1
|
Falangola MF, Dhiman S, Voltin J, Jensen JH. Quantitative microglia morphological features correlate with diffusion MRI in 2-month-old 3xTg-AD mice. Magn Reson Imaging 2023; 103:8-17. [PMID: 37392805 PMCID: PMC10528126 DOI: 10.1016/j.mri.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Microglia (MØ) morphologies are closely related to their functional state and have a central role in the maintenance of brain homeostasis. It is well known that inflammation contributes to neurodegeneration at later stages of Alzheimer's Disease, but it is not clear which role MØ-mediated inflammation may play earlier in the disease pathogenesis. We have previously reported that diffusion MRI (dMRI) is able to detect early myelin abnormalities present in 2-month-old 3xTg-AD (TG) mice; since MØ actively participate in regulating myelination, the goal of this study was to assess quantitatively MØ morphological characteristics and its association with dMRI metrics patterns in 2-month-old 3xTg-AD mice. Our results show that, even at this young age (2-month-old), TG mice have statistically significantly more MØ cells, which are overall smaller and more complex, compared with age-matched normal control mice (NC). Our results also confirm that myelin basic protein is reduced in TG mice, particularly in fimbria (Fi) and cortex. Additionally, MØ morphological characteristics, in both groups, correlate with several dMRI metrics, depending on the brain region examined. For example, the increase in MØ number correlated with higher radial diffusivity (r = 0.59, p = 0.008), lower fractional anisotropy (FA) (r = -0.47, p = 0.03), and lower kurtosis fractional anisotropy (KFA) (r = -0.55, p = 0.01) in the CC. Furthermore, smaller MØ cells correlate with higher axial diffusivity) in the HV (r = 0.49, p = 0.03) and Sub (r = 0.57, p = 0.01). Our findings demonstrate, for the first time, that MØ proliferation/activation are a common and widespread feature in 2-month-old 3xTg-AD mice and suggest that dMRI measures are sensitive to these MØ alterations, which are associated in this model with myelin dysfunction and microstructural integrity abnormalities.
Collapse
Affiliation(s)
- Maria Fatima Falangola
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA.
| | - Siddhartha Dhiman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Joshua Voltin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
2
|
Pacheco-Sánchez B, Tovar R, Ben Rabaa M, Sánchez-Salido L, Vargas A, Suárez J, Rodríguez de Fonseca F, Rivera P. Sex-Dependent Altered Expression of Cannabinoid Signaling in Hippocampal Astrocytes of the Triple Transgenic Mouse Model of Alzheimer's Disease: Implications for Controlling Astroglial Activity. Int J Mol Sci 2023; 24:12598. [PMID: 37628778 PMCID: PMC10454447 DOI: 10.3390/ijms241612598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease. In AD-associated neuroinflammation, astrocytes play a key role, finding glial activation both in patients and in animal models. The endocannabinoid system (ECS) is a neurolipid signaling system with anti-inflammatory and neuroprotective properties implicated in AD. Astrocytes respond to external cannabinoid signals and also have their own cannabinoid signaling. Our main objective is to describe the cannabinoid signaling machinery present in hippocampal astrocytes from 3×Tg-AD mice to determine if they are actively involved in the neurodegenerative process. Primary cultures of astrocytes from the hippocampus of 3×Tg-AD and non-Tg offspring were carried out. We analyzed the gene expression of astrogliosis markers, the main components of the ECS and Ca2+ signaling. 3×Tg-AD hippocampal astrocytes show low inflammatory activity (Il1b, Il6, and Gls) and Ca2+ flow (P2rx5 and Mcu), associated with low cannabinoid signaling (Cnr1 and Cnr2). These results were more evident in females. Our study corroborates glial involvement in AD pathology, in which cannabinoid signaling plays an important role. 3×Tg-AD mice born with hippocampal astrocytes with differential gene expression of the ECS associated with an innate attenuation of their activity. In addition, we show that there are sex differences from birth in this AD animal, which should be considered when investigating the pathogenesis of the disease.
Collapse
Affiliation(s)
- Beatriz Pacheco-Sánchez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| | - Rubén Tovar
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| | - Meriem Ben Rabaa
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
- Molecular Biotechnology, FH Campus Wien, University for Applied Sciences, Favoritenstraße 222, 1100 Vienna, Austria
| | - Lourdes Sánchez-Salido
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| | - Antonio Vargas
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| | - Patricia Rivera
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| |
Collapse
|
3
|
Guma E, Cupo L, Ma W, Gallino D, Moquin L, Gratton A, Devenyi GA, Chakravarty MM. Investigating the "two-hit hypothesis": Effects of prenatal maternal immune activation and adolescent cannabis use on neurodevelopment in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110642. [PMID: 36150422 DOI: 10.1016/j.pnpbp.2022.110642] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/09/2022]
Abstract
Prenatal exposure to maternal immune activation (MIA) and chronic adolescent cannabis use are both risk factors for neuropsychiatric disorders. However, exposure to a single risk factor may not result in major mental illness, indicating that multiple exposures may be required for illness onset. Here, we examine whether combined exposure to prenatal MIA and adolescent delta-9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, lead to enduring neuroanatomical and behavioural changes in adulthood. Mice were prenatally exposed to viral mimetic, poly I:C (5 mg/kg), or vehicle at gestational day (GD) 9, and postnatally exposed to chronic THC (5 mg/kg, intraperitoneal) or vehicle during adolescence (postnatal day [PND]28-45). Longitudinal magnetic resonance imaging (MRI) was performed pre-treatment, PND 25, post-treatment, PND 50, and in adulthood, PND85, followed by behavioural tests for anxiety-like, social, and sensorimotor gating. Post-mortem assessment of cannabinoid (CB)1 and 2 receptor expressing cells was performed in altered regions identified by MRI (anterior cingulate and somatosensory cortices, striatum, and hippocampus). Subtle deviations in neurodevelopmental trajectory and subthreshold anxiety-like behaviours were observed in mice exposed to both risk factors. Sex-dependent effects were observed in patterns of shared brain-behaviour covariation, indicative of potential sex differences in response to MIA and THC. Density of CB1 and CB2 receptor positive cells was significantly decreased in all mice exposed to MIA, THC, or both. These findings suggest that there may be a cumulative effect of risk factor exposure on gross neuroanatomical development, and that the endocannabinoid system may be sensitive to both prenatal MIA, adolescent THC, or the combination.
Collapse
Affiliation(s)
- Elisa Guma
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | - Lani Cupo
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Weiya Ma
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Daniel Gallino
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Luc Moquin
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Alain Gratton
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Rajani V, Yuan Q. Noradrenergic Modulation of the Piriform Cortex: A Possible Avenue for Understanding Pre-Clinical Alzheimer’s Disease Pathogenesis. Front Cell Neurosci 2022; 16:908758. [PMID: 35722616 PMCID: PMC9204642 DOI: 10.3389/fncel.2022.908758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Olfactory dysfunction is one of the biomarkers for Alzheimer’s disease (AD) diagnosis and progression. Deficits with odor identification and discrimination are common symptoms of pre-clinical AD, preceding severe memory disorder observed in advanced stages. As a result, understanding mechanisms of olfactory impairment is a major focus in both human studies and animal models of AD. Pretangle tau, a precursor to tau tangles, is first observed in the locus coeruleus (LC). In a recent animal model, LC pretangle tau leads to LC fiber degeneration in the piriform cortex (PC), a cortical area associated with olfactory dysfunction in both human AD and rodent models. Here, we review the role of LC-sourced NE in modulation of PC activity and suggest mechanisms by which pretangle tau-mediated LC dysfunction may impact olfactory processing in preclinical stage of AD. Understanding mechanisms of early olfactory impairment in AD may provide a critical window for detection and intervention of disease progression.
Collapse
|
5
|
Petekkaya E, Kuş B, Doğan S, Bayaroğulları H, Mutlu T, Murat Melek İ, Arpacı A. Possible role of endocannabinoids in olfactory and taste dysfunctions in Alzheimer's and Parkinson's patients and volumetric changes in the brain. J Clin Neurosci 2022; 100:52-58. [PMID: 35398594 DOI: 10.1016/j.jocn.2022.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
The purpose of this study is to determine the volumes of primary brain regions associated with smell and taste in Alzheimer's and Parkinson's patients and healthy controls using MR imaging and examine volumetric changes in comparison to smell/taste questionnaire and test results and endocannabinoid (EC) levels. The study included 15 AD patients with mild cognitive dysfunction scored as 18 ≤ MMSE ≤ 23, 15 PD patients with scores of 18 < MoCA < 26 and 18 ≤ MMSE ≤ 23, and 15 healthy controls. A taste and smell questionnaire was given to the participants, and their taste and smell statuses were examined using the Sniffin' Sticks smell identification test and Burghart Taste Strips. EC levels were analyzed in the blood serum samples of the participants using the ELISA method. The volumes of the left olfactory bulb (p = 0.001), left amygdala (p = 0.004), left hippocampus (p = 0.008), and bilateral insula (left p = 0.000, right p = 0.000) were significantly smaller in the Alzheimer's patients than the healthy controls. The volumes of the left olfactory bulb (p = 0.001) and left hippocampus (p = 0.009) were significantly smaller in the Parkinson's patients than the healthy controls. A significant correlation was determined between volume reduction in the left Rolandic operculum cortical region and taste dysfunction. EC levels were significantly higher in both AD (p = 0.000) and PD (p = 0.006) in comparison to the controls. Our results showed that volumetric changes occur in the brain regions associated with smell and taste in Alzheimer's and Parkinson's patients. It was observed that ECs played a role in these volumetric changes and the olfactory and taste dysfunctions of the patients.
Collapse
Affiliation(s)
- Emine Petekkaya
- Department of Anatomy, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey.
| | - Berna Kuş
- Department of Biochemistry, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Serdar Doğan
- Department of Biochemistry, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Hanifi Bayaroğulları
- Department of Radiology, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Turay Mutlu
- Department of Neurology, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - İsmet Murat Melek
- Department of Neurology, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Abdullah Arpacı
- Department of Biochemistry, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey.
| |
Collapse
|
6
|
Neuroimaging of Mouse Models of Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10020305. [PMID: 35203515 PMCID: PMC8869427 DOI: 10.3390/biomedicines10020305] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022] Open
Abstract
Magnetic resonance imaging (MRI) and positron emission tomography (PET) have made great strides in the diagnosis and our understanding of Alzheimer’s Disease (AD). Despite the knowledge gained from human studies, mouse models have and continue to play an important role in deciphering the cellular and molecular evolution of AD. MRI and PET are now being increasingly used to investigate neuroimaging features in mouse models and provide the basis for rapid translation to the clinical setting. Here, we provide an overview of the human MRI and PET imaging landscape as a prelude to an in-depth review of preclinical imaging in mice. A broad range of mouse models recapitulate certain aspects of the human AD, but no single model simulates the human disease spectrum. We focused on the two of the most popular mouse models, the 3xTg-AD and the 5xFAD models, and we summarized all known published MRI and PET imaging data, including contrasting findings. The goal of this review is to provide the reader with broad framework to guide future studies in existing and future mouse models of AD. We also highlight aspects of MRI and PET imaging that could be improved to increase rigor and reproducibility in future imaging studies.
Collapse
|
7
|
Fowler C, Goerzen D, Madularu D, Devenyi GA, Chakravarty MM, Near J. Longitudinal characterization of neuroanatomical changes in the Fischer 344 rat brain during normal aging and between sexes. Neurobiol Aging 2022; 109:216-228. [PMID: 34775212 DOI: 10.1016/j.neurobiolaging.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/23/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Animal models are widely used to study the pathophysiology of disease and to evaluate the efficacy of novel interventions, crucial steps towards improving disease outcomes in humans. The Fischer 344 (F344) wildtype rat is a common experimental background strain for transgenic models of disease and is one of the most frequently used models in aging research. Despite frequency of use, characterization of agerelated neuroanatomical change has not been performed in the F344 rat. To this end, we present a comprehensive longitudinal examination of morphometric change in 73 brain regions and at a voxel-wise level during normative aging in vivo in a mixed-sexcohort of F344 rats. We identified the greatest vulnerability to aging within the cortex, caudoputamen, hindbrain, and internal capsule, while the influence of sex was strongest in the caudoputamen, hippocampus, nucleus accumbens, and thalamus, many of which are implicated in memory and motor control circuits frequently affected by aging and neurodegenerative disease. These findings provide a baseline for neuroanatomical changes associated with aging in male and female F344 rats, to which data from transgenic models or other background strains can be compared.
Collapse
Affiliation(s)
- Caitlin Fowler
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Dana Goerzen
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Dan Madularu
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - M Mallar Chakravarty
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Jamie Near
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Fowler CF, Goerzen D, Devenyi GA, Madularu D, Chakravarty MM, Near J. OUP accepted manuscript. Brain Commun 2022; 4:fcac072. [PMID: 35434622 PMCID: PMC9007326 DOI: 10.1093/braincomms/fcac072] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Caitlin F. Fowler
- Department of Biological and Biomedical Engineering, McGill University, Duff Medical Building, Montreal, Canada H3A 2B4
- Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada H4H 1R3
- Correspondence to: Caitlin F. Fowler, CIC Pavilion Office GH-2113 Douglas Mental Health University Institute 6875 Boulevard LaSalle Montreal, Canada H4H 1R3 E-mail:
| | - Dana Goerzen
- Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada H4H 1R3
| | - Gabriel A. Devenyi
- Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada H4H 1R3
- Department of Psychiatry, McGill University, Montreal, Canada H3A 1A1
| | - Dan Madularu
- Centre for Translational NeuroImaging, Northeastern University, Boston, USA
| | - M. Mallar Chakravarty
- Department of Biological and Biomedical Engineering, McGill University, Duff Medical Building, Montreal, Canada H3A 2B4
- Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada H4H 1R3
- Department of Psychiatry, McGill University, Montreal, Canada H3A 1A1
| | - Jamie Near
- Department of Biological and Biomedical Engineering, McGill University, Duff Medical Building, Montreal, Canada H3A 2B4
- Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada H4H 1R3
- Department of Psychiatry, McGill University, Montreal, Canada H3A 1A1
- Physical Studies Research Platform, Sunnybrook Research Institute, Toronto, Canada M4N 3M5
- Department of Medical Biophysics, University of Toronto, Toronto, Canada M5G 1L7
| |
Collapse
|
9
|
Ni R. Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis. Int J Mol Sci 2021; 22:12768. [PMID: 34884573 PMCID: PMC8657987 DOI: 10.3390/ijms222312768] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Amyloid-beta (Aβ) plays an important role in the pathogenesis of Alzheimer's disease. Aberrant Aβ accumulation induces neuroinflammation, cerebrovascular alterations, and synaptic deficits, leading to cognitive impairment. Animal models recapitulating the Aβ pathology, such as transgenic, knock-in mouse and rat models, have facilitated the understanding of disease mechanisms and the development of therapeutics targeting Aβ. There is a rapid advance in high-field MRI in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences, such as diffusion tensor imaging, arterial spin labeling, resting-state functional MRI, anatomical MRI, and MR spectroscopy, as well as contrast agents, have been developed for preclinical imaging in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole-brain field of view. MRI has been used to visualize non-invasively the Aβ deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, and cerebrovascular and glymphatic system in animal models of Alzheimer's disease amyloidosis. Many of the readouts are translational toward clinical MRI applications in patients with Alzheimer's disease. In this review, we summarize the recent advances in MRI for visualizing the pathophysiology in amyloidosis animal models. We discuss the outstanding challenges in brain imaging using MRI in small animals and propose future outlook in visualizing Aβ-related alterations in the brains of animal models.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, 8093 Zurich, Switzerland;
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
10
|
Associating brain imaging phenotypes and genetic in Alzheimer's disease via JSCCA approach with autocorrelation constraints. Med Biol Eng Comput 2021; 60:95-108. [PMID: 34714488 DOI: 10.1007/s11517-021-02439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Imaging genetics research can explore the potential correlation between imaging and genomics. Most association analysis methods cannot effectively use the prior knowledge of the original data. In this respect, we add the prior knowledge of each original data to mine more effective biomarkers. The study of imaging genetics based on the sparse canonical correlation analysis (SCCA) is helpful to mine the potential biomarkers of neurological diseases. To improve the performance and interpretability of SCCA, we proposed a penalty method based on the autocorrelation matrix for discovering the possible biological mechanism between single nucleotide polymorphisms (SNP) variations and brain regions changes of Alzheimer's disease (AD). The addition of the penalty allows the proposed algorithm to analyze the correlation between different modal features. The proposed algorithm obtains more biologically interpretable ROIs and SNPs that are significantly related to AD, which has better anti-noise performance. Compared with other SCCA-based algorithms (JCB-SCCA, JSNMNMF), the proposed algorithm can still maintain a stronger correlation with ground truth even when the noise is larger. Then, we put the regions of interest (ROI) selected by the three algorithms into the SVM classifier. The proposed algorithm has higher classification accuracy. Also, we use ridge regression with SNPs selected by three algorithms and four AD risk ROIs. The proposed algorithm has a smaller root mean square error (RMSE). It shows that proposed algorithm has a good ability in association recognition and feature selection. Furthermore, it selects important features more stably, improving the clinical diagnosis of new potential biomarkers.
Collapse
|
11
|
Chakravarty MM, Guma E. Small animal imaging presents an opportunity for improving translational research in biological psychiatry. J Psychiatry Neurosci 2021; 46:E579-E582. [PMID: 34670841 PMCID: PMC8532952 DOI: 10.1503/jpn.210172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
| | - Elisa Guma
- From the Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Research Institute, Montreal, Que., Canada (Chakravarty, Guma); the Department of Psychiatry, McGill University, Montreal, Que., Canada (Chakravarty); the Department of Biological and Biomedical Engineering, McGill University, Montreal, Que., Canada (Chakravarty); and the Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Intramural Program, USA (Guma)
| |
Collapse
|
12
|
Guma E, Bordignon PDC, Devenyi GA, Gallino D, Anastassiadis C, Cvetkovska V, Barry AD, Snook E, Germann J, Greenwood CMT, Misic B, Bagot RC, Chakravarty MM. Early or Late Gestational Exposure to Maternal Immune Activation Alters Neurodevelopmental Trajectories in Mice: An Integrated Neuroimaging, Behavioral, and Transcriptional Study. Biol Psychiatry 2021; 90:328-341. [PMID: 34053674 DOI: 10.1016/j.biopsych.2021.03.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to maternal immune activation (MIA) in utero is a risk factor for neurodevelopmental disorders later in life. The impact of the gestational timing of MIA exposure on downstream development remains unclear. METHODS We characterized neurodevelopmental trajectories of mice exposed to the viral mimetic poly I:C (polyinosinic:polycytidylic acid) either on gestational day 9 (early) or on day 17 (late) using longitudinal structural magnetic resonance imaging from weaning to adulthood. Using multivariate methods, we related neuroimaging and behavioral variables for the time of greatest alteration (adolescence/early adulthood) and identified regions for further investigation using RNA sequencing. RESULTS Early MIA exposure was associated with accelerated brain volume increases in adolescence/early adulthood that normalized in later adulthood in the striatum, hippocampus, and cingulate cortex. Similarly, alterations in anxiety-like, stereotypic, and sensorimotor gating behaviors observed in adolescence normalized in adulthood. MIA exposure in late gestation had less impact on anatomical and behavioral profiles. Multivariate maps associated anxiety-like, social, and sensorimotor gating deficits with volume of the dorsal and ventral hippocampus and anterior cingulate cortex, among others. The most transcriptional changes were observed in the dorsal hippocampus, with genes enriched for fibroblast growth factor regulation, autistic behaviors, inflammatory pathways, and microRNA regulation. CONCLUSIONS Leveraging an integrated hypothesis- and data-driven approach linking brain-behavior alterations to the transcriptome, we found that MIA timing differentially affects offspring development. Exposure in late gestation leads to subthreshold deficits, whereas exposure in early gestation perturbs brain development mechanisms implicated in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elisa Guma
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Pedro do Couto Bordignon
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Daniel Gallino
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Chloe Anastassiadis
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Institute of Medical Science & Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | | | - Amadou D Barry
- Departments of Human Genetics and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Emily Snook
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jurgen Germann
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; University Health Network, Toronto, Ontario, Canada
| | - Celia M T Greenwood
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Departments of Human Genetics and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Falangola MF, Nie X, Ward R, Dhiman S, Voltin J, Nietert PJ, Jensen JH. Diffusion MRI detects basal forebrain cholinergic abnormalities in the 3xTg-AD mouse model of Alzheimer's disease. Magn Reson Imaging 2021; 83:1-13. [PMID: 34229088 DOI: 10.1016/j.mri.2021.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Degeneration of the basal forebrain (BF) is detected early in the course of Alzheimer's disease (AD). Reduction in the number of BF cholinergic (ChAT) neurons associated with age-related hippocampal cholinergic neuritic dystrophy is described in the 3xTg-AD mouse model; however, no prior diffusion MRI (dMRI) study has explored the presence of BF alterations in this model. Here we investigated the ability of diffusion MRI (dMRI) to detect abnormalities in BF microstructure for the 3xTg-AD mouse model, along with related pathology in the hippocampus (HP) and white matter (WM) tracks comprising the septo-hippocampal pathway. 3xTg-AD and normal control (NC) mice were imaged in vivo using the specific dMRI technique known as diffusional kurtosis imaging (DKI) at 2, 8, and 15 months of age, and 8 dMRI parameters were measured at each time point. Our results revealed significant lower dMRI values in the BF of 2 months-old 3xTg-AD mice compared with NC mice, most likely related to the increased number of ChAT neurons seen in this AD mouse model at this age. They also showed significant age-related dMRI changes in the BF of both groups between 2 and 8 months of age, mainly a decrease in fractional anisotropy and axial diffusivity, and an increase in radial kurtosis. These dMRI changes in the BF may be reflecting the complex aging and pathological microstructural changes described in this region. Group differences and age-related changes were also observed in the HP, fimbria (Fi) and fornix (Fx). In the HP, diffusivity values were significantly higher in the 2 months-old 3xTg-AD mice, and the HP of NC mice showed a significant increase in axial kurtosis after 8 months, reflecting a normal pattern of increased fiber density complexity, which was not seen in the 3xTg-AD mice. In the Fi, mean and radial diffusivity values were significantly higher, and fractional anisotropy, radial kurtosis and kurtosis fractional anisotropy were significantly lower in the 2 months-old 3xTg-AD mice. The age trajectories for both NC and TG mice in the Fi and Fx were similar between 2 and 8 months, but after 8 months there was a significant decrease in diffusivity metrics associated with an increase in kurtosis metrics in the 3xTg-AD mice. These later HP, Fi and Fx dMRI changes probably reflect the growing number of dystrophic neurites and AD pathology progression in the HP, accompanied by WM disruption in the septo-hippocampal pathway. Our results demonstrate that dMRI can detect early cytoarchitectural abnormalities in the BF, as well as related aging and neurodegenerative changes in the HP, Fi and Fx of the 3xTg-AD mice. Since DKI is widely available on clinical scanners, these results also support the potential of the considered dMRI parameters as in vivo biomarkers for AD disease progression.
Collapse
Affiliation(s)
- Maria Fatima Falangola
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA.
| | - Xingju Nie
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Ralph Ward
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Siddhartha Dhiman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Joshua Voltin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
14
|
Ávila-Villanueva M, Gómez-Ramírez J, Ávila J, Fernández-Blázquez MA. Alzheimer's Disease and Empathic Abilities: The Proposed Role of the Cingulate Cortex. J Alzheimers Dis Rep 2021; 5:345-352. [PMID: 34189406 PMCID: PMC8203285 DOI: 10.3233/adr-200282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In recent years there has been increasing interest in examining the role of empathic abilities in Alzheimer’s disease (AD). Empathy, the ability to understand and share another person’s feelings, implies the existence of emotional and cognitive processes and is a pivotal aspect for success in social interactions. In turn, self-empathy is oriented to one’s thoughts and feelings. Decline of empathy and self-empathy can occur during the AD continuum and can be linked to different neuroanatomical pathways in which the cingulate cortex may play a crucial role. Here, we will summarize the involvement of empathic abilities through the AD continuum and further discuss the potential neurocognitive mechanisms that contribute to decline of empathy and self-empathy in AD.
Collapse
Affiliation(s)
- Marina Ávila-Villanueva
- Alzheimer Disease Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofía Foundation Alzheimer Center, Madrid, Spain
| | - Jaime Gómez-Ramírez
- Alzheimer Disease Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofía Foundation Alzheimer Center, Madrid, Spain
| | - Jesús Ávila
- Center of Molecular Biology Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miguel A Fernández-Blázquez
- Alzheimer Disease Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofía Foundation Alzheimer Center, Madrid, Spain.,Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Complutense University of Madrid (UCM), Campus de Somosaguas, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
15
|
Martínez-García I, Hernández-Soto R, Villasana-Salazar B, Ordaz B, Peña-Ortega F. Alterations in Piriform and Bulbar Activity/Excitability/Coupling Upon Amyloid-β Administration in vivo Related to Olfactory Dysfunction. J Alzheimers Dis 2021; 82:S19-S35. [PMID: 33459655 DOI: 10.3233/jad-201392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Deficits in odor detection and discrimination are premature symptoms of Alzheimer's disease (AD) that correlate with pathological signs in the olfactory bulb (OB) and piriform cortex (PCx). Similar olfactory dysfunction has been characterized in AD transgenic mice that overproduce amyloid-β peptide (Aβ), which can be prevented by reducing Aβ levels by immunological and pharmacological means, suggesting that olfactory dysfunction depends on Aβ accumulation and Aβ-driven alterations in the OB and/or PCx, as well as on their activation. However, this possibility needs further exploration. OBJECTIVE To characterize the effects of Aβ on OB and PCx excitability/coupling and on olfaction. METHODS Aβ oligomerized solution (containing oligomers, monomers, and protofibrils) or its vehicle were intracerebroventricularlly injected two weeks before OB and PCx excitability and synchrony were evaluated through field recordings in vivo and in brain slices. Synaptic transmission from the OB to the PCx was also evaluated in slices. Olfaction was assessed through the habituation/dishabituation test. RESULTS Aβ did not affect lateral olfactory tract transmission into the PCx but reduced odor habituation and cross-habituation. This olfactory dysfunction was related to a reduction of PCx and OB network activity power in vivo. Moreover, the coherence between PCx-OB activities was also reduced by Aβ. Finally, Aβ treatment exacerbated the 4-aminopyridine-induced excitation in the PCx in slices. CONCLUSION Our results show that Aβ-induced olfactory dysfunction involves a complex set of pathological changes at different levels of the olfactory pathway including alterations in PCx excitability and its coupling with the OB. These pathological changes might contribute to hyposmia in AD.
Collapse
Affiliation(s)
- Ignacio Martínez-García
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Rebeca Hernández-Soto
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
16
|
Al-Otaibi M, Lessard-Beaudoin M, Castellano CA, Gris D, Cunnane SC, Graham RK. Volumetric MRI demonstrates atrophy of the olfactory cortex in AD. Curr Alzheimer Res 2020; 17:904-915. [PMID: 33327913 DOI: 10.2174/1567205017666201215120909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/02/2020] [Accepted: 11/05/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Alzheimer disease (AD) is a chronic neurodegenerative disorder that affects millions of individuals worldwide. Symptoms include memory dysfunction and deficits in attention, planning, language, and overall cognitive function. Olfactory dysfunction is a common symptom of AD and evidence supports that it is an early marker. Furthermore, olfactory bulb and entorhinal cortex atrophy are well described in AD. However, in AD, no studies have assessed the olfactory cortex as a whole and if sex effects are observed. METHODS Magnetic Resonance Imaging was used to scan 39 participants with an average age of 72 years and included men and women. AAL Single-Subject Atlas (implemented in PNEURO tool - PMOD 3.8) was used to determine the volume of the olfactory cortex and the hippocampus. Olfactory cortex volume was lower in both men and women AD cases compared with controls. This decrease was more apparent in the left olfactory cortex and was influenced by age. As expected, hippocampal volume was also significantly reduced in AD. However, this was only observed in the male cohort. A significant correlation was observed between levels of education and hippocampal volume in controls that were not detected in the AD participants. Asymmetry was observed in the olfactory cortex volume when comparing left and right volumes in both the control and AD participants, which was not observed in the hippocampus. RESULTS These data highlight the importance of the role of olfactory cortical atrophy in the pathogenesis of AD and the interplay between the olfactory deficits and degeneration of olfactory regions in the brain.
Collapse
Affiliation(s)
| | | | | | - Denis Gris
- Department of Pediatrics, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen C Cunnane
- Research Center on Aging, CIUSSS-IUGS de l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Rona K Graham
- Research Center on Aging, CIUSSS-IUGS de l'Estrie-CHUS, Sherbrooke, QC, Canada
| |
Collapse
|
17
|
Falangola MF, Nie X, Ward R, McKinnon ET, Dhiman S, Nietert PJ, Helpern JA, Jensen JH. Diffusion MRI detects early brain microstructure abnormalities in 2-month-old 3×Tg-AD mice. NMR IN BIOMEDICINE 2020; 33:e4346. [PMID: 32557874 PMCID: PMC7683375 DOI: 10.1002/nbm.4346] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The 3×Tg-AD mouse is one of the most studied animal models of Alzheimer's disease (AD), and develops both amyloid beta deposits and neurofibrillary tangles in a temporal and spatial pattern that is similar to human AD pathology. Additionally, abnormal myelination patterns with changes in oligodendrocyte and myelin marker expression are reported to be an early pathological feature in this model. Only few diffusion MRI (dMRI) studies have investigated white matter abnormalities in 3×Tg-AD mice, with inconsistent results. Thus, the goal of this study was to investigate the sensitivity of dMRI to capture brain microstructural alterations in 2-month-old 3×Tg-AD mice. In the fimbria, the fractional anisotropy (FA), kurtosis fractional anisotropy (KFA), and radial kurtosis (K┴ ) were found to be significantly lower in 3×Tg-AD mice than in controls, while the mean diffusivity (MD) and radial diffusivity (D┴ ) were found to be elevated. In the fornix, K┴ was lower for 3×Tg-AD mice; in the dorsal hippocampus MD and D┴ were elevated, as were FA, MD, and D┴ in the ventral hippocampus. These results indicate, for the first time, dMRI changes associated with myelin abnormalities in young 3×Tg-AD mice, before they develop AD pathology. Morphological quantification of myelin basic protein immunoreactivity in the fimbria was significantly lower in the 3×Tg-AD mice compared with the age-matched controls. Our results demonstrate that dMRI is able to detect widespread, significant early brain morphological abnormalities in 2-month-old 3×Tg-AD mice.
Collapse
Affiliation(s)
- Maria Fatima Falangola
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, US
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, US
| | - Xingju Nie
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, US
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, US
| | - Ralph Ward
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, US
| | - Emilie T McKinnon
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, US
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, US
| | - Siddhartha Dhiman
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, US
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, US
| | - Joseph A Helpern
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, US
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, US
| | - Jens H Jensen
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, US
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, US
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina, US
| |
Collapse
|
18
|
Role of Kalirin and mouse strain in retention of spatial memory training in an Alzheimer's disease model mouse line. Neurobiol Aging 2020; 95:69-80. [PMID: 32768866 DOI: 10.1016/j.neurobiolaging.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
Nontransgenic and 3xTG transgenic mice, which express mutant transgenes encoding human amyloid precursor protein (hAPP) along with Alzheimer's disease-associated versions of hTau and a presenilin mutation, acquired the Barnes Maze escape task equivalently at 3-9 months of age. Although nontransgenics retested at 6 and 9 months acquired the escape task more quickly than naïve mice, 3xTG mice did not. Deficits in Kalirin, a multidomain protein scaffold and guanine nucleotide exchange factor that regulates dendritic spines, has been proposed as a contributor to the cognitive decline observed in Alzheimer's disease. To test whether deficits in Kalirin might amplify deficits in 3xTG mice, mice heterozygous/hemizygous for Kalirin and the 3xTG transgenes were generated. Mouse strain, age and sex affected cortical expression of key proteins. hAPP levels in 3xTG mice increased total APP levels at all ages. Kalirin expression showed strong sex-dependent expression in C57 but not B6129 mice. Decreasing Kalirin levels to half had no effect on Barnes Maze task acquisition or retraining in 3xTG hemizygous mice.
Collapse
|
19
|
Chiquita S, Ribeiro M, Castelhano J, Oliveira F, Sereno J, Batista M, Abrunhosa A, Rodrigues-Neves AC, Carecho R, Baptista F, Gomes C, Moreira PI, Ambrósio AF, Castelo-Branco M. A longitudinal multimodal in vivo molecular imaging study of the 3xTg-AD mouse model shows progressive early hippocampal and taurine loss. Hum Mol Genet 2019; 28:2174-2188. [PMID: 30816415 PMCID: PMC6586150 DOI: 10.1093/hmg/ddz045] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 01/09/2023] Open
Abstract
The understanding of the natural history of Alzheimer's disease (AD) and temporal trajectories of in vivo molecular mechanisms requires longitudinal approaches. A behavioral and multimodal imaging study was performed at 4/8/12 and 16 months of age in a triple transgenic mouse model of AD (3xTg-AD). Behavioral assessment included the open field and novel object recognition tests. Molecular characterization evaluated hippocampal levels of amyloid β (Aβ) and hyperphosphorylated tau. Magnetic resonance imaging (MRI) included assessment of hippocampal structural integrity, blood-brain barrier (BBB) permeability and neurospectroscopy to determine levels of the endogenous neuroprotector taurine. Longitudinal brain amyloid accumulation was assessed using 11C Pittsburgh compound B positron emission tomography (PET), and neuroinflammation/microglia activation was investigated using 11C-PK1195. We found altered locomotor activity at months 4/8 and 16 months and recognition memory impairment at all time points. Substantial early reduction of hippocampal volume started at month 4 and progressed over 8/12 and 16 months. Hippocampal taurine levels were significantly decreased in the hippocampus at months 4/8 and 16. No differences were found for amyloid and neuroinflammation with PET, and BBB was disrupted only at month 16. In summary, 3xTg-AD mice showed exploratory and recognition memory impairments, early hippocampal structural loss, increased Aβ and hyperphosphorylated tau and decreased levels of taurine. In sum, the 3xTg-AD animal model mimics pathological and neurobehavioral features of AD, with early-onset recognition memory loss and MRI-documented hippocampal damage. The early-onset profile suggests temporal windows and opportunities for therapeutic intervention, targeting endogenous neuroprotectors such as taurine.
Collapse
Affiliation(s)
- Samuel Chiquita
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Mário Ribeiro
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - João Castelhano
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Francisco Oliveira
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - José Sereno
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Marta Batista
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Antero Abrunhosa
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Ana C Rodrigues-Neves
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Rafael Carecho
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Filipa Baptista
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Catarina Gomes
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
20
|
Gallino D, Devenyi GA, Germann J, Guma E, Anastassiadis C, Chakravarty MM. Longitudinal assessment of the neuroanatomical consequences of deep brain stimulation: Application of fornical DBS in an Alzheimer’s mouse model. Brain Res 2019; 1715:213-223. [DOI: 10.1016/j.brainres.2019.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/18/2019] [Accepted: 03/25/2019] [Indexed: 01/04/2023]
|
21
|
Manno FAM, Isla AG, Manno SHC, Ahmed I, Cheng SH, Barrios FA, Lau C. Early Stage Alterations in White Matter and Decreased Functional Interhemispheric Hippocampal Connectivity in the 3xTg Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2019; 11:39. [PMID: 30967770 PMCID: PMC6440287 DOI: 10.3389/fnagi.2019.00039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/08/2019] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized in the late stages by amyloid-β (Aβ) plaques and neurofibrillary tangles. Nevertheless, recent evidence has indicated that early changes in cerebral connectivity could compromise cognitive functions even before the appearance of the classical neuropathological features. Diffusion tensor imaging (DTI), resting-state functional magnetic resonance imaging (rs-fMRI) and volumetry were performed in the triple transgenic mouse model of AD (3xTg-AD) at 2 months of age, prior to the development of intraneuronal plaque accumulation. We found the 3xTg-AD had significant fractional anisotropy (FA) increase and radial diffusivity (RD) decrease in the cortex compared with wild-type controls, while axial diffusivity (AD) and mean diffusivity (MD) were similar. Interhemispheric hippocampal connectivity was decreased in the 3xTg-AD while connectivity in the caudate putamen (CPu) was similar to controls. Most surprising, ventricular volume in the 3xTg-AD was four times larger than controls. The results obtained in this study characterize the early stage changes in interhemispheric hippocampal connectivity in the 3xTg-AD mouse that could represent a translational biomarker to human models in preclinical stages of the AD.
Collapse
Affiliation(s)
- Francis A M Manno
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong.,Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Arturo G Isla
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Sinai H C Manno
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong.,State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Irfan Ahmed
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong.,Electrical Engineering Department, Sukkur IBA University, Sukkur, Pakistan
| | - Shuk Han Cheng
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Fernando A Barrios
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
22
|
Rollins CPE, Gallino D, Kong V, Ayranci G, Devenyi GA, Germann J, Chakravarty MM. Contributions of a high-fat diet to Alzheimer's disease-related decline: A longitudinal behavioural and structural neuroimaging study in mouse models. NEUROIMAGE-CLINICAL 2018; 21:101606. [PMID: 30503215 PMCID: PMC6413478 DOI: 10.1016/j.nicl.2018.11.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/26/2018] [Accepted: 11/18/2018] [Indexed: 11/28/2022]
Abstract
Obesity is recognized as a significant risk factor for Alzheimer's disease (AD). Studies have supported that obesity accelerates AD-related pathophysiology and memory impairment in mouse models of AD. However, the nature of the brain structure-behaviour relationship mediating this acceleration remains unclear. In this manuscript we evaluated the impact of adolescent obesity on the brain morphology of the triple transgenic mouse model of AD (3xTg) and a non-transgenic control model of the same background strain (B6129s) using longitudinally acquired structural magnetic resonance imaging (MRI). At 8 weeks of age, animals were placed on a high-fat diet (HFD) or an ingredient-equivalent control diet (CD). Structural images were acquired at 8, 16, and 24 weeks. At 25 weeks, animals underwent the novel object recognition (NOR) task and the Morris water maze (MWM) to assess short-term non-associative memory and spatial memory, respectively. All analyses were carried out across four groups: B6129s-CD and -HFD and 3xTg-CD and -HFD. Neuroanatomical changes in MRI-derived brain morphology were assessed using volumetric and deformation-based analyses. HFD-induced obesity during adolescence exacerbated brain volume alterations by adult life in the 3xTg mouse model in comparison to control-fed mice and mediated volumetric alterations of select brain regions, such as the hippocampus. Further, HFD-induced obesity aggravated memory in all mice, lowering certain memory measures of B6129s control mice to the level of 3xTg mice maintained on a CD. Moreover, decline in the volumetric trajectories of hippocampal regions for all mice were associated with the degree of spatial memory impairments on the MWM. Our results suggest that obesity may interact with the brain changes associated with AD-related pathology in the 3xTg mouse model to aggravate brain atrophy and memory impairments and similarly impair brain structural integrity and memory capacity of non-transgenic mice. Further insight into this process may have significant implications in the development of lifestyle interventions for treatment of AD. Adolescent high-fat diet-induced obesity altered adult brain morphology and memory-related behaviours in a mouse model of AD High-fat feeding exacerbated brain volume changes in a mouse model of AD High-fat feeding mediated volumetric alterations of select brain regions, such as the hippocampus Degree of impairment on a spatial memory task showed linear trends with brain structural changes in AD-related regions High-fat feeding lowered certain memory measures of non-transgenic control mice
Collapse
Affiliation(s)
- Colleen P E Rollins
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada; Department of Psychiatry, University of Cambridge, Herchel Smith Building, Cambridge CB2 0SP, United Kingdom.
| | - Daniel Gallino
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Vincent Kong
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Gülebru Ayranci
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Jürgen Germann
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|