1
|
An SB, Cho YS, Park SK, Kim YS, Bae YC. Synaptic connectivity of the TRPV1-positive trigeminal afferents in the rat lateral parabrachial nucleus. Front Cell Neurosci 2023; 17:1162874. [PMID: 37066077 PMCID: PMC10098450 DOI: 10.3389/fncel.2023.1162874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Recent studies have shown a direct projection of nociceptive trigeminal afferents into the lateral parabrachial nucleus (LPBN). Information about the synaptic connectivity of these afferents may help understand how orofacial nociception is processed in the LPBN, which is known to be involved primarily in the affective aspect of pain. To address this issue, we investigated the synapses of the transient receptor potential vanilloid 1-positive (TRPV1+) trigeminal afferent terminals in the LPBN by immunostaining and serial section electron microscopy. TRPV1 + afferents arising from the ascending trigeminal tract issued axons and terminals (boutons) in the LPBN. TRPV1+ boutons formed synapses of asymmetric type with dendritic shafts and spines. Almost all (98.3%) TRPV1+ boutons formed synapses with one (82.6%) or two postsynaptic dendrites, suggesting that, at a single bouton level, the orofacial nociceptive information is predominantly transmitted to a single postsynaptic neuron with a small degree of synaptic divergence. A small fraction (14.9%) of the TRPV1+ boutons formed synapses with dendritic spines. None of the TRPV1+ boutons were involved in axoaxonic synapses. Conversely, in the trigeminal caudal nucleus (Vc), TRPV1+ boutons often formed synapses with multiple postsynaptic dendrites and were involved in axoaxonic synapses. Number of dendritic spine and total number of postsynaptic dendrites per TRPV1+ bouton were significantly fewer in the LPBN than Vc. Thus, the synaptic connectivity of the TRPV1+ boutons in the LPBN differed significantly from that in the Vc, suggesting that the TRPV1-mediated orofacial nociception is relayed to the LPBN in a distinctively different manner than in the Vc.
Collapse
|
2
|
Park SK, Cho YS, Kim JH, Kim YS, Bae YC. Ultrastructure of Rat Rostral Nucleus of the Solitary Tract Terminals in the Parabrachial Nucleus and Medullary Reticular Formation. Front Cell Neurosci 2022; 16:858617. [PMID: 35370562 PMCID: PMC8968100 DOI: 10.3389/fncel.2022.858617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neurons in the rostral nucleus of the solitary tract (rNST) receive taste information from the tongue and relay it mainly to the parabrachial nucleus (PBN) and the medullary reticular formation (RF) through two functionally different neural circuits. To help understand how the information from the rNST neurons is transmitted within these brainstem relay nuclei in the taste pathway, we examined the terminals of the rNST neurons in the PBN and RF by use of anterograde horseradish peroxidase (HRP) labeling, postembedding immunogold staining for glutamate, serial section electron microscopy, and quantitative analysis. Most of the anterogradely labeled, glutamate-immunopositive axon terminals made a synaptic contact with only a single postsynaptic element in PBN and RF, suggesting that the sensory information from rNST neurons, at the individual terminal level, is not passed to multiple target cells. Labeled terminals were usually presynaptic to distal dendritic shafts in both target nuclei. However, the frequency of labeled terminals that contacted dendritic spines was significantly higher in the PBN than in the RF, and the frequency of labeled terminals that contacted somata or proximal dendrites was significantly higher in the RF than in the PBN. Labeled terminals receiving axoaxonic synapses, which are a morphological substrate for presynaptic modulation frequently found in primary sensory afferents, were not observed. These findings suggest that the sensory information from rNST neurons is processed in a relatively simple manner in both PBN and RF, but in a distinctly different manner in the PBN as opposed to the RF.
Collapse
|
3
|
Paik SK, Yoshida A, Bae YC. Development of γ-aminobutyric acid-, glycine-, and glutamate-immunopositive boutons on the rat genioglossal motoneurons. Brain Struct Funct 2021; 226:889-900. [PMID: 33475854 DOI: 10.1007/s00429-021-02216-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
Detailed information about the development of excitatory and inhibitory synapses on the genioglossal (GG) motoneuron may help to understand the mechanism of fine control of GG motoneuron firing and the coordinated tongue movement during postnatal development. For this, we investigated the development of γ-aminobutyric acid (GABA)-immunopositive (GABA +), glycine + (Gly +), and glutamate + (Glut +) axon terminals (boutons) on the somata of rat GG motoneurons at a postnatal day 2 (P2), P6 and P18 by retrograde labeling of GG motoneurons with horseradish peroxidase, electron microscopic postembedding immunogold staining with GABA, Gly, and Glut antisera, and quantitative analysis. The number of boutons per GG motoneuron somata and the mean length of bouton apposition, measures of bouton size and synaptic covering percentage, were significantly increased from P2/P6 to P18. The number and fraction of GABA + only boutons of all boutons decreased significantly, whereas those of Gly + only boutons increased significantly from P2/P6 to P18, suggesting developmental switch from GABAergic to glycinergic synaptic transmission. The fraction of mixed GABA +/Gly + boutons of all boutons was the highest among inhibitory bouton types throughout the postnatal development. The fractions of excitatory and inhibitory boutons of all boutons remained unchanged during postnatal development. These findings reveal a distinct developmental pattern of inhibitory synapses on the GG motoneurons different from that on spinal or trigeminal motoneurons, which may have an important role in the regulation of the precise and coordinated movements of the tongue during the maturation of the oral motor system.
Collapse
Affiliation(s)
- Sang Kyoo Paik
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, Korea
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Osaka, 565-0871, Japan
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, Korea.
| |
Collapse
|
4
|
Park SK, Devi AP, Bae JY, Cho YS, Ko HG, Kim DY, Bae YC. Synaptic connectivity of urinary bladder afferents in the rat superficial dorsal horn and spinal parasympathetic nucleus. J Comp Neurol 2019; 527:3002-3013. [PMID: 31168784 DOI: 10.1002/cne.24725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 11/06/2022]
Abstract
That visceral sensory afferents are functionally distinct from their somatic analogues has been known for a long time but the detailed knowledge of their synaptic connections and neurotransmitters at the first relay nucleus in the spinal cord has been limited. To provide information on these topics, we investigated the synapses and neurotransmitters of identified afferents from the urinary bladder to the superficial laminae of the rat spinal dorsal horn (DH) and the spinal parasympathetic nucleus (SPN) by tracing with horseradish peroxidase, quantitative electron microscopical analysis, and immunogold staining for GABA and glycine. In the DH, most bladder afferent boutons formed synapses with 1-2 postsynaptic dendrites, whereas in the SPN, close to a half of them formed synapses with 3-8 postsynaptic dendrites. The number of postsynaptic dendrites and dendritic spines per bladder afferent bouton, both measures of synaptic divergence and of potential for synaptic plasticity at a single bouton level, were significantly higher in the SPN than in the DH. Bladder afferent boutons frequently received inhibitory axoaxonic synapses from presynaptic endings in the DH but rarely in the SPN. The presynaptic endings were GABA- and/or glycine-immunopositive. The bouton volume, mitochondrial volume, and active zone area, all determinants of synaptic strength, of the bladder afferent boutons were positively correlated with the number of postsynaptic dendrites. These findings suggest that visceral sensory information conveyed via the urinary bladder afferents is processed differently in the DH than in the SPN, and differently from the way somatosensory information is processed in the spinal cord.
Collapse
Affiliation(s)
- Sook Kyung Park
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Angom Pushparani Devi
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jin Young Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yi Sul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Duk Yoon Kim
- Department of Urology, School of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
5
|
Park SK, Hong JH, Jung JK, Ko HG, Bae YC. Vesicular Glutamate Transporter 1 (VGLUT1)- and VGLUT2-containing Terminals on the Rat Jaw-closing γ-Motoneurons. Exp Neurobiol 2019; 28:451-457. [PMID: 31495074 PMCID: PMC6751869 DOI: 10.5607/en.2019.28.4.451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/22/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
Currently, compared to jaw-closing (JC) α-motoneurons, the information on the distribution and morphology of glutamatergic synapses on the jaw-closing (JC) γ-motoneurons, which may help elucidate the mechanism of isometric contraction of the JC muscle, is very limited. This study investigated the distribution and ultrastructural features of vesicular glutamate transporter 1 (VGLUT1)- and VGLUT2-immunopositive (+) axon terminals (boutons) on JC γ-motoneurons by retrograde tracing with horseradish peroxidase, electron microscopic immunocytochemistry, and quantitative analysis. About 35% of the boutons on identified JC γ-motoneurons were VGLUT+, and of those, 99% were VGLUT2+. The fraction of VGLUT1+ boutons of all boutons and the percentage of membrane of JC γ-motoneurons covered by these boutons were significantly lower than those for the JC α-motoneurons, revealed in our previous work. The bouton volume, mitochondrial volume, and active zone area of the VGLUT2+ boutons on the JC γ-motoneurons were uniformly small. These findings suggest that the JC γ-motoneurons, in contrast to the JC α-motoneurons, receive generally weak glutamatergic synaptic input almost exclusively from VGLUT2+ premotoneurons that form direct synapse with motoneurons.
Collapse
Affiliation(s)
- Sook Kyung Park
- Department of Anatomy and Neurobiology, Kyungpook National University, Daegu 41940, Korea
| | - Jae Hyun Hong
- Department of Anatomy and Neurobiology, Kyungpook National University, Daegu 41940, Korea
| | - Jae Kwang Jung
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, Kyungpook National University, Daegu 41940, Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|
6
|
Paik SK, Yoo HI, Choi SK, Bae JY, Park SK, Bae YC. Distribution of excitatory and inhibitory axon terminals on the rat hypoglossal motoneurons. Brain Struct Funct 2019; 224:1767-1779. [PMID: 31006070 DOI: 10.1007/s00429-019-01874-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
Detailed information about the excitatory and inhibitory synapses on the hypoglossal motoneurons may help understand the neural mechanism for control of the hypoglossal motoneuron excitability and hence the precise and coordinated movements of the tongue during chewing, swallowing and licking. For this, we investigated the distribution of GABA-, glycine (Gly)- and glutamate (Glut)-immunopositive (+) axon terminals on the genioglossal (GG) motoneurons by retrograde tracing, electron microscopic immunohistochemistry, and quantitative analysis. Small GG motoneurons (< 400 μm2 in cross-sectional area) had fewer primary dendrites, significantly higher nuclear/cytoplasmic ratio, and smaller membrane area covered by synaptic boutons than large GG motoneurons (> 400 μm2). The fraction of inhibitory boutons (GABA + only, Gly + only, and mixed GABA +/Gly + boutons) of all boutons was significantly higher for small GG motoneurons than for large ones, whereas the fraction of Glut + boutons was significantly higher for large GG motoneurons than for small ones. Almost all boutons (> 95%) on both small and large GG motoneurons were GABA + , Gly + or Glut + . The frequency of mixed GABA +/Gly + boutons was the highest among inhibitory boutons types for both small and large GG motoneurons. These findings may elucidate the anatomical substrate for precise regulation of the motoneuron firing required for the fine movements of the tongue, and also suggest that the excitability of small and large GG motoneurons may be regulated differently.
Collapse
Affiliation(s)
- Sang Kyoo Paik
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, South Korea
| | - Hong Il Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 77 Gyeryong-ro 771 beon-gil, Jung-Gu, Daejeon, 34824, South Korea
| | - Seung Ki Choi
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, South Korea
| | - Jin Young Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, South Korea
| | - Sook Kyung Park
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, South Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, South Korea.
| |
Collapse
|
7
|
Kawasaki Y, Saito M, Won J, Bae JY, Sato H, Toyoda H, Kuramoto E, Kogo M, Tanaka T, Kaneko T, Oh SB, Bae YC, Kang Y. Inhibition of GluR Current in Microvilli of Sensory Neurons via Na +-Microdomain Coupling Among GluR, HCN Channel, and Na +/K + Pump. Front Cell Neurosci 2018; 12:113. [PMID: 29740287 PMCID: PMC5928758 DOI: 10.3389/fncel.2018.00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
Glutamatergic dendritic EPSPs evoked in cortical pyramidal neurons are depressed by activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels expressed in dendritic spines. This depression has been attributed to shunting effects of HCN current (Ih) on input resistance or Ih deactivation. Primary sensory neurons in the rat mesencephalic trigeminal nucleus (MTN) have the somata covered by spine-like microvilli that express HCN channels. In rat MTN neurons, we demonstrated that Ih enhancement apparently diminished the glutamate receptor (GluR) current (IGluR) evoked by puff application of glutamate/AMPA and enhanced a transient outward current following IGluR (OT-IGluR). This suggests that some outward current opposes inward IGluR. The IGluR inhibition displayed a U-shaped voltage-dependence with a minimal inhibition around the resting membrane potential, suggesting that simple shunting effects or deactivation of Ih cannot explain the U-shaped voltage-dependence. Confocal imaging of Na+ revealed that GluR activation caused an accumulation of Na+ in the microvilli, which can cause a negative shift of the reversal potential for Ih (Eh). Taken together, it was suggested that IGluR evoked in MTN neurons is opposed by a transient decrease or increase in standing inward or outward Ih, respectively, both of which can be caused by negative shifts of Eh, as consistent with the U-shaped voltage-dependence of the IGluR inhibition and the OT-IGluR generation. An electron-microscopic immunohistochemical study revealed the colocalization of HCN channels and glutamatergic synapses in microvilli of MTN neurons, which would provide a morphological basis for the functional interaction between HCN and GluR channels. Mathematical modeling eliminated the possibilities of the involvements of Ih deactivation and/or shunting effect and supported the negative shift of Eh which causes the U-shaped voltage-dependent inhibition of IGluR.
Collapse
Affiliation(s)
- Yasuhiro Kawasaki
- Department of Neuroscience and Oral Physiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Mitsuru Saito
- Department of Neuroscience and Oral Physiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Jonghwa Won
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jin Young Bae
- Department of Oral Anatomy, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Hajime Sato
- Department of Neuroscience and Oral Physiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hiroki Toyoda
- Department of Neuroscience and Oral Physiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Eriko Kuramoto
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mikihiko Kogo
- Department of Neuroscience and Oral Physiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Takuma Tanaka
- Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seog Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Yong Chul Bae
- Department of Oral Anatomy, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Youngnam Kang
- Department of Neuroscience and Oral Physiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Aijie C, Huimin L, Jia L, Lingling O, Limin W, Junrong W, Xuan L, Xue H, Longquan S. Central neurotoxicity induced by the instillation of ZnO and TiO 2 nanoparticles through the taste nerve pathway. Nanomedicine (Lond) 2017; 12:2453-2470. [PMID: 28972461 DOI: 10.2217/nnm-2017-0171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To explore whether nanoparticles (NPs) can be transported into the CNS via the taste nerve pathway. MATERIALS & METHODS ZnO and TiO2 NPs were tongue-instilled to male Wistar rats. Toxicity was assessed by Zn/Ti biodistribution, histopathological examination, oxidative stress assay, quantitative reverse-transcriptase PCR analysis, learning and memory capabilities. RESULTS ZnO NPs and TiO2 NPs significantly deposited in the nerves and brain, respectively. The histopathological examination indicated a slight injury in the cerebral cortex and hippocampus. Ultrastructural changes and an imbalanced oxidative stress were observed. The Morris water maze results showed that the learning and memory of rats were impaired. CONCLUSION NPs can enter the CNS via the taste nerve translocation pathway and induce a certain adverse effect.
Collapse
Affiliation(s)
- Chen Aijie
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liang Huimin
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liu Jia
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ou Lingling
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Wei Limin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Wu Junrong
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lai Xuan
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Han Xue
- The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China
| | - Shao Longquan
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|