1
|
Wang DQ, Jiao YT, Ling L, Wang JX, Niu YH, Tang Z, Chen YW, Gong JN, Wang T, Liu JH, Ling Q. Trio-based genome sequencing identifies candidate causal genes in lifelong premature ejaculation. Asian J Androl 2021; 23:333-334. [PMID: 33106462 PMCID: PMC8152429 DOI: 10.4103/aja.aja_57_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dao-Qi Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang-Tian Jiao
- Department of Urology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Le Ling
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia-Xin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong-Hua Niu
- Department of Pediatric Surgery Tongji Hospital, Tongji Medical College, Wuhan 430030, China
| | - Zhe Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yin-Wei Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia-Nan Gong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ji-Hong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Ling
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Colás-Algora N, Millán J. How many cadherins do human endothelial cells express? Cell Mol Life Sci 2019; 76:1299-1317. [PMID: 30552441 PMCID: PMC11105309 DOI: 10.1007/s00018-018-2991-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/16/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
The vasculature is the paradigm of a compartment generated by parallel cellular barriers that aims to transport oxygen, nutrients and immune cells in complex organisms. Vascular barrier dysfunction leads to fatal acute and chronic inflammatory diseases. The endothelial barrier lines the inner side of vessels and is the main regulator of vascular permeability. Cadherins comprise a superfamily of 114 calcium-dependent adhesion proteins that contain conserved cadherin motifs and form cell-cell junctions in metazoans. In mature human endothelial cells, only VE (vascular endothelial)-cadherin and N (neural)-cadherin have been investigated in detail. Although both cadherins are essential for regulating endothelial permeability, no comprehensive expression studies to identify which other family members could play a relevant role in endothelial cells has so far been performed. Here, we have reviewed gene and protein expression databases to analyze cadherin expression in mature human endothelium and found that at least 24 cadherin superfamily members are significantly expressed. Based on data obtained from other cell types, organisms and experimental models, we discuss their potential functions, many of them unrelated to the formation of endothelial cell-cell junctions. The expression of this new set of endothelial cadherins highlights the important but still poorly defined roles of planar cell polarity, the Hippo pathway and mitochondria metabolism in human vascular homeostasis.
Collapse
Affiliation(s)
- Natalia Colás-Algora
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
3
|
Wahl D, Solon-Biet SM, Wang QP, Wali JA, Pulpitel T, Clark X, Raubenheimer D, Senior AM, Sinclair DA, Cooney GJ, de Cabo R, Cogger VC, Simpson SJ, Le Couteur DG. Comparing the Effects of Low-Protein and High-Carbohydrate Diets and Caloric Restriction on Brain Aging in Mice. Cell Rep 2018; 25:2234-2243.e6. [PMID: 30463018 PMCID: PMC6296764 DOI: 10.1016/j.celrep.2018.10.070] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/27/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022] Open
Abstract
Calorie restriction (CR) increases lifespan and improves brain health in mice. Ad libitum low-protein, high-carbohydrate (LPHC) diets also extend lifespan, but it is not known whether they are beneficial for brain health. We compared hippocampus biology and memory in mice subjected to 20% CR or provided ad libitum access to one of three LPHC diets or to a control diet. Patterns of RNA expression in the hippocampus of 15-month-old mice were similar between mice fed CR and LPHC diets when we looked at genes associated with longevity, cytokines, and dendrite morphogenesis. Nutrient-sensing proteins, including SIRT1, mTOR, and PGC1α, were also influenced by diet; however, the effects varied by sex. CR and LPHC diets were associated with increased dendritic spines in dentate gyrus neurons. Mice fed CR and LPHC diets had modest improvements in the Barnes maze and novel object recognition. LPHC diets recapitulate some of the benefits of CR on brain aging.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Centre for Education and Research on Ageing, Concord, NSW 2139, Australia
| | | | - Qiao-Ping Wang
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ximonie Clark
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia
| | - David A Sinclair
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Gregory J Cooney
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Victoria C Cogger
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Centre for Education and Research on Ageing, Concord, NSW 2139, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Centre for Education and Research on Ageing, Concord, NSW 2139, Australia.
| |
Collapse
|
4
|
Ocklenburg S, Friedrich P, Fraenz C, Schlüter C, Beste C, Güntürkün O, Genç E. Neurite architecture of the planum temporale predicts neurophysiological processing of auditory speech. SCIENCE ADVANCES 2018; 4:eaar6830. [PMID: 30009258 PMCID: PMC6040861 DOI: 10.1126/sciadv.aar6830] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
The left hemispheric advantage in speech perception is reflected in faster neurophysiological processing. On the basis of postmortem data, it has been suggested that asymmetries in the organization of the intrinsic microcircuitry of the posterior temporal lobe may produce this leftward timing advantage. However, whether this hypothetical structure-function relationship exists in vivo has never been empirically validated. To test this assumption, we used in vivo neurite orientation dispersion and density imaging to quantify microcircuitry in terms of axon and dendrite complexity of the left and right planum temporale in 98 individuals. We found that a higher density of dendrites and axons in the temporal speech area is associated with faster neurophysiological processing of auditory speech, as reflected by electroencephalography. Our results imply that a higher density and higher number of synaptic contacts in the left posterior temporal lobe increase temporal precision and decrease latency of neurophysiological processes in this brain region.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Patrick Friedrich
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Christoph Fraenz
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Caroline Schlüter
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Erhan Genç
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
5
|
Sprugnoli G, Vatti G, Rossi S, Cerase A, Renieri A, Mencarelli MA, Zara F, Rossi A, Santarnecchi E. Functional Connectivity and Genetic Profile of a "Double-Cortex"-Like Malformation. Front Integr Neurosci 2018; 12:22. [PMID: 29946244 PMCID: PMC6005822 DOI: 10.3389/fnint.2018.00022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
Laminar heterotopia is a rare condition consisting in an extra layer of gray matter under properly migrated cortex; it configures an atypical presentation of periventricular nodular heterotopia (PNH) or a double cortex (DC) syndrome. We conducted an original functional MRI (fMRI) analysis in a drug-resistant epilepsy patient with “double-cortex”-like malformation to reveal her functional connectivity (FC) as well as a wide genetic analysis to identify possible genetic substrates. Heterotopias were segmented into region of interests (ROIs), whose voxel-wise FC was compared to that of (i) its normally migrated counterpart, (ii) its contralateral homologous, and (iii) those of 30 age-matched healthy controls. Extensive genetic analysis was conducted to screen cortical malformations-associated genes. Compared to healthy controls, both laminar heterotopias and the overlying cortex showed significant reduction of FC with the contralateral hemisphere. Two heterozygous variants of uncertain clinical significance were found, involving autosomal recessive disease-causing genes, FAT4 and COL18A1. This first FC analysis of a unique case of “double-cortex”-like malformation revealed a hemispheric connectivity segregation both in the laminar cortex as in the correctly migrated one, with a new pattern of genes’ mutations. Our study suggests the altered FC could have an electrophysiological and functional impact on large-scale brain networks, and the involvement of not yet identified genes in “double-cortex”-like malformation with a possible role of rare variants in recessive genes as pathogenic cofactors.
Collapse
Affiliation(s)
- Giulia Sprugnoli
- Department of Medicine, Surgery and Neuroscience, Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy.,Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Giampaolo Vatti
- Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy.,Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Alfonso Cerase
- Department of Medicine, Surgery and Neuroscience, Section of Neuroradiology, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Department of Medicine, Surgery and Neuroscience, Section of Medical Genetics, University of Siena, Siena, Italy
| | - Maria A Mencarelli
- Department of Medicine, Surgery and Neuroscience, Section of Medical Genetics, University of Siena, Siena, Italy
| | - Federico Zara
- Laboratory of Neurogenetics and Neuroscience, Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandro Rossi
- Department of Medicine, Surgery and Neuroscience, Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy.,Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Department of Medicine, Surgery and Neuroscience, Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy.,Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy.,Department of Cognitive Neurology, Beth Israel Deaconess Medical Center, Berenson-Allen Center for Noninvasive Brain Stimulation, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Helmbacher F. Tissue-specific activities of the Fat1 cadherin cooperate to control neuromuscular morphogenesis. PLoS Biol 2018; 16:e2004734. [PMID: 29768404 PMCID: PMC5973635 DOI: 10.1371/journal.pbio.2004734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/29/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Muscle morphogenesis is tightly coupled with that of motor neurons (MNs). Both MNs and muscle progenitors simultaneously explore the surrounding tissues while exchanging reciprocal signals to tune their behaviors. We previously identified the Fat1 cadherin as a regulator of muscle morphogenesis and showed that it is required in the myogenic lineage to control the polarity of progenitor migration. To expand our knowledge on how Fat1 exerts its tissue-morphogenesis regulator activity, we dissected its functions by tissue-specific genetic ablation. An emblematic example of muscle under such morphogenetic control is the cutaneous maximus (CM) muscle, a flat subcutaneous muscle in which progenitor migration is physically separated from the process of myogenic differentiation but tightly associated with elongating axons of its partner MNs. Here, we show that constitutive Fat1 disruption interferes with expansion and differentiation of the CM muscle, with its motor innervation and with specification of its associated MN pool. Fat1 is expressed in muscle progenitors, in associated mesenchymal cells, and in MN subsets, including the CM-innervating pool. We identify mesenchyme-derived connective tissue (CT) as a cell type in which Fat1 activity is required for the non-cell-autonomous control of CM muscle progenitor spreading, myogenic differentiation, motor innervation, and for motor pool specification. In parallel, Fat1 is required in MNs to promote their axonal growth and specification, indirectly influencing muscle progenitor progression. These results illustrate how Fat1 coordinates the coupling of muscular and neuronal morphogenesis by playing distinct but complementary actions in several cell types.
Collapse
|
7
|
Ocklenburg S, Gerding WM, Raane M, Arning L, Genç E, Epplen JT, Güntürkün O, Beste C. PLP1 Gene Variation Modulates Leftward and Rightward Functional Hemispheric Asymmetries. Mol Neurobiol 2018; 55:7691-7700. [PMID: 29435918 DOI: 10.1007/s12035-018-0941-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/28/2018] [Indexed: 01/03/2023]
Abstract
Molecular neurobiological factors determining corpus callosum physiology and anatomy have been suggested to be one of the major factors determining functional hemispheric asymmetries. Recently, it was shown that allelic variations in two myelin-related genes, the proteolipid protein 1 gene PLP1 and the contactin 1 gene CNTN1, are associated with differences in interhemispheric integration. Here, we investigated whether three single nucleotide polymorphisms that were associated with interhemispheric integration via the corpus callosum in a previous study also are relevant for functional hemispheric asymmetries. To this end, we tested more than 900 healthy adults with the forced attention dichotic listening task, a paradigm to assess language lateralization and its modulation by cognitive control processes. Moreover, we used the line bisection task, a paradigm to assess functional hemispheric asymmetries in spatial attention. We found that a polymorphism in PLP1, but not CNTN1, was associated with performance differences in both tasks. Both functional hemispheric asymmetries and their modulation by cognitive control processes were affected. These findings suggest that both left and right hemisphere dominant cognitive functions can be modulated by allelic variation in genes affecting corpus callosum structure. Moreover, higher order cognitive processes may be relevant parameters when investigating the molecular basis of hemispheric asymmetries.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany.
| | - Wanda M Gerding
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
| | - Maximilian Raane
- Faculty of Health, ZBAF, University of Witten/Herdecke, Witten, Germany
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
| | - Erhan Genç
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Jörg T Epplen
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany.,Faculty of Health, ZBAF, University of Witten/Herdecke, Witten, Germany
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,Experimental Neurobiology, National Institute of Mental Health, Topolova 748, 25067, Klecany, Czech Republic
| |
Collapse
|
8
|
Zwaveling-Soonawala N, Alders M, Jongejan A, Kovacic L, Duijkers FA, Maas SM, Fliers E, van Trotsenburg ASP, Hennekam RC. Clues for Polygenic Inheritance of Pituitary Stalk Interruption Syndrome From Exome Sequencing in 20 Patients. J Clin Endocrinol Metab 2018; 103:415-428. [PMID: 29165578 DOI: 10.1210/jc.2017-01660] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
CONTEXT Pituitary stalk interruption syndrome (PSIS) consists of a small/absent anterior pituitary lobe, an interrupted/absent pituitary stalk, and an ectopic posterior pituitary lobe. Mendelian forms of PSIS are detected infrequently (<5%), and a polygenic etiology has been suggested. GLI2 variants have been reported at a relatively high frequency in PSIS. OBJECTIVE To provide further evidence for a non-Mendelian, polygenic etiology of PSIS. METHODS Exome sequencing (trio approach) in 20 patients with isolated PSIS. In addition to searching for (potentially) pathogenic de novo and biallelic variants, a targeted search was performed in a panel of genes associated with midline brain development (223 genes). For GLI2 variants, both (potentially) pathogenic and relatively rare variants (<5% in the general population) were studied. The frequency of GLI2 variants was compared with that of a reference population. RESULTS We found four additional candidate genes for isolated PSIS (DCHS1, ROBO2, CCDC88C, and KIF14) and one for syndromic PSIS (KAT6A). Eleven GLI2 variants were present in six patients. A higher frequency of a combination of two GLI2 variants (M1352V + D1520N) was found in the study group compared with a reference population (10% vs 0.68%). (Potentially) pathogenic variants were identified in genes associated with midline brain anomalies, including holoprosencephaly, hypogonadotropic hypogonadism, and absent corpus callosum and in genes involved in ciliopathies. CONCLUSION Combinations of variants in genes associated with midline brain anomalies are frequently present in PSIS and sustain the hypothesis of a polygenic cause of PSIS.
Collapse
Affiliation(s)
- Nitash Zwaveling-Soonawala
- Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Bioinformatics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Lidija Kovacic
- Novartis Ireland Ltd, Beech Hill Office Campus, Dublin, Ireland
| | - Floor A Duijkers
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia M Maas
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - A S Paul van Trotsenburg
- Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Sotos J, Miller K, Corsmeier D, Tokar N, Kelly B, Nadella V, Zhong H, Wetzel A, Adler B, Yu CY, White P. A patient with van Maldergem syndrome with endocrine abnormalities, hypogonadotropic hypogonadism, and breast aplasia/hypoplasia. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2017; 2017:12. [PMID: 29046692 PMCID: PMC5640965 DOI: 10.1186/s13633-017-0052-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/04/2017] [Indexed: 11/10/2022]
Abstract
Background We report a female patient with endocrine abnormalities, hypogonadotropic hypogonadism and amazia (breasts aplasia/hypoplasia but normal nipples and areolas) in a rare syndrome: Van Maldergem syndrome (VMS). Case presentation Our patient was first evaluated at age 4 for intellectual disability, craniofacial features, and auditory malformations. At age 15, she presented with no breast development and other findings consistent with hypogonadotropic hypogonadism. At age 37, she underwent whole exome sequencing (WES) to identify pathogenic variants. WES revealed compound heterozygous variants in DCHS1 (rs145099391:G > A, p.P197L & rs753548138:G > A, p.T2334 M) [RefSeq NM_003737.3], diagnostic of Van Maldergem syndrome (VMS-1). VMS is a rare autosomal disorder reported in only 13 patients, characterized by intellectual disability, typical craniofacial features, auditory malformations, hearing loss, skeletal and limb malformations, brain abnormalities with periventricular neuronal heterotopia and other variable anomalies. Our patient had similar phenotypic abnormalities. She also had hypogonadotropic hypogonadism and amazia. Based on the clinical findings reported, two previously published patients with VMS may also have been affected by hypogonadotropic hypogonadism, but endocrine abnormalities were not evaluated or mentioned. Conclusion This case highlights an individual with VMS, characterized by compound heterozygous variants in DCHS1. Our observations may provide additional information on the phenotypic spectrum of VMS, including hypogonadotropic hypogonadism and amazia. However, the molecular genetic basis for endocrine anomalies observed in some VMS patients, including ours, remains unexplained. Electronic supplementary material The online version of this article (10.1186/s13633-017-0052-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Sotos
- Section of Endocrinology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205 USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Katherine Miller
- Molecular & Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205 USA
| | - Donald Corsmeier
- The Institute for Genomic Medicine, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205 USA
| | - Naomi Tokar
- Section of Endocrinology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205 USA
| | - Benjamin Kelly
- The Institute for Genomic Medicine, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205 USA
| | - Vijay Nadella
- The Institute for Genomic Medicine, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205 USA
| | - Huachun Zhong
- The Institute for Genomic Medicine, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205 USA
| | - Amy Wetzel
- The Institute for Genomic Medicine, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205 USA
| | - Brent Adler
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH 43205 USA.,College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Chack-Yung Yu
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210 USA.,Molecular & Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205 USA
| | - Peter White
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210 USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205 USA
| |
Collapse
|
10
|
Cognitive Control Processes and Functional Cerebral Asymmetries: Association with Variation in the Handedness-Associated Gene LRRTM1. Mol Neurobiol 2017; 55:2268-2274. [PMID: 28321770 DOI: 10.1007/s12035-017-0485-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023]
Abstract
Cognitive control processes play an essential role not only in controlling actions but also in guiding attentional selection processes. Interestingly, these processes are strongly affected by organizational principles of the cerebral cortex and related functional asymmetries, but the neurobiological foundations are elusive. We ask whether neurobiological mechanisms that affect functional cerebral asymmetries will also modulate effects of top-down control processes on functional cerebral asymmetries. To this end, we examined potential effects of the imprinted gene leucine-rich repeat transmembrane neuronal 1 (LRRTM1) on attentional biasing processes in a forced attention dichotic listening task in 983 healthy adult participants of Caucasian descent using the "iDichotic smartphone app." The results show that functional cerebral asymmetries in the language domain are associated with the rs6733871 LRRTM1 polymorphism when cognitive control and top-down attentional mechanisms modulate processes in bottom-up attentional selection processes that are dependent on functional cerebral asymmetries. There is no evidence for an effect of LRRTM1 on functional cerebral asymmetries in the language domain unrelated to cognitive control processes. The results suggest that cognitive control processes are an important factor to consider when being interested in the molecular genetic basis of functional cerebral architecture.
Collapse
|
11
|
Ocklenburg S, Gerding WM, Arning L, Genç E, Epplen JT, Güntürkün O, Beste C. Myelin Genes and the Corpus Callosum: Proteolipid Protein 1 (PLP1) and Contactin 1 (CNTN1) Gene Variation Modulates Interhemispheric Integration. Mol Neurobiol 2016; 54:7908-7916. [DOI: 10.1007/s12035-016-0285-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/02/2016] [Indexed: 01/06/2023]
|