognitive alterations with increased dose in Down syndrome (DS) or with reduced dose in DYRK1A-related intellectual disability syndromes (ORPHA:268261; ORPHA:464311) also known as mental retardation, autosomal dominant disease 7 (MRD7; OMIM #614104). Here we report that specific and complete loss of Dyrk1a in glutamatergic neurons induced a range of specific cognitive phenotypes and alter the expression of genes involved in neurotransmission in the hippocampus. We further explored the consequences of Dyrk1a dosage in glutamatergic neurons on the cognitive phenotypes observed respectively in MRD7 and DS mouse models and we found specific roles in long-term explicit memory with no impact on motor activity, short-term working memory, and susceptibility to epilepsy. Then we demonstrated that DYRK1A is a component of the glutamatergic post-synapse and interacts with several component such as NR2B and PSD95. Altogether our work describes a new role of DYRK1A at the glutamatergic synapse that must be considered to understand the consequence of treatment targeting DYRK1A in disease.
Collapse
Affiliation(s)
- Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Thu Lan Nguyen
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Javier Flores-Gutiérrez
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Giovanni Iacono
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Valérie Lalanne
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Antigoni Manousopoulou
- Institute for Life Sciences, University of Southampton, School of Medicine, Southampton, United Kingdom
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Loïc Lindner
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Mohammed Selloum
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
- Genetics, Genomics and Bioinformatics Program, State University of New York At Buffalo, Buffalo, New York, United States of America
| | - Spiros D. Garbis
- Institute for Life Sciences, University of Southampton, School of Medicine, Southampton, United Kingdom
| | - Yann Hérault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
- * E-mail:
| |
Collapse
|
4
|
Kitazawa M, Sutani A, Kaneko‐Ishino T, Ishino F. The role of eutherian-specific RTL1 in the nervous system and its implications for the Kagami-Ogata and Temple syndromes. Genes Cells 2021; 26:165-179. [PMID: 33484574 PMCID: PMC7986171 DOI: 10.1111/gtc.12830] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
RTL1 (also termed paternal expressed 11 (PEG11)) is considered the major imprinted gene responsible for the placental and fetal/neonatal muscle defects that occur in the Kagami-Ogata and Temple syndromes (KOS14 and TS14, respectively). However, it remains elusive whether RTL1 is also involved in their neurological symptoms, such as behavioral and developmental delay/intellectual disability, feeding difficulties, motor delay, and delayed speech. Here, we demonstrate that the mouse RTL1 protein is widely expressed in the central nervous system (CNS), including the limbic system. Importantly, two disease model mice with over- and under-expression of Rtl1 exhibited reduced locomotor activity, increased anxiety, and impaired amygdala-dependent cued fear, demonstrating that Rtl1 also plays an important role in the CNS. These results indicate that the KOS14 and TS14 are neuromuscular as well as neuropsychiatric diseases caused by irregular CNS RTL1 expression, presumably leading to impaired innervation of motor neurons to skeletal muscles as well as malfunction of the hippocampus-amygdala complex. It is of considerable interest that eutherian-specific RTL1 is expressed in mammalian- and eutherian-specific brain structures, that is, the corticospinal tract and corpus callosum, respectively, suggesting that RTL1 might have contributed to the acquisition of both these structures themselves and fine motor skill in eutherian brain evolution.
Collapse
Affiliation(s)
- Moe Kitazawa
- Department of EpigeneticsMedical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Akito Sutani
- Department of EpigeneticsMedical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental University (TMDU)TokyoJapan
| | | | - Fumitoshi Ishino
- Department of EpigeneticsMedical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
5
|
Encoding of contextual fear memory in hippocampal-amygdala circuit. Nat Commun 2020; 11:1382. [PMID: 32170133 PMCID: PMC7069961 DOI: 10.1038/s41467-020-15121-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/15/2020] [Indexed: 01/12/2023] Open
Abstract
In contextual fear conditioning, experimental subjects learn to associate a neutral context with an aversive stimulus and display fear responses to a context that predicts danger. Although the hippocampal–amygdala pathway has been implicated in the retrieval of contextual fear memory, the mechanism by which fear memory is encoded in this circuit has not been investigated. Here, we show that activity in the ventral CA1 (vCA1) hippocampal projections to the basal amygdala (BA), paired with aversive stimuli, contributes to encoding conditioned fear memory. Contextual fear conditioning induced selective strengthening of a subset of vCA1–BA synapses, which was prevented under anisomycin-induced retrograde amnesia. Moreover, a subpopulation of BA neurons receives stronger monosynaptic inputs from context-responding vCA1 neurons, whose activity was required for contextual fear learning and synaptic potentiation in the vCA1–BA pathway. Our study suggests that synaptic strengthening of vCA1 inputs conveying contextual information to a subset of BA neurons contributes to encoding adaptive fear memory for the threat-predictive context. Previous studies implicate the hippocampal–amygdala pathway in contextual fear conditioning, in which animals learn to associate a neutral context with an aversive stimulus and display fear responses to dangerous situations. Here the authors show that selective strengthening of hippocampal–amygdala pathway contributes to encoding adaptive fear memory for threat-predictive context.
Collapse
|
6
|
Kerner-Rossi M, Gulinello M, Walkley S, Dobrenis K. Pathobiology of Christianson syndrome: Linking disrupted endosomal-lysosomal function with intellectual disability and sensory impairments. Neurobiol Learn Mem 2019; 165:106867. [PMID: 29772390 PMCID: PMC6235725 DOI: 10.1016/j.nlm.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 11/18/2022]
Abstract
Christianson syndrome (CS) is a recently described rare neurogenetic disorder presenting early in life with a broad range of neurological symptoms, including severe intellectual disability with nonverbal status, hyperactivity, epilepsy, and progressive ataxia due to cerebellar atrophy. CS is due to loss-of-function mutations in SLC9A6, encoding NHE6, a sodium-hydrogen exchanger involved in the regulation of early endosomal pH. Here we review what is currently known about the neuropathogenesis of CS, based on insights from experimental models, which to date have focused on mechanisms that affect the CNS, specifically the brain. In addition, parental reports of sensory disturbances in their children with CS, including an apparent insensitivity to pain, led us to explore sensory function and related neuropathology in Slc9a6 KO mice. We present new data showing sensory deficits in Slc9a6 KO mice, which had reduced behavioral responses to noxious thermal and mechanical stimuli (Hargreaves and Von Frey assays, respectively) compared to wild type (WT) littermates. Immunohistochemical and ultrastructural analysis of the spinal cord and peripheral nervous system revealed intracellular accumulation of the glycosphingolipid GM2 ganglioside in KO but not WT mice. This cellular storage phenotype was most abundant in neurons of lamina I-II of the dorsal horn, a major relay site in the processing of painful stimuli. Spinal cords of KO mice also exhibited changes in astroglial and microglial populations throughout the gray matter suggestive of a neuroinflammatory process. Our findings establish the Slc9a6 KO mouse as a relevant tool for studying the sensory deficits in CS, and highlight selective vulnerabilities in relevant cell populations that may contribute to this phenotype. How NHE6 loss of function leads to such a multifaceted neurological syndrome is still undefined, and it is likely that NHE6 is involved with many cellular processes critical to normal nervous system development and function. In addition, the sensory issues exhibited by Slc9a6 KO mice, in combination with our neuropathological findings, are consistent with NHE6 loss of function impacting the entire nervous system. Sensory dysfunction in intellectually disabled individuals is challenging to assess and may impair patient safety and quality of life. Further mechanistic studies of the neurological impairments underlying CS and other genetic intellectual disability disorders must also take into account mechanisms affecting broader nervous system function in order to understand the full range of associated disabilities.
Collapse
Affiliation(s)
- Mallory Kerner-Rossi
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Gulinello
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; IDDRC Behavioral Core Facility, Neuroscience Department, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven Walkley
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Kostantin Dobrenis
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
7
|
Dubos A, Meziane H, Iacono G, Curie A, Riet F, Martin C, Loaëc N, Birling MC, Selloum M, Normand E, Pavlovic G, Sorg T, Stunnenberg HG, Chelly J, Humeau Y, Friocourt G, Hérault Y. A new mouse model of ARX dup24 recapitulates the patients' behavioral and fine motor alterations. Hum Mol Genet 2019; 27:2138-2153. [PMID: 29659809 PMCID: PMC5985730 DOI: 10.1093/hmg/ddy122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/26/2018] [Indexed: 01/27/2023] Open
Abstract
The aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans, among which the most frequent, a 24 bp duplication in the polyalanine tract 2 (c.428_451dup24), gives rise to intellectual disability, fine motor defects with or without epilepsy. To understand the functional consequences of this mutation, we generated a partially humanized mouse model carrying the c.428_451dup24 duplication (Arxdup24/0) that we characterized at the behavior, neurological and molecular level. Arxdup24/0 males presented with hyperactivity, enhanced stereotypies and altered contextual fear memory. In addition, Arxdup24/0 males had fine motor defects with alteration of reaching and grasping abilities. Transcriptome analysis of Arxdup24/0 forebrains at E15.5 showed a down-regulation of genes specific to interneurons and an up-regulation of genes normally not expressed in this cell type, suggesting abnormal interneuron development. Accordingly, interneuron migration was altered in the cortex and striatum between E15.5 and P0 with consequences in adults, illustrated by the defect in the inhibitory/excitatory balance in Arxdup24/0 basolateral amygdala. Altogether, we showed that the c.428_451dup24 mutation disrupts Arx function with a direct consequence on interneuron development, leading to hyperactivity and defects in precise motor movement control and associative memory. Interestingly, we highlighted striking similarities between the mouse phenotype and a cohort of 33 male patients with ARX c.428_451dup24, suggesting that this new mutant mouse line is a good model for understanding the pathophysiology and evaluation of treatment.
Collapse
Affiliation(s)
- Aline Dubos
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Hamid Meziane
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Giovanni Iacono
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Aurore Curie
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital Femmes Mères Enfants, Hospices Civils de Lyon, Institut des Sciences Cognitives, CNRS UMR5304, Université Claude Bernard Lyon1, 69675 Bron, France
| | - Fabrice Riet
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Christelle Martin
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Nadège Loaëc
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | | | - Mohammed Selloum
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Elisabeth Normand
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France.,Pole In Vivo, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Guillaume Pavlovic
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Tania Sorg
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Henk G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Yann Humeau
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Gaëlle Friocourt
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | - Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| |
Collapse
|
8
|
Synaptic dysfunction in amygdala in intellectual disorder models. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:392-397. [PMID: 28774568 DOI: 10.1016/j.pnpbp.2017.07.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 11/24/2022]
Abstract
The amygdala is a part of the limbic circuit that has been extensively studied in terms of synaptic connectivity, plasticity and cellular organization since decades (Ehrlich et al., 2009; Ledoux, 2000; Maren, 2001). Amygdala sub-nuclei, including lateral, basolateral and central amygdala appear now as "hubs" providing in parallel and in series neuronal processing enabling the animal to elicit freezing or escaping behavior in response to external threats. In rodents, these behaviors are easily observed and quantified following associative fear conditioning. Thus, studies on amygdala circuit in association with threat/fear behavior became very popular in laboratories and are often used among other behavioral tests to evaluate learning abilities of mouse models for various neuropsychiatric conditions including genetically encoded intellectual disabilities (ID). Yet, more than 100 human X-linked genes - and several hundreds of autosomal genes - have been associated with ID in humans. These mutations introduced in mice can generate social deficits, anxiety dysregulations and fear learning impairments (McNaughton et al., 2008; Houbaert et al., 2013; Jayachandran et al., 2014; Zhang et al., 2015). Noteworthy, a significant proportion of the coded ID gene products are synaptic proteins. It is postulated that the loss of function of these proteins could destabilize neuronal circuits by global changes of the balance between inhibitory and excitatory drives onto neurons. However, whereas amygdala related behavioral deficits are commonly observed in ID models, the role of most of these ID-genes in synaptic function and plasticity in the amygdala are only sparsely studied. We will here discuss some of the concepts that emerged from amygdala-targeted studies examining the role of syndromic and non-syndromic ID genes in fear-related behaviors and/or synaptic function. Along describing these cases, we will discuss how synaptic deficits observed in amygdala circuits could impact memory formation and expression of conditioned fear.
Collapse
|
9
|
Protein Kinase A Deregulation in the Medial Prefrontal Cortex Impairs Working Memory in Murine Oligophrenin-1 Deficiency. J Neurosci 2017; 37:11114-11126. [PMID: 29030432 DOI: 10.1523/jneurosci.0351-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/05/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Classical and systems genetics have identified wide networks of genes associated with cognitive and neurodevelopmental diseases. In parallel to deciphering the role of each of these genes in neuronal or synaptic function, evaluating the response of neuronal and molecular networks to gene loss of function could reveal some pathophysiological mechanisms potentially accessible to nongenetic therapies. Loss of function of the Rho-GAP oligophrenin-1 is associated with cognitive impairments in both human and mouse. Upregulation of both PKA and ROCK has been reported in Ophn1-/y mice, but it remains unclear whether kinase hyperactivity contributes to the behavioral phenotypes. In this study, we thoroughly characterized a prominent perseveration phenotype displayed by Ophn1-deficient mice using a Y-maze spatial working memory (SWM) test. We report that Ophn1 deficiency in the mouse generated severe cognitive impairments, characterized by both a high occurrence of perseverative behaviors and a lack of deliberation during the SWM test. In vivo and in vitro pharmacological experiments suggest that PKA dysregulation in the mPFC underlies cognitive dysfunction in Ophn1-deficient mice, as assessed using a delayed spatial alternation task results. Functionally, mPFC neuronal networks appeared to be affected in a PKA-dependent manner, whereas hippocampal-PFC projections involved in SWM were not affected in Ophn1-/y mice. Thus, we propose that discrete gene mutations in intellectual disability might generate "secondary" pathophysiological mechanisms, which are prone to become pharmacological targets for curative strategies in adult patients.SIGNIFICANCE STATEMENT Here we report that Ophn1 deficiency generates severe impairments in performance at spatial working memory tests, characterized by a high occurrence of perseverative behaviors and a lack of decision making. This cognitive deficit is consecutive to PKA deregulation in the mPFC that prevents Ophn1 KO mice to exploit a correctly acquired rule. Functionally, mPFC neuronal networks appear to be affected in a PKA-dependent manner, whereas behaviorally important hippocampal projections were preserved by the mutation. Thus, we propose that discrete gene mutations in intellectual disability can generate "secondary" pathophysiological mechanisms prone to become pharmacological targets for curative strategies in adults.
Collapse
|
10
|
Brzozowska NI, Smith KL, Zhou C, Waters PM, Cavalcante LM, Abelev SV, Kuligowski M, Clarke DJ, Todd SM, Arnold JC. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice. Brain Behav Immun 2017; 65:251-261. [PMID: 28502879 DOI: 10.1016/j.bbi.2017.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022] Open
Abstract
P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors.
Collapse
Affiliation(s)
- Natalia I Brzozowska
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Kristie L Smith
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Cilla Zhou
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Peter M Waters
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia
| | - Ligia Menezes Cavalcante
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Sarah V Abelev
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Michael Kuligowski
- The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia; Australian Microscopy & Microanalysis Research Facility, University of Sydney, Camperdown, NSW, Australia
| | - David J Clarke
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Stephanie M Todd
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Jonathon C Arnold
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
11
|
The X-Linked Intellectual Disability Protein IL1RAPL1 Regulates Dendrite Complexity. J Neurosci 2017; 37:6606-6627. [PMID: 28576939 DOI: 10.1523/jneurosci.3775-16.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/17/2017] [Accepted: 05/04/2017] [Indexed: 11/21/2022] Open
Abstract
Mutations and deletions of the interleukin-1 receptor accessory protein like 1 (IL1RAPL1) gene, located on the X chromosome, are associated with intellectual disability (ID) and autism spectrum disorder (ASD). IL1RAPL1 protein is located at the postsynaptic compartment of excitatory synapses and plays a role in synapse formation and stabilization. Here, using primary neuronal cultures and Il1rapl1-KO mice, we characterized the role of IL1RAPL1 in regulating dendrite morphology. In Il1rapl1-KO mice we identified an increased number of dendrite branching points in CA1 and CA2 hippocampal neurons associated to hippocampal cognitive impairment. Similarly, induced pluripotent stem cell-derived neurons from a patient carrying a null mutation of the IL1RAPL1 gene had more dendrites. In hippocampal neurons, the overexpression of full-length IL1RAPL1 and mutants lacking part of C-terminal domains leads to simplified neuronal arborization. This effect is abolished when we overexpressed mutants lacking part of N-terminal domains, indicating that the IL1RAPL1 extracellular domain is required for regulating dendrite development. We also demonstrate that PTPδ interaction is not required for this activity, while IL1RAPL1 mediates the activity of IL-1β on dendrite morphology. Our data reveal a novel specific function for IL1RAPL1 in regulating dendrite morphology that can help clarify how changes in IL1RAPL1-regulated pathways can lead to cognitive disorders in humans.SIGNIFICANCE STATEMENT Abnormalities in the architecture of dendrites have been observed in a variety of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Here we show that the X-linked intellectual disability protein interleukin-1 receptor accessory protein like 1 (IL1RAPL1) regulates dendrite morphology of mice hippocampal neurons and induced pluripotent stem cell-derived neurons from a patient carrying a null mutation of IL1RAPL1 gene. We also found that the extracellular domain of IL1RAPL1 is required for this effect, independently of the interaction with PTPδ, but IL1RAPL1 mediates the activity of IL-1β on dendrite morphology. Our data reveal a novel specific function for IL1RAPL1 in regulating dendrite morphology that can help clarify how changes in IL1RAPL1-regulated pathways can lead to cognitive disorders in humans.
Collapse
|
12
|
Synaptic Targeting of Double-Projecting Ventral CA1 Hippocampal Neurons to the Medial Prefrontal Cortex and Basal Amygdala. J Neurosci 2017; 37:4868-4882. [PMID: 28385873 DOI: 10.1523/jneurosci.3579-16.2017] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/29/2017] [Accepted: 04/02/2017] [Indexed: 12/31/2022] Open
Abstract
The acquisition and retrieval of contextual fear memory requires coordinated neural activity in the hippocampus, medial prefrontal cortex (mPFC), and amygdala. The contextual information encoded in the hippocampus is conveyed to the mPFC and amygdala for contextual fear conditioning. Previous studies have suggested that a CA1 neuronal population in the ventral hippocampus (VH) projects to both the mPFC and amygdala and is recruited in context-dependent control of conditioned fear. However, how double-projecting ventral CA1 hippocampal (vCA1) neurons modulate the activity of the mPFC and amygdala at the synaptic level has not been determined previously. Here, we show that the optogenetic silencing of the VH prevented the recall of contextual fear memory in mice, indicating its role in contextual fear expression. In dual retrograde viral tracing and c-Fos immunostaining experiments, we found that a proportion of vCA1 neurons projected to both the mPFC and amygdala and were recruited preferentially during context exposure, suggesting their role in encoding context representations. Moreover, optogenetic stimulation of axon collaterals of double-projecting vCA1 neurons induced monosynaptic excitatory responses in both the mPFC and basal amygdala, indicating that they could convey contextual information through the VH-mPFC and VH-amygdala pathways. The activation of double-projecting vCA1 neurons also induced action potential firings in the mPFC neurons that project to the amygdala, suggesting that they can also activate the VH-mPFC-amygdala pathway. With these synaptic mechanisms, double-projecting vCA1 neurons could induce synchronized neural activity in the mPFC and amygdala and convey contextual information efficiently to the basal amygdala for contextual fear conditioning.SIGNIFICANCE STATEMENT This work demonstrates that ventral CA1 hippocampal (vCA1) neurons projecting to both the medial prefrontal cortex (mPFC) and amygdala are activated preferentially when contextual information is processed in the ventral hippocampus, which is required for contextual fear expression. Our electrophysiological experiments reveal that the activation of double-projecting vCA1 neurons induces excitatory synaptic activity in both the mPFC and amygdala. These results suggest that double-projecting vCA1 neurons could contribute to contextual fear responses by inducing synchronized activity in the mPFC and amygdala and conveying contextual information to the basal amygdala more efficiently than vCA1 neurons projecting to either the mPFC or amygdala alone. These findings provide important insights into the mechanisms of the acquisition and retrieval of contextual fear memory.
Collapse
|
13
|
Kao CY, He Z, Zannas AS, Hahn O, Kühne C, Reichel JM, Binder EB, Wotjak CT, Khaitovich P, Turck CW. Fluoxetine treatment prevents the inflammatory response in a mouse model of posttraumatic stress disorder. J Psychiatr Res 2016; 76:74-83. [PMID: 26897419 DOI: 10.1016/j.jpsychires.2016.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 01/17/2023]
Abstract
Despite intense research efforts the molecular mechanisms affecting stress-vulnerable brain regions in posttraumatic stress disorder (PTSD) remain elusive. In the current study we have applied global transcriptomic profiling to a PTSD mouse model induced by foot shock fear conditioning. We compared the transcriptomes of prelimbic cortex, anterior cingulate cortex (ACC), basolateral amygdala, central nucleus of amygdala, nucleus accumbens (NAc) and CA1 of the dorsal hippocampus between shocked and non-shocked (control) mice, with and without fluoxetine treatment by RNA sequencing. Differentially expressed (DE) genes were identified and clustered for in silico pathway analysis. Findings in relevant brain regions were further validated with immunohistochemistry. DE genes belonging to 11 clusters were identified including increased inflammatory response in ACC in shocked mice. In line with this finding, we noted higher microglial activation in ACC of shocked mice. Chronic fluoxetine treatment initiated in the aftermath of the trauma prevented inflammatory gene expression alterations in ACC and ameliorated PTSD-like symptoms, implying an important role of the immune response in PTSD pathobiology. Our results provide novel insights into molecular mechanisms affected in PTSD and suggest therapeutic applications with anti-inflammatory agents.
Collapse
Affiliation(s)
- Chi-Ya Kao
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Grosshadernerstr. 2, 82152 Planegg-Martinsried, Germany
| | - Zhisong He
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road Shanghai, People's Republic of China
| | - Anthony S Zannas
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 27710 Durham, NC, USA
| | - Oliver Hahn
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road Shanghai, People's Republic of China
| | - Claudia Kühne
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Judith M Reichel
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Elisabeth B Binder
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University Medical School, 30307 Atlanta, GA, USA
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Philipp Khaitovich
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road Shanghai, People's Republic of China.
| | - Christoph W Turck
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| |
Collapse
|
14
|
Bazelot M, Bocchio M, Kasugai Y, Fischer D, Dodson PD, Ferraguti F, Capogna M. Hippocampal Theta Input to the Amygdala Shapes Feedforward Inhibition to Gate Heterosynaptic Plasticity. Neuron 2015; 87:1290-1303. [PMID: 26402610 PMCID: PMC4590554 DOI: 10.1016/j.neuron.2015.08.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/02/2015] [Accepted: 08/07/2015] [Indexed: 12/29/2022]
Abstract
The dynamic interactions between hippocampus and amygdala are critical for emotional memory. Theta synchrony between these structures occurs during fear memory retrieval and may facilitate synaptic plasticity, but the cellular mechanisms are unknown. We report that interneurons of the mouse basal amygdala are activated during theta network activity or optogenetic stimulation of ventral CA1 pyramidal cell axons, whereas principal neurons are inhibited. Interneurons provide feedforward inhibition that transiently hyperpolarizes principal neurons. However, synaptic inhibition attenuates during theta frequency stimulation of ventral CA1 fibers, and this broadens excitatory postsynaptic potentials. These effects are mediated by GABAB receptors and change in the Cl− driving force. Pairing theta frequency stimulation of ventral CA1 fibers with coincident stimuli of the lateral amygdala induces long-term potentiation of lateral-basal amygdala excitatory synapses. Hence, feedforward inhibition, known to enforce temporal fidelity of excitatory inputs, dominates hippocampus-amygdala interactions to gate heterosynaptic plasticity. Video Abstract
Theta stimulation of CA1 ventral hippocampal fibers activates amygdala interneurons Interneurons induce feedforward inhibition that hyperpolarizes principal neurons Theta-evoked inhibition attenuates to broaden excitation on principal neurons Feedforward inhibition gates heterosynaptic plasticity via GABAB receptors
Collapse
Affiliation(s)
- Michaël Bazelot
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Marco Bocchio
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Yu Kasugai
- Department of Pharmacology, Innsbruck Medical University, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - David Fischer
- Department of Pharmacology, Innsbruck Medical University, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - Paul D Dodson
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Francesco Ferraguti
- Department of Pharmacology, Innsbruck Medical University, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - Marco Capogna
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
| |
Collapse
|
15
|
Letzkus J, Wolff S, Lüthi A. Disinhibition, a Circuit Mechanism for Associative Learning and Memory. Neuron 2015; 88:264-76. [PMID: 26494276 DOI: 10.1016/j.neuron.2015.09.024] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Dubos A, Castells-Nobau A, Meziane H, Oortveld MAW, Houbaert X, Iacono G, Martin C, Mittelhaeuser C, Lalanne V, Kramer JM, Bhukel A, Quentin C, Slabbert J, Verstreken P, Sigrist SJ, Messaddeq N, Birling MC, Selloum M, Stunnenberg HG, Humeau Y, Schenck A, Herault Y. Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration. Hum Mol Genet 2015; 24:6736-55. [PMID: 26376863 PMCID: PMC4634377 DOI: 10.1093/hmg/ddv380] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2Camk2aCre/0 mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2Camk2aCre/0 mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2Camk2aCre/0 mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2Camk2aCre/0 mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system.
Collapse
Affiliation(s)
- Aline Dubos
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France, Centre National de la Recherche Scientifique, UMR7104, Illkirch, France, Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France and Université de Strasbourg, Illkirch, France
| | - Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hamid Meziane
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Merel A W Oortveld
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Xander Houbaert
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, Bordeaux, France
| | - Giovanni Iacono
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Christelle Martin
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, Bordeaux, France
| | - Christophe Mittelhaeuser
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Valérie Lalanne
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Jamie M Kramer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Anuradha Bhukel
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Christine Quentin
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany, NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Slabbert
- VIB, Center for the Biology of Disease, Leuven, Belgium, KU Leuven, Center for Human Genetics and Leuven Institute for Neuroscience and Disease (LIND), Leuven, Belgium
| | - Patrik Verstreken
- VIB, Center for the Biology of Disease, Leuven, Belgium, KU Leuven, Center for Human Genetics and Leuven Institute for Neuroscience and Disease (LIND), Leuven, Belgium
| | - Stefan J Sigrist
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany, NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France, Centre National de la Recherche Scientifique, UMR7104, Illkirch, France, Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France and Université de Strasbourg, Illkirch, France
| | - Marie-Christine Birling
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Mohammed Selloum
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Henk G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Yann Humeau
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, Bordeaux, France
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands,
| | - Yann Herault
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France, Centre National de la Recherche Scientifique, UMR7104, Illkirch, France, Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France and Université de Strasbourg, Illkirch, France
| |
Collapse
|
17
|
Muhie S, Gautam A, Meyerhoff J, Chakraborty N, Hammamieh R, Jett M. Brain transcriptome profiles in mouse model simulating features of post-traumatic stress disorder. Mol Brain 2015; 8:14. [PMID: 25888136 PMCID: PMC4359441 DOI: 10.1186/s13041-015-0104-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
Background Social-stress mouse model, based on the resident-intruder paradigm was used to simulate features of human post-traumatic stress disorder (PTSD). The model involved exposure of an intruder (subject) mouse to a resident aggressor mouse followed by exposure to trauma reminders with rest periods. C57BL/6 mice exposed to SJL aggressor mice exhibited behaviors suggested as PTSD-in-mouse phenotypes: intermittent freezing, reduced locomotion, avoidance of the aggressor-associated cue and apparent startled jumping. Brain tissues (amygdala, hippocampus, medial prefrontal cortex, septal region, corpus striatum and ventral striatum) from subject (aggressor exposed: Agg-E) and control C57BL/6 mice were collected at one, 10 and 42 days post aggressor exposure sessions. Transcripts in these brain regions were assayed using Agilent’s mouse genome-wide arrays. Results Pathways and biological processes associated with differentially regulated genes were mainly those thought to be involved in fear-related behavioral responses and neuronal signaling. Expression-based assessments of activation patterns showed increased activations of pathways related to anxiety disorders (hyperactivity and fear responses), impaired cognition, mood disorders, circadian rhythm disruption, and impaired territorial and aggressive behaviors. In amygdala, activations of these pathways were more pronounced at earlier time-points, with some attenuation after longer rest periods. In hippocampus and medial prefrontal cortex, activation patterns were observed at later time points. Signaling pathways associated with PTSD-comorbid conditions, such as diabetes, metabolic disorder, inflammation and cardiac infarction, were also significantly enriched. In contrast, signaling processes related to neurogenesis and synaptic plasticity were inhibited. Conclusions Our data suggests activations of behavioral responses associated with anxiety disorders as well as inhibition of neuronal signaling pathways important for neurogenesis, cognition and extinction of fear memory. These pathways along with comorbid-related signaling pathways indicate the pervasive and multisystem effects of aggressor exposure in mice, potentially mirroring the pathologic conditions of PTSD patients. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0104-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seid Muhie
- Advanced Biomedical Computing Center, Frederick National Lab for Cancer Research, Fort Detrick, MD, 21702, USA. .,Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702-5010, USA.
| | - Aarti Gautam
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702-5010, USA.
| | - James Meyerhoff
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702-5010, USA.
| | - Nabarun Chakraborty
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702-5010, USA.
| | - Rasha Hammamieh
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702-5010, USA.
| | - Marti Jett
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702-5010, USA.
| |
Collapse
|
18
|
Chen S, Zhou H, Guo S, Zhang J, Qu Y, Feng Z, Xu K, Zheng X. Optogenetics Based Rat-Robot Control: Optical Stimulation Encodes "Stop" and "Escape" Commands. Ann Biomed Eng 2015; 43:1851-64. [PMID: 25567506 DOI: 10.1007/s10439-014-1235-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 12/19/2014] [Indexed: 12/15/2022]
Abstract
Electric brain stimulation is frequently used in bio-robot control. However, one possible limitation of electric stimulation is the resultant wide range of influences that may lead to unexpected side-effects. Although there has been prior research done towards optogenetics based brain activation, there has not been much development regarding the comparisons between electric and optical methods of brain activation. In this study, we first encode "Stop" and "Escape" commands by optical stimulation in the dorsal periaqueductal grey (dPAG). The rats behavioral comparisons are then noted down under these two methods. The dPAG neural activity recorded during optical stimulation suggests rate and temporal coding mechanisms in behavioral control. The behavioral comparisons show that rats exhibit anxiety under the "Stop" command conveyed through both optical and electric methods. However, rats are able to recover more quickly from freezing only under optical "Stop" command. Under "Escape" commands, also conveyed through optical means, the rat would move with lessened urgency but the results are more stable. Moreover, c-Fos study shows the optical stimulation activates restricted range in midbrain: the optical stimulation affected only dPAG and its downstreams but electric stimulation activates both the upstream and downstream circuits, in which the glutamatergic neurons are largely occupied and play important role in "Stop" and "Escape" behavior controls. We conclude that optical stimulation is more suited for encoding "Stop" and "Escape" commands for rat-robot control.
Collapse
Affiliation(s)
- SiCong Chen
- Department of Biomedical Engineering, Key Laboratory of Ministry of Education, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yasumura M, Yoshida T, Yamazaki M, Abe M, Natsume R, Kanno K, Uemura T, Takao K, Sakimura K, Kikusui T, Miyakawa T, Mishina M. IL1RAPL1 knockout mice show spine density decrease, learning deficiency, hyperactivity and reduced anxiety-like behaviours. Sci Rep 2014; 4:6613. [PMID: 25312502 PMCID: PMC4196104 DOI: 10.1038/srep06613] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022] Open
Abstract
IL-1 receptor accessory protein-like 1 (IL1RAPL1) is responsible for nonsyndromic intellectual disability and is associated with autism. IL1RAPL1 mediates excitatory synapse formation through trans-synaptic interaction with PTPδ. Here, we showed that the spine density of cortical neurons was significantly reduced in IL1RAPL1 knockout mice. The spatial reference and working memories and remote fear memory were mildly impaired in IL1RAPL1 knockout mice. Furthermore, the behavioural flexibility was slightly reduced in the T-maze test. Interestingly, the performance of IL1RAPL1 knockout mice in the rotarod test was significantly better than that of wild-type mice. Moreover, IL1RAPL1 knockout mice consistently exhibited high locomotor activity in all the tasks examined. In addition, open-space and height anxiety-like behaviours were decreased in IL1RAPL1 knockout mice. These results suggest that IL1RAPL1 ablation resulted in spine density decrease and affected not only learning but also behavioural flexibility, locomotor activity and anxiety.
Collapse
Affiliation(s)
- Misato Yasumura
- 1] Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan [2] Liaison Academy, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tomoyuki Yoshida
- 1] Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan [2] Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan [3] PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Rie Natsume
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Kouta Kanno
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Takeshi Uemura
- 1] Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan [2] Department of Molecular and Cellular Physiology, Shinsyu University School of Medicine, Matsumoto, Nagano, Japan
| | - Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physical Sciences, Okazaki, Aichi, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Takefumi Kikusui
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Tsuyoshi Miyakawa
- 1] Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physical Sciences, Okazaki, Aichi, Japan [2] Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Masayoshi Mishina
- 1] Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan [2] Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|