1
|
Ranade A, Khan AA, Gul MT, Suresh S, Qaisar R, Ahmad F, Karim A. Suppression of endoplasmic reticulum stress reverses hindlimb unloading-induced hepatic cellular processes in mice. Biochim Biophys Acta Gen Subj 2023:130422. [PMID: 37406741 DOI: 10.1016/j.bbagen.2023.130422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The Hindlimb unloaded mouse, an animal model of simulated microgravity demonstrates significant metabolic and hepatic derangements. However, cellular and molecular mechanisms driving liver dysfunction in Hindlimb unloaded mice are poorly characterized. METHODS We investigated the possible contribution of dysregulated protein homeostasis by endoplasmic reticulum, endoplasmic reticulum stress, to liver dysfunction during HU. C57BL/6j male mice were grouped into ground-based controls or Hindlimb unloaded groups treated daily with vehicle or 4-phenylbutyrate (4-PBA), a potent inhibitor of endoplasmic reticulum stress. Following three weeks of HU, mice were sacrificed, and liver tissues were dissected for further analysis. RESULTS Hindlimb unloaded was associated with hepatic atrophy and elevated endoplasmic reticulum stress, which was restored by 4-PBA treatment. The Gene Ontology analysis revealed the downregulation of genes primarily involved in liver metabolic and Wingless-related integration site (WNT) signaling pathways, while those related to cytochrome P450, and liver fibrosis were upregulated. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed downregulation of several genes involved in metabolic pathways following treatment with 4-PBA, induced by HU. CONCLUSIONS We report several differential and uniquely expressed genes associated with microgravity-induced elevated ER stress and liver injury. Our data has translational potential in unraveling novel molecular targets for pharmaceutical therapies of liver diseases. GENERAL SIGNIFICANCE Our novel findings show a pathogenic role for elevated ER stress in liver injury in microgravity conditions.
Collapse
Affiliation(s)
- Anu Ranade
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Muhammad Tehsil Gul
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Savitha Suresh
- Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
2
|
Xu P, Wang L, Mo B, Xie X, Hu R, Jiang L, Hu F, Ding F, Xiao H. Identification of NLE1/CDK1 axis as key regulator in the development and progression of non-small cell lung cancer. Front Oncol 2023; 12:985827. [PMID: 36818671 PMCID: PMC9931185 DOI: 10.3389/fonc.2022.985827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/19/2022] [Indexed: 02/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common pathological type of lung cancer, which is a severer threaten to human health because of its extremely high morbidity and mortality. In this study, the role of Notchless homolog 1 (NLE1) in the development of NSCLC was investigated and the underlying mechanism was explored. The outcomes showed that NLE1 expression is significantly higher in tumor tissues than normal tissues, and is correlated with the pathological stage. The regulation of NSCLC development by NLE1 was also visualized by the in vitro and in vivo loss-of-function studies, which indicated the inhibition of cell growth and migration, as well as enhancement of cell apoptosis on condition of NLE1 knockdown. As for the mechanism, it was demonstrated that NLE1 may execute its tumor-regulating function through activating E2F1-mediated transcription of CDK1, and PI3K/Akt signaling pathway was also supposed as a downstream of NLE1 in the regulation of NSCLC. Both CDK1 overexpression and treatment of Akt pathway activator could reverse the NLE1 knockdown induced NSCLC inhibition to some extent. In conclusion, this study identified NLE1 as a novel tumor promotor in the development and progression of NSCLC, which may be a potential therapeutic target in the treatment of NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Haibo Xiao
- *Correspondence: Haibo Xiao, ; Fangbao Ding,
| |
Collapse
|
3
|
Si Y, Li L, Zhang W, Liu Q, Liu B. GANT61 exerts anticancer cell and anticancer stem cell capacity in colorectal cancer by blocking the Wnt/β‑catenin and Notch signalling pathways. Oncol Rep 2022; 48:182. [PMID: 36069229 PMCID: PMC9478957 DOI: 10.3892/or.2022.8397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to assess the anticancer cell and anticancer stem cell (CSC) effects of GANT61, and its regulatory influence on the Wnt/β-catenin and Notch signalling pathways in colorectal cancer (CRC). HT-29 and HCT-116 cells were treated with 0, 2.5, 5, 10, 20 or 40 µM GANT61, after which relative cell viability and the expression of Gli1, β-catenin and Notch1, as well as the percentage of CD133+ cells, were detected. Subsequently, HT-29/HCT-116 cells and CSCs were treated with 20 µM GANT61, 10 mM of the Wnt/β-catenin pathway agonist HLY78, and 30 mM of the Notch pathway agonist JAG1 (alone or in combination), which was followed by the assessment of cell viability and apoptosis. In both cell lines, GANT61 reduced relative cell viability in a time- and dose-dependent manner, inhibited Gli1, β-catenin and Notch1 expression, and decreased the percentage of CD133+ cells in a dose-dependent manner. Furthermore, HLY78 and JAG1 were both found to improve the relative viability, while downregulating the apoptosis of untreated and GANT61-treated HT-29 and HCT-116 cells. Moreover, Wnt/β-catenin and Notch signalling pathway activity were upregulated in CSCs isolated from HT-29 and HCT-116 cells, compared with the associated control groups. GANT61 also reduced the viability of HT-29 and HCT-116 cells and increased apoptosis, whereas HLY78 and JAG1 treatment resulted in the opposite effect. Moreover, both HLY78 and JAG1 attenuated the effects of GANT61 on cellular viability and apoptosis. In conclusion, GANT61 was found to effectively eliminate cancer cells and CSCs by blocking the Wnt/β-catenin and Notch signalling pathways in CRC.
Collapse
Affiliation(s)
- Yanhui Si
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P.R. China
| | - Lei Li
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P.R. China
| | - Weiwei Zhang
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P.R. China
| | - Qiling Liu
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P.R. China
| | - Baochi Liu
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
4
|
Mitigating sarcoplasmic reticulum stress limits disuse-induced muscle loss in hindlimb unloaded mice. NPJ Microgravity 2022; 8:24. [PMID: 35817772 PMCID: PMC9273600 DOI: 10.1038/s41526-022-00211-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/22/2022] [Indexed: 01/31/2023] Open
Abstract
Muscle disuse in the hindlimb unloaded (HU) mice causes significant atrophy and weakness. However, the cellular and molecular mechanisms driving disuse-muscle atrophy remain elusive. We investigated the potential contribution of proteins dysregulation by sarcoplasmic reticulum (SR), a condition called SR stress, to muscle loss during HU. Male, c57BL/6j mice were assigned to ground-based controls or HU groups treated with vehicle or 4-phenylbutyrate (4-PBA), a potent inhibitor of SR stress, once a day for three weeks. We report that the 4-PBA reduced the SR stress and partly reversed the muscle atrophy and weakness in the HU mice. Transcriptome analysis revealed that several genes were switched on (n = 3688) or differentially expressed (n = 1184) due to HU. GO, and KEGG term analysis revealed alterations in pathways associated with the assembly of cilia and microtubules, extracellular matrix proteins regulation, calcium homeostasis, and immune modulation during HU. The muscle restoration with 4-PBA partly reversed these changes along with differential and unique expression of several genes. The analysis of genes among the two comparisons (HU-v vs. control and HU-t vs. HU-v.) shows 841 genes were overlapped between the two comparisons and they may be regulated by 4-PBA. Altogether, our findings suggest that the pharmacological suppression of SR stress may be an effective strategy to prevent disuse-induced muscle weakness and atrophy.
Collapse
|
5
|
Barzroodi Pour M, Bayat M, Navazesh A, Soleimani M, Karimzadeh F. Exercise Improved the Anti-Epileptic Effect of Carbamazepine through GABA Enhancement in Epileptic Rats. Neurochem Res 2021; 46:2112-2130. [PMID: 34008120 DOI: 10.1007/s11064-021-03349-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/14/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Carbamazepine (CBZ) is an anticonvulsant drug that usually is used for the treatment of seizures. The anti-epileptic and the anti-epileptogenic effect of exercise has been reported, as well. This study was aimed to evaluate the synergic effect of combined therapy of exercise and CBZ in epileptic rats, as well as the alternation of the GABA pathway as a possible involved mechanism. The seizure was induced by pentylenetetrazol (PTZ) injection. Animals were divided into sham, seizure, exercise (EX), CBZ (25, 50 and 75), EX + CBZ (25, 50 and 75). Treadmill forced running for 30 min has been considered as the exercise 5 days per week for four weeks. CBZ was injected in doses of 25, 50 and 75 mg/kg, half an hour before seizure induction and 5 h after doing exercise in the animals forced to exercise. Seizure severity reduced and latency increased in the EX + CBZ (25) and EX + CBZ (50) groups compared to the seizure group. The distribution of GAD65 in both hippocampal CA1 and CA3 areas increased in the EX + CBZ (75) group. GABAA receptor α1 was up-regulated in the CA3 area of the EX + CBZ (75) group. The distribution of GAD65 in the cortical area increased in EX, EX + CBZ (50), CBZ (75) and EX + CBZ (75) groups. GABAA receptor α1 was up-regulated in the neocortex of EX + CBZ (50), CBZ (75) and EX + CBZ (75) groups. Our findings suggested that exercise has improved the efficacy of CBZ and reduced the anti-epileptic dose. The enhancement of GABA signaling might be involved in the synergistic effect of exercise and CBZ.
Collapse
Affiliation(s)
- Mitra Barzroodi Pour
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Bayat
- Department of Anatomy, Arak University of Medical Sciences, Arak, Iran
| | - Azam Navazesh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Ren Z, Ni F, Zhang T, Yuan X, Li J, Xiao W. Knockdown of NLE1 inhibits development of malignant melanoma in vitro and in vivo NLE1 promotes development of malignant melanoma. Exp Cell Res 2021; 404:112636. [PMID: 34019907 DOI: 10.1016/j.yexcr.2021.112636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/28/2022]
Abstract
Melanoma, which originates from neural crest derived melanocytes, causes severe pain and even death to numerous patients. Previous studies reported that Notchless Homolog 1 (NLE1) plays an important role in cell proliferation, transcription and signal transduction. However, the clinical significance and biological behavior of NLE1 in melanoma remain a mystery. Thus, the role of NLE1 in melanoma was investigated in vitro and in vivo. The expression of NLE1 in melanoma was elevated and the expression level was positively correlated with lymphatic metastasis and tumor stage. In addition, NLE1 knockdown by shRNA specifically inhibited proliferation, enhanced the apoptotic sensitivity and hindered migration of melanoma cells in vitro. Mice xenograft model further showed that NLE1 knockdown could inhibit the tumor formation of melanoma in vivo. Additionally, the induction of apoptosis of melanoma cells by NLE1 knockdown required the participation of a series of apoptosis-related proteins. Besides, NLE1 can activate the PI3K/AKT signaling pathway. In summary, NLE1 was involved in the development and progression of melanoma, which may be a novel potential target for molecular therapy of melanoma.
Collapse
Affiliation(s)
- Zhaozhou Ren
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Feifei Ni
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Tao Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Xiangnan Yuan
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Jianjun Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Wan'an Xiao
- Department of Rehabiliation, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
7
|
Jafarian M, Modarres Mousavi SM, Rahimi S, Ghaderi Pakdel F, Lotfinia AA, Lotfinia M, Gorji A. The effect of GABAergic neurotransmission on the seizure-related activity of the laterodorsal thalamic nuclei and the somatosensory cortex in a genetic model of absence epilepsy. Brain Res 2021; 1757:147304. [PMID: 33524378 DOI: 10.1016/j.brainres.2021.147304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/29/2022]
Abstract
The present study aimed to investigate the alterations of the GABAergic system in the laterodorsal nucleus (LDN) of the thalamus and the somatosensory cortex (SC) in an experimental model of absence seizure. The effects of pharmacological manipulation of both GABAA and GABAB receptor subunits in the LDN on the generation of spike-wave discharges (SWD) were evaluated. The experiments were carried out in four groups of both WAG/Rij and Wistar rats with 2 and 6 months of age. The expressions of various GABA receptor subunits were studied in the LDN and SC. Furthermore, recordings of unit activity from the LDN and electrocorticography were simultaneously monitored before, during, and after the application of GABAA and GABAB antagonists in the LDN. The generation of SWD in the older WAG/Rij rats was associated with significant alterations in the expression of GABAARα1, GABAARβ3, and GABABR2 subunits in the LDN as well as GABAARα1, GABAARβ3, GABAARγ2, and GABABR2 subunits in the SC. Furthermore, the occurrence of SWD was associated with a significant reduction of gene expression of GABAARα1 and increase of GABAARβ3 in the LDN as well as reduction of GABAARα1, GABAARβ3, GABAARγ2, and GABABR2 in the SC. The microionthophoretic application of the GABAA antagonist bicuculline resulted in a significant increase in the population firing rate of LDN neurons as well as the mean number and duration of SWD. The application of the GABAB antagonist CGP35348 significantly increased the population firing rate of LDN neurons but decreased the mean number of SWD. Our data indicate the regulatory effect of the GABAergic system of the LDN and SC in absence seizures.
Collapse
Affiliation(s)
- Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neurosciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Sayed Mostafa Modarres Mousavi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran; Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Rahimi
- Department of Genetics and Pharmacology, Institute of Molecular and Cellular Pharmacology, Medical University of Innsbruck, Innsbruck, Austria; Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Firuze Ghaderi Pakdel
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Ali Lotfinia
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mahmoud Lotfinia
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran; Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universitat Münster, Münster, Germany.
| |
Collapse
|
8
|
Jafarian M, Esmaeil Alipour M, Karimzadeh F. Experimental Models of Absence Epilepsy. Basic Clin Neurosci 2020; 11:715-726. [PMID: 33850609 PMCID: PMC8019851 DOI: 10.32598/bcn.11.6.731.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/10/2019] [Accepted: 11/30/2019] [Indexed: 11/27/2022] Open
Abstract
Introduction: Absence epilepsy is a brief non-convulsive seizure associated with sudden abruptness in consciousness. Because of the unpredictable occurrence of absence seizures and the ethical issues of human investigation on the pathogenesis and drug assessment, researchers tend to study animal models. This paper aims to review the advantages and disadvantages of several animal models of nonconvulsive induced seizure. Methods: The articles that were published since 1990 were assessed. The publications that used genetic animals were analyzed, too. Besides, we reviewed possible application methods of each model, clinical types of seizures induced, purposed mechanism of epileptogenesis, their validity, and relevance to the absence epileptic patients. Results: The number of studies that used genetic models of absence epilepsy from years of 2000 was noticeably more than pharmacological models. Genetic animal models have a close correlation of electroencephalogram features and epileptic behaviors to the human condition. Conclusion: The validity of genetic models of absence epilepsy would motivate the researchers to focus on genetic modes in their studies. As there are some differences in the pathophysiology of absence epilepsy between animal models and humans, the development of new animal models is necessary to understand better the epileptogenic process and, or discover novel therapies for this disorder.
Collapse
Affiliation(s)
- Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Mdical Sciences, Tehran, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mohammad Esmaeil Alipour
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Barzroodi Pour M, Bayat M, Golab F, Eftekharzadeh M, Katebi M, Soleimani M, Karimzadeh F. The effect of exercise on GABA signaling pathway in the model of chemically induced seizures. Life Sci 2019; 232:116667. [PMID: 31326567 DOI: 10.1016/j.lfs.2019.116667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 01/31/2023]
Abstract
AIMS Gamma amino butyric acid (GABA) imbalance plays a critical role in most neurological disorders including epilepsy. This study assessed the involvement of mild exercise on GABA imbalance following by seizure induction in rats. MAIN METHODS Seizure was induced by pentylentetrazole (PTZ) injection. Animals were divided into sham, seizure, exercise (EX), co-seizure-induced exercise (Co-SI EX) and Pre-SI EX groups. In the Co-SI EX group, doing exercise and seizure induction was carried out during four weeks. Animals in the Pre-SI EX group exercised in week 1 to week 8 and seizures were induced in week 5 to week 8. Seizure properties, neural viability and expressions of glutamic acid decarboxylase 65 (GAD65) and GABAA receptor α1 in the hippocampus were assessed. KEY FINDINGS Seizure severity reduced and latency increased in the Co-SI EX and Pre-SI EX groups compared to seizure group. The mean number of dark neurons decreased in all exercise groups compared to seizure group in both CA1 and CA3 areas. The gene level of GAD65 and GABAA receptor α1 was highly expressed in the Co-SI EX group in the hippocampal area. Distribution of GAD65 in the both CA1 and CA3 areas increased in the EX and Co-SI EX groups. GABAA receptor α1 was up-regulated in the CA3 area of Co-SI EX group and down-regulated in the CA1 and CA3 areas of Pre-SI EX group. SIGNIFICANCE These findings suggest that exercise develop anti-epileptic as well as neuroprotective effects by modulating of GABA disinhibition.
Collapse
Affiliation(s)
- Mitra Barzroodi Pour
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Bayat
- Department of Anatomy, Arak University of Medical Sciences, Arak, Iran
| | - Freshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Eftekharzadeh
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Katebi
- Department of Anatomy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Inhibition of microRNA-34a Suppresses Epileptiform Discharges Through Regulating Notch Signaling and Apoptosis in Cultured Hippocampal Neurons. Neurochem Res 2019; 44:1252-1261. [PMID: 30877521 DOI: 10.1007/s11064-019-02772-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
Epilepsy is characterized by recurrent unprovoked seizures and some seizures can cause neuronal apoptosis, which is possible to make contributions to the epilepsy phenotype, impairments in cognitive function or even epileptogenesis. Moreover, many studies have indicated that microRNA-34a (miRNA-34a) is involved in apoptosis through regulating Notch signaling. However, whether miRNA-34a participates in neuronal apoptosis after seizures remain unclear. Therefore, we aimed to explore the expression of miRNA-34a and its effects on the epileptiform discharge in spontaneous recurrent epileptiform discharges (SREDs) rat hippocampal neuronal pattern. Mg2+-free medium was used to induce SREDs, quantitative reverse-transcription polymerase chain reaction was used to detect the expression of miRNA-34a, western blot was used to determine the expression of Notch pathway and apoptosis-related proteins, and whole cell current clamp recordings was used to observe the alteration of epileptiform discharge. We found obvious apoptosis, increased expression of miRNA-34a and decreased expression of Notch signaling in Mg2+-free-treated neurons. Treatment with miRNA-34a inhibitor decreased the frequency of action potentials, activated Notch signaling and prevented neuronal apoptosis in Mg2+-free-treated neurons. However, treatment with miRNA-34a mimics increased the frequency of action potentials, down-regulated Notch signaling and promoted neuronal apoptosis in Mg2+-free-treated neurons. Furthermore, γ-secretase inhibitor N-[N-(3,5-di-uorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester (DAPT), an inhibitor of Notch signaling, could weaken anti-apoptosis effect of miRNA-34a inhibitor. These results suggest that inhibition of miRNA-34a could suppress epileptiform discharges through regulating Notch signaling and apoptosis in the rat hippocampal neuronal model of SREDs.
Collapse
|
11
|
Saffarzadeh F, Modarres Mousavi SM, Lotfinia AA, Alipour F, Hosseini Ravandi H, Karimzadeh F. Discrepancies of Notch 1 receptor during development of chronic seizures. J Cell Physiol 2019; 234:13773-13780. [DOI: 10.1002/jcp.28056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022]
Affiliation(s)
| | - Sayed Mostafa Modarres Mousavi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital Tehran Iran
- Department of Nanobiotechnology Faculty of Biological Sciences, Tarbiat Modares University Tehran Iran
| | | | - Fatemeh Alipour
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital Tehran Iran
| | | | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
12
|
Yang GS, Zhou XY, An XF, Liu XJ, Zhang YJ, Yu D. Synergistic effect of mild hypothermia and the Notch inhibitor DAPT against post stroke seizures. Biomed Pharmacother 2017; 96:675-684. [PMID: 29035834 DOI: 10.1016/j.biopha.2017.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
Seizure is a serious complication of stroke, indicating poor prognosis. Notch signaling is associated with neuronal activity. Inhibition of Notch signaling suppresses seizure activity induced by kainic acid. The present study investigated the effect of the Notch inhibitor, DAPT, alone or in combination with mild hypothermia, on post-stroke seizures. A global cerebral ischemia (GCI) model was performed in Sprague Dawley (SD) male rats. Seizure activity was evaluated by the frequency of seizure attacks, seizure severity scores, and seizure discharges. Without any intervention, seizures occurred intensively between 24h and 48h following GCI. Seizure activity was confirmed using EEG monitoring. The expression of Notch intracellular domains (NICD) 1 and 2 were up-regulated in the cerebral cortex and hippocampus following GCI. DAPT was injected into the hippocampus of the rats to inhibit local Notch signaling. Active whole-body cooling was performed to maintain the core temperatures of rats at 33.5°C (mild hypothermia). Mild hypothermia and DAPT synergistically inhibited NICD 1 and 2 up-regulation, and post-stroke seizures. GCI augmented excitatory synaptic neurotransmission by up-regulating glutamate receptor subunits (GluN2A, GluA1) and the cotransporter, NKCC1, but attenuated inhibitory synaptic neurotransmission by down-regulating gamma amino acid, butyric acid (GABA), and the cotransporter, KCC2. DAPT treatment normalized the homeostasis of excitatory and inhibitory synaptic neurotransmission, suggesting that aberrant activation of Notch signaling is involved in post-stroke seizures. The present study adds to the further understanding of the pathogenesis of post-stroke seizures and the improvement of the treatment provided with hypothermia.
Collapse
Affiliation(s)
- Guo-Shuai Yang
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, Hannan Province, China.
| | - Xiao-Yan Zhou
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, Hannan Province, China
| | - Xue-Fang An
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, Hannan Province, China
| | - Xuan-Jun Liu
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, Hannan Province, China
| | - Yan-Jun Zhang
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, Hannan Province, China
| | - Dan Yu
- Department of Neurology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, Hannan Province, China
| |
Collapse
|
13
|
Mei B, Li H, Zhu J, Yang J, Yang Z, Wen Z, Li X, Shen H, Shen M, Chen G. Neuroprotection of Botch in experimental intracerebral hemorrhage in rats. Oncotarget 2017; 8:95346-95360. [PMID: 29221132 PMCID: PMC5707026 DOI: 10.18632/oncotarget.20524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/04/2017] [Indexed: 11/25/2022] Open
Abstract
Notch1 maturation participates in apoptosis and inflammation following intracerebral hemorrhage (ICH). It has been reported that Botch bound to and blocked Notch1 maturation. Here we estimated the role of Botch in ICH-induced secondary brain injury and underlying mechanisms. Experimental ICH model was induced by autologous arterial blood injection in Sprague-Dawley rats, and cultured primary rat cortical neurons were exposed to oxyhemoglobin to mimic ICH in vitro. Specific small interfering RNAs and expression plasmids encoding wild type Botch and Botch with Glu115Ala mutation were exploited. The protein levels of Botch and Notch1 transmembrane intracellular domain (Notch1-TMIC) were increased within brain tissue around hematoma. Botch overexpression led to an increase in unprocessed Notch1 full-length form accompanied by a significant decrease in Notch1-TMIC, while Botch knockdown resulted in an approximately 1.5-fold increase in Notch1-TMIC. There were increased cell apoptosis, necrosis and neurobehavioral deficits after ICH, which was inhibited by Botch overexpression and enhanced by Botch knockdown. Double immunofluorescence showed a colocalization of Botch and Notch1 in the trans-Golgi. Overexpression of wild type Botch, but not Botch E115A mutant, led to an increase in the interaction between Botch and Notch1, reduced the formation and the nuclear localization of Notch1 intracellular domain, and attenuated cell apoptosis and inflammation. In conclusion, Botch exerts neuroprotection against neuronal damage via antagonizing the maturation of Notch1 in Glu115-denpendent manner. However, neuroprotection mediated by endogenous Botch is not enough to reverse ICH-induced secondary brain injury.
Collapse
Affiliation(s)
- Binbin Mei
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Juehua Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Junjie Yang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, China
| | - Ziying Yang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, China
| | - Zunjia Wen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Meifen Shen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|