1
|
Palaz E, Çetinkaya H, Tuncali Z, Kamar B, Dural S. Practice-induced SNARC: evidence from a null-SNARC sample. Cogn Process 2024; 25:601-612. [PMID: 38739287 DOI: 10.1007/s10339-024-01198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/20/2024] [Indexed: 05/14/2024]
Abstract
The mental representation of numbers inherently involves a spatial organization, often positioning smaller numbers to the left and larger numbers to the right. The SNARC effect, characterized by faster responses to small numbers using the left hand and vice versa for large numbers, is typically attributed to this left-to-right oriented mental number line (MNL). However, the direction of the SNARC effect seems to rely on reading direction, with most research exploring these mechanisms conducted within left-to-right reading cultures where the SNARC effect is prevalent. This study takes advantage of a sample from a left-to-right reading culture that does not exhibit the SNARC effect, allowing us to isolate and elucidate the stand-alone effects of recent experiences on SNARC. Therefore, the current study aims to investigate how MNL-compatible and MNL-incompatible practices induce an effect within a sample lacking the SNARC effect. To accomplish this, we reinvited the individuals from the sample which had previously shown no SNARC, and retested those who agreed to take part in the current study after an MNL-compatible or MNL-incompatible practice manipulation. The findings revealed an absence of the SNARC effect with MNL-compatible practices. Conversely, MNL-incompatible practices yielded a reverse SNARC effect. These results prompt a discussion on SNARC mechanisms within the framework of practice effects.
Collapse
Affiliation(s)
- Ezgi Palaz
- Department of Psychology, Izmir University of Economics, 35330, Balçova, Izmir, Turkey.
| | | | - Zeynep Tuncali
- Department of Psychology, Izmir University of Economics, 35330, Balçova, Izmir, Turkey
| | - Bengi Kamar
- Department of Psychology, Izmir University of Economics, 35330, Balçova, Izmir, Turkey
| | - Seda Dural
- Department of Psychology, Izmir University of Economics, 35330, Balçova, Izmir, Turkey
| |
Collapse
|
2
|
Hwang H, Jin SW, Lee I. Differential functions of the dorsal and intermediate regions of the hippocampus for optimal goal-directed navigation in VR space. eLife 2024; 13:RP97114. [PMID: 39012807 PMCID: PMC11251721 DOI: 10.7554/elife.97114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Goal-directed navigation requires the hippocampus to process spatial information in a value-dependent manner, but its underlying mechanism needs to be better understood. Here, we investigated whether the dorsal (dHP) and intermediate (iHP) regions of the hippocampus differentially function in processing place and its associated value information. Rats were trained in a place-preference task involving reward zones with different values in a visually rich virtual reality environment where two-dimensional navigation was possible. Rats learned to use distal visual scenes effectively to navigate to the reward zone associated with a higher reward. Inactivation of both dHP and iHP with muscimol altered the efficiency and precision of wayfinding behavior, but iHP inactivation induced more severe damage, including impaired place preference. Our findings suggest that the iHP is more critical for value-dependent navigation toward higher-value goal locations.
Collapse
Affiliation(s)
- Hyeri Hwang
- Department of Brain and Cognitive Sciences, Seoul National UniversitySeoulRepublic of Korea
| | - Seung-Woo Jin
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
3
|
Nascimento C, Guerreiro-Pinto V, Pawlak S, Caulino-Rocha A, Amat-Garcia L, Cunha-Reis D. Impaired Response to Mismatch Novelty in the Li 2+-Pilocarpine Rat Model of TLE: Correlation with Hippocampal Monoaminergic Inputs. Biomedicines 2024; 12:631. [PMID: 38540244 PMCID: PMC10968540 DOI: 10.3390/biomedicines12030631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Novelty detection, crucial to episodic memory formation, is impaired in epileptic patients with mesial temporal lobe resection. Mismatch novelty detection, that activates the hippocampal CA1 area in humans and is vital for memory reformulation and reconsolidation, is also impaired in patients with hippocampal lesions. In this work, we investigated the response to mismatch novelty, as occurs with the new location of known objects in a familiar environment, in the Li2+-pilocarpine rat model of TLE and its correlation with hippocampal monoaminergic markers. Animals showing spontaneous recurrent seizures (SRSs) for at least 4 weeks at the time of behavioural testing showed impaired spatial learning in the radial arm maze, as described. Concurrently, SRS rats displayed impaired exploratory responses to mismatch novelty, yet novel object recognition was not significantly affected in SRS rats. While the levels of serotonin and dopamine transporters were mildly decreased in hippocampal membranes from SRS rats, the levels on the norepinephrine transporter, tyrosine hydroxylase and dopamine-β-hydroxylase were enhanced, hinting for an augmentation, rather than an impairment in noradrenergic function in SRS animals. Altogether, this reveals that mismatch novelty detection is particularly affected by hippocampal damage associated to the Li2+-pilocarpine model of epilepsy 4-8 weeks after the onset of SRSs and suggests that deficits in mismatch novelty detection may substantially contribute to cognitive impairment in MTLE. As such, behavioural tasks based on these aspects of mismatch novelty may prove useful in the development of cognitive therapy strategies aiming to rescue cognitive deficits observed in epilepsy.
Collapse
Affiliation(s)
- Carlos Nascimento
- Unidade de Fisiologia Clínica e Translacional, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Vasco Guerreiro-Pinto
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Seweryn Pawlak
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana Caulino-Rocha
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Laia Amat-Garcia
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diana Cunha-Reis
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
4
|
Massi E, Barthélemy J, Mailly J, Dromnelle R, Canitrot J, Poniatowski E, Girard B, Khamassi M. Model-Based and Model-Free Replay Mechanisms for Reinforcement Learning in Neurorobotics. Front Neurorobot 2022; 16:864380. [PMID: 35812782 PMCID: PMC9263850 DOI: 10.3389/fnbot.2022.864380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022] Open
Abstract
Experience replay is widely used in AI to bootstrap reinforcement learning (RL) by enabling an agent to remember and reuse past experiences. Classical techniques include shuffled-, reversed-ordered- and prioritized-memory buffers, which have different properties and advantages depending on the nature of the data and problem. Interestingly, recent computational neuroscience work has shown that these techniques are relevant to model hippocampal reactivations recorded during rodent navigation. Nevertheless, the brain mechanisms for orchestrating hippocampal replay are still unclear. In this paper, we present recent neurorobotics research aiming to endow a navigating robot with a neuro-inspired RL architecture (including different learning strategies, such as model-based (MB) and model-free (MF), and different replay techniques). We illustrate through a series of numerical simulations how the specificities of robotic experimentation (e.g., autonomous state decomposition by the robot, noisy perception, state transition uncertainty, non-stationarity) can shed new lights on which replay techniques turn out to be more efficient in different situations. Finally, we close the loop by raising new hypotheses for neuroscience from such robotic models of hippocampal replay.
Collapse
|
5
|
Differential encoding of place value between the dorsal and intermediate hippocampus. Curr Biol 2021; 31:3053-3072.e5. [DOI: 10.1016/j.cub.2021.04.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023]
|
6
|
Lopatina OL, Morgun AV, Gorina YV, Salmin VV, Salmina AB. Current approaches to modeling the virtual reality in rodents for the assessment of brain plasticity and behavior. J Neurosci Methods 2020; 335:108616. [PMID: 32007483 DOI: 10.1016/j.jneumeth.2020.108616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/17/2022]
Abstract
Virtual reality (VR) and augmented reality (AR) have become valuable tools to study brains and behaviors resulting in development of new methods of diagnostics and treatment. Neurodegenerаtion is one of the best examples demonstrating efficacy of VR/АR technologies in modern neurology. Development of novel VR systems for rodents and combination of VR tools with up-to-date imaging techniques (i.e. MRI, imaging of neural networks etc.), brain electrophysiology (EEG, patch-clamp), precise analytics (microdialysis) allowed implementing of VR protocols into the animal neurobiology to study brain plasticity, sensorimotor integration, spatial navigation, memory, and decision-making. VR/AR for rodents is а young field of experimental neuroscience and has already provided more consistent testing conditions, less human-animal interaction, opportunities to use a wider variety of experimental parameters. Here we discuss present and future perspectives of using VR/AR to assess brain plasticity, neurogenesis and complex behavior in rodent and human study, and their advantages for translational neuroscience.
Collapse
Affiliation(s)
- Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.
| | - Andrey V Morgun
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yana V Gorina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Vladimir V Salmin
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
7
|
Pattern Separation Underpins Expectation-Modulated Memory. J Neurosci 2020; 40:3455-3464. [PMID: 32161140 DOI: 10.1523/jneurosci.2047-19.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/17/2020] [Accepted: 02/01/2020] [Indexed: 11/21/2022] Open
Abstract
Pattern separation and completion are fundamental hippocampal computations supporting memory encoding and retrieval. However, despite extensive exploration of these processes, it remains unclear whether and how top-down processes adaptively modulate the dynamics between these computations. Here we examine the role of expectation in shifting the hippocampus to perform pattern separation. In a behavioral task, 29 participants (7 males) learned a cue-object category contingency. Then, at encoding, one-third of the cues preceding the to-be-memorized objects, violated the studied rule. At test, participants performed a recognition task with old objects (targets) and a set of parametrically manipulated (very similar to dissimilar) foils for each object. Accuracy was found to be better for foils of high similarity to targets that were contextually unexpected at encoding compared with expected ones. Critically, there were no expectation-driven differences for targets and low similarity foils. To further explore these effects, we implemented a computational model of the hippocampus, performing the same task as the human participants. We used representational similarity analysis to examine how top-down expectation interacts with bottom-up perceptual input, in each layer. All subfields showed more dissimilar representations for unexpected items, with dentate gyrus (DG) and CA3 being more sensitive to expectation violation than CA1. Again, representational differences between expected and unexpected inputs were prominent for moderate to high levels of input similarity. This effect diminished when inputs from DG and CA3 into CA1 were lesioned. Overall, these novel findings strongly suggest that pattern separation in DG/CA3 underlies the effect that violation of expectation exerts on memory.SIGNIFICANCE STATEMENT What makes some events more memorable than others is a key question in cognitive neuroscience. Violation of expectation often leads to better memory performance, but the neural mechanism underlying this benefit remains elusive. In a behavioral study, we found that memory accuracy is enhanced selectively for unexpected highly similar foils, suggesting expectation violation does not enhance memory indiscriminately, but specifically aids the disambiguation of overlapping inputs. This is further supported by our subsequent investigation using a hippocampal computational model, revealing increased representational dissimilarity for unexpected highly similar foils in DG and CA3. These convergent results provide the first evidence that pattern separation plays an explicit role in supporting memory for unexpected information.
Collapse
|
8
|
Robakiewicz I, Polak M, Rawska M, Alberski D, Polowy R, Wytrychiewicz K, Syperek M, Matysiak J, Filipkowski RK. Stimulus-seeking in rats is accompanied by increased c-Fos expression in hippocampal CA1 as well as short 22 kHz and flat 50 kHz calls. Acta Neurobiol Exp (Wars) 2019. [DOI: 10.21307/ane-2019-029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|